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Network Drivers

Having discussed char and block drivers, we are now ready to move on to the world
of networking. Network interfaces are the third standard class of Linux devices, and
this chapter describes how they interact with the rest of the kernel.

The role of a network interface within the system is similar to that of a mounted
block device. A block device registers its disks and methods with the kernel, and
then “transmits” and “receives” blocks on request, by means of its request function.
Similarly, a network interface must register itself within specific kernel data struc-
tures in order to be invoked when packets are exchanged with the outside world.

There are a few important differences between mounted disks and packet-delivery
interfaces. To begin with, a disk exists as a special file in the /dev directory, whereas a
network interface has no such entry point. The normal file operations (read, write,
and so on) do not make sense when applied to network interfaces, so it is not possi-
ble to apply the Unix “everything is a file” approach to them. Thus, network inter-
faces exist in their own namespace and export a different set of operations.

Although you may object that applications use the read and write system calls when
using sockets, those calls act on a software object that is distinct from the interface.
Several hundred sockets can be multiplexed on the same physical interface.

But the most important difference between the two is that block drivers operate only
in response to requests from the kernel, whereas network drivers receive packets
asynchronously from the outside. Thus, while a block driver is asked to send a buffer
toward the kernel, the network device asks to push incoming packets toward the ker-
nel. The kernel interface for network drivers is designed for this different mode of
operation.

Network drivers also have to be prepared to support a number of administrative
tasks, such as setting addresses, modifying transmission parameters, and maintain-
ing traffic and error statistics. The API for network drivers reflects this need and,
therefore, looks somewhat different from the interfaces we have seen so far.
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The network subsystem of the Linux kernel is designed to be completely protocol-
independent. This applies to both networking protocols (Internet protocol [IP] versus
IPX or other protocols) and hardware protocols (Ethernet versus token ring, etc.).
Interaction between a network driver and the kernel properly deals with one network
packet at a time; this allows protocol issues to be hidden neatly from the driver and
the physical transmission to be hidden from the protocol.

This chapter describes how the network interfaces fit in with the rest of the Linux
kernel and provides examples in the form of a memory-based modularized network
interface, which is called (you guessed it) snull. To simplify the discussion, the inter-
face uses the Ethernet hardware protocol and transmits IP packets. The knowledge
you acquire from examining snull can be readily applied to protocols other than IP,
and writing a non-Ethernet driver is different only in tiny details related to the actual
network protocol.

This chapter doesn’t talk about IP numbering schemes, network protocols, or other
general networking concepts. Such topics are not (usually) of concern to the driver
writer, and it’s impossible to offer a satisfactory overview of networking technology
in less than a few hundred pages. The interested reader is urged to refer to other
books describing networking issues.

One note on terminology is called for before getting into network devices. The net-
working world uses the term octet to refer to a group of eight bits, which is generally
the smallest unit understood by networking devices and protocols. The term byte is
almost never encountered in this context. In keeping with standard usage, we will
use octet when talking about networking devices.

The term “header” also merits a quick mention. A header is a set of bytes (err, octets)
prepended to a packet as it is passed through the various layers of the networking
subsystem. When an application sends a block of data through a TCP socket, the
networking subsystem breaks that data up into packets and puts a TCP header,
describing where each packet fits within the stream, at the beginning. The lower lev-
els then put an IP header, used to route the packet to its destination, in front of the
TCP header. If the packet moves over an Ethernet-like medium, an Ethernet header,
interpreted by the hardware, goes in front of the rest. Network drivers need not con-
cern themselves with higher-level headers (usually), but they often must be involved
in the creation of the hardware-level header.

How snull Is Designed
This section discusses the design concepts that led to the snull network interface.
Although this information might appear to be of marginal use, failing to understand
it might lead to problems when you play with the sample code.

The first, and most important, design decision was that the sample interfaces should
remain independent of real hardware, just like most of the sample code used in this
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book. This constraint led to something that resembles the loopback interface. snull is
not a loopback interface; however, it simulates conversations with real remote hosts
in order to better demonstrate the task of writing a network driver. The Linux loop-
back driver is actually quite simple; it can be found in drivers/net/loopback.c.

Another feature of snull is that it supports only IP traffic. This is a consequence of the
internal workings of the interface—snull has to look inside and interpret the packets
to properly emulate a pair of hardware interfaces. Real interfaces don’t depend on
the protocol being transmitted, and this limitation of snull doesn’t affect the frag-
ments of code shown in this chapter.

Assigning IP Numbers
The snull module creates two interfaces. These interfaces are different from a simple
loopback, in that whatever you transmit through one of the interfaces loops back to
the other one, not to itself. It looks like you have two external links, but actually
your computer is replying to itself.

Unfortunately, this effect can’t be accomplished through IP number assignments
alone, because the kernel wouldn’t send out a packet through interface A that was
directed to its own interface B. Instead, it would use the loopback channel without
passing through snull. To be able to establish a communication through the snull
interfaces, the source and destination addresses need to be modified during data
transmission. In other words, packets sent through one of the interfaces should be
received by the other, but the receiver of the outgoing packet shouldn’t be recog-
nized as the local host. The same applies to the source address of received packets.

To achieve this kind of “hidden loopback,” the snull interface toggles the least signif-
icant bit of the third octet of both the source and destination addresses; that is, it
changes both the network number and the host number of class C IP numbers. The
net effect is that packets sent to network A (connected to sn0, the first interface)
appear on the sn1 interface as packets belonging to network B.

To avoid dealing with too many numbers, let’s assign symbolic names to the IP num-
bers involved:

• snullnet0 is the network that is connected to the sn0 interface. Similarly,
snullnet1 is the network connected to sn1. The addresses of these networks
should differ only in the least significant bit of the third octet. These networks
must have 24-bit netmasks.

• local0 is the IP address assigned to the sn0 interface; it belongs to snullnet0.
The address associated with sn1 is local1. local0 and local1 must differ in the
least significant bit of their third octet and in the fourth octet.

• remote0 is a host in snullnet0, and its fourth octet is the same as that of local1.
Any packet sent to remote0 reaches local1 after its network address has been
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modified by the interface code. The host remote1 belongs to snullnet1, and its
fourth octet is the same as that of local0.

The operation of the snull interfaces is depicted in Figure 17-1, in which the host-
name associated with each interface is printed near the interface name.

Here are possible values for the network numbers. Once you put these lines in /etc/
networks, you can call your networks by name. The values were chosen from the
range of numbers reserved for private use.

snullnet0       192.168.0.0
snullnet1       192.168.1.0

The following are possible host numbers to put into /etc/hosts:

192.168.0.1   local0
192.168.0.2   remote0
192.168.1.2   local1
192.168.1.1   remote1

The important feature of these numbers is that the host portion of local0 is the same
as that of remote1, and the host portion of local1 is the same as that of remote0. You
can use completely different numbers as long as this relationship applies.

Be careful, however, if your computer is already connected to a network. The num-
bers you choose might be real Internet or intranet numbers, and assigning them to
your interfaces prevents communication with the real hosts. For example, although

Figure 17-1. How a host sees its interfaces

localnet
lo
localhost

eth0
morgana

sn0
local0

sn1
local1

snullnet0
remote0

snullnet1

remote1

,ch17.13860  Page 500  Friday, January 21, 2005  11:10 AM



This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

How snull Is Designed | 501

the numbers just shown are not routable Internet numbers, they could already be
used by your private network.

Whatever numbers you choose, you can correctly set up the interfaces for operation
by issuing the following commands:

ifconfig sn0 local0
ifconfig sn1 local1

You may need to add the netmask 255.255.255.0 parameter if the address range cho-
sen is not a class C range.

At this point, the “remote” end of the interface can be reached. The following screen-
dump shows how a host reaches remote0 and remote1 through the snull interface:

morgana% ping -c 2 remote0
64 bytes from 192.168.0.99: icmp_seq=0 ttl=64 time=1.6 ms
64 bytes from 192.168.0.99: icmp_seq=1 ttl=64 time=0.9 ms
2 packets transmitted, 2 packets received, 0% packet loss

morgana% ping -c 2 remote1
64 bytes from 192.168.1.88: icmp_seq=0 ttl=64 time=1.8 ms
64 bytes from 192.168.1.88: icmp_seq=1 ttl=64 time=0.9 ms
2 packets transmitted, 2 packets received, 0% packet loss

Note that you won’t be able to reach any other “host” belonging to the two net-
works, because the packets are discarded by your computer after the address has
been modified and the packet has been received. For example, a packet aimed at
192.168.0.32 will leave through sn0 and reappear at sn1 with a destination address of
192.168.1.32, which is not a local address for the host computer.

The Physical Transport of Packets
As far as data transport is concerned, the snull interfaces belong to the Ethernet class.

snull emulates Ethernet because the vast majority of existing networks—at least the
segments that a workstation connects to—are based on Ethernet technology, be it
10base-T, 100base-T, or Gigabit. Additionally, the kernel offers some generalized
support for Ethernet devices, and there’s no reason not to use it. The advantage of
being an Ethernet device is so strong that even the plip interface (the interface that
uses the printer ports) declares itself as an Ethernet device.

The last advantage of using the Ethernet setup for snull is that you can run tcpdump
on the interface to see the packets go by. Watching the interfaces with tcpdump can
be a useful way to see how the two interfaces work.

As was mentioned previously, snull works only with IP packets. This limitation is a
result of the fact that snull snoops in the packets and even modifies them, in order for
the code to work. The code modifies the source, destination, and checksum in the IP
header of each packet without checking whether it actually conveys IP information.
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This quick-and-dirty data modification destroys non-IP packets. If you want to deliver
other protocols through snull, you must modify the module’s source code.

Connecting to the Kernel
We start looking at the structure of network drivers by dissecting the snull source.
Keeping the source code for several drivers handy might help you follow the discus-
sion and to see how real-world Linux network drivers operate. As a place to start, we
suggest loopback.c, plip.c, and e100.c, in order of increasing complexity. All these
files live in drivers/net, within the kernel source tree.

Device Registration
When a driver module is loaded into a running kernel, it requests resources and
offers facilities; there’s nothing new in that. And there’s also nothing new in the way
resources are requested. The driver should probe for its device and its hardware loca-
tion (I/O ports and IRQ line)—but not register them—as described in “Installing an
Interrupt Handler” in Chapter 10. The way a network driver is registered by its mod-
ule initialization function is different from char and block drivers. Since there is no
equivalent of major and minor numbers for network interfaces, a network driver
does not request such a number. Instead, the driver inserts a data structure for each
newly detected interface into a global list of network devices.

Each interface is described by a struct net_device item, which is defined in <linux/
netdevice.h>. The snull driver keeps pointers to two of these structures (for sn0 and
sn1) in a simple array:

struct net_device *snull_devs[2];

The net_device structure, like many other kernel structures, contains a kobject and
is, therefore, reference-counted and exported via sysfs. As with other such struc-
tures, it must be allocated dynamically. The kernel function provided to perform this
allocation is alloc_netdev, which has the following prototype:

struct net_device *alloc_netdev(int sizeof_priv,
                                const char *name,
                                void (*setup)(struct net_device *));

Here, sizeof_priv is the size of the driver’s “private data” area; with network devices,
that area is allocated along with the net_device structure. In fact, the two are allo-
cated together in one large chunk of memory, but driver authors should pretend that
they don’t know that. name is the name of this interface, as is seen by user space; this
name can have a printf-style %d in it. The kernel replaces the %d with the next available
interface number. Finally, setup is a pointer to an initialization function that is called
to set up the rest of the net_device structure. We get to the initialization function
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shortly, but, for now, suffice it to say that snull allocates its two device structures in
this way:

snull_devs[0] = alloc_netdev(sizeof(struct snull_priv), "sn%d",
        snull_init);
snull_devs[1] = alloc_netdev(sizeof(struct snull_priv), "sn%d",
        snull_init);
if (snull_devs[0] = = NULL || snull_devs[1] = = NULL)
    goto out;

As always, we must check the return value to ensure that the allocation succeeded.

The networking subsystem provides a number of helper functions wrapped around
alloc_netdev for various types of interfaces. The most common is alloc_etherdev,
which is defined in <linux/etherdevice.h>:

struct net_device *alloc_etherdev(int sizeof_priv);

This function allocates a network device using eth%d for the name argument. It pro-
vides its own initialization function (ether_setup) that sets several net_device fields
with appropriate values for Ethernet devices. Thus, there is no driver-supplied initial-
ization function for alloc_etherdev; the driver should simply do its required initializa-
tion directly after a successful allocation. Writers of drivers for other types of devices
may want to take advantage of one of the other helper functions, such as alloc_fcdev
(defined in <linux/fcdevice.h>) for fiber-channel devices, alloc_fddidev (<linux/
fddidevice.h>) for FDDI devices, or alloc_trdev (<linux/trdevice.h>) for token ring
devices.

snull could use alloc_etherdev without trouble; we chose to use alloc_netdev instead,
as a way of demonstrating the lower-level interface and to give us control over the
name assigned to the interface.

Once the net_device structure has been initialized, completing the process is just a
matter of passing the structure to register_netdev. In snull, the call looks as follows:

for (i = 0; i < 2;  i++)
    if ((result = register_netdev(snull_devs[i])))
        printk("snull: error %i registering device \"%s\"\n",
                result, snull_devs[i]->name);

The usual cautions apply here: as soon as you call register_netdev, your driver may be
called to operate on the device. Thus, you should not register the device until every-
thing has been completely initialized.

Initializing Each Device
We have looked at the allocation and registration of net_device structures, but we
passed over the intermediate step of completely initializing that structure. Note that
struct net_device is always put together at runtime; it cannot be set up at compile
time in the same manner as a file_operations or block_device_operations structure.
This initialization must be complete before calling register_netdev. The net_device
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structure is large and complicated; fortunately, the kernel takes care of some Ethernet-
wide defaults through the ether_setup function (which is called by alloc_etherdev).

Since snull uses alloc_netdev, it has a separate initialization function. The core of this
function (snull_init) is as follows:

ether_setup(dev); /* assign some of the fields */

dev->open            = snull_open;
dev->stop            = snull_release;
dev->set_config      = snull_config;
dev->hard_start_xmit = snull_tx;
dev->do_ioctl        = snull_ioctl;
dev->get_stats       = snull_stats;
dev->rebuild_header  = snull_rebuild_header;
dev->hard_header     = snull_header;
dev->tx_timeout      = snull_tx_timeout;
dev->watchdog_timeo = timeout;
/* keep the default flags, just add NOARP */
dev->flags           |= IFF_NOARP;
dev->features        |= NETIF_F_NO_CSUM;
dev->hard_header_cache = NULL;      /* Disable caching */

The above code is a fairly routine initialization of the net_device structure; it is
mostly a matter of storing pointers to our various driver functions. The single
unusual feature of the code is setting IFF_NOARP in the flags. This specifies that the
interface cannot use the Address Resolution Protocol (ARP). ARP is a low-level
Ethernet protocol; its job is to turn IP addresses into Ethernet medium access con-
trol (MAC) addresses. Since the “remote” systems simulated by snull do not really
exist, there is nobody available to answer ARP requests for them. Rather than com-
plicate snull with the addition of an ARP implementation, we chose to mark the
interface as being unable to handle that protocol. The assignment to hard_header_
cache is there for a similar reason: it disables the caching of the (nonexistent) ARP
replies on this interface. This topic is discussed in detail in the section “MAC
Address Resolution” later in this chapter.

The initialization code also sets a couple of fields (tx_timeout and watchdog_timeo)
that relate to the handling of transmission timeouts. We cover this topic thoroughly
in the section “Transmission Timeouts.”

We look now at one more struct net_device field, priv. Its role is similar to that of
the private_data pointer that we used for char drivers. Unlike fops->private_data,
this priv pointer is allocated along with the net_device structure. Direct access to the
priv field is also discouraged, for performance and flexibility reasons. When a driver
needs to get access to the private data pointer, it should use the netdev_priv func-
tion. Thus, the snull driver is full of declarations such as:

struct snull_priv *priv = netdev_priv(dev);
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The snull module declares a snull_priv data structure to be used for priv:

struct snull_priv {
    struct net_device_stats stats;
    int status;
    struct snull_packet *ppool;
    struct snull_packet *rx_queue;  /* List of incoming packets */
    int rx_int_enabled;
    int tx_packetlen;
    u8 *tx_packetdata;
    struct sk_buff *skb;
    spinlock_t lock;
};

The structure includes, among other things, an instance of struct net_device_stats,
which is the standard place to hold interface statistics. The following lines in snull_init
allocate and initialize dev->priv:

priv = netdev_priv(dev);
memset(priv, 0, sizeof(struct snull_priv));
spin_lock_init(&priv->lock);
snull_rx_ints(dev, 1);      /* enable receive interrupts */

Module Unloading
Nothing special happens when the module is unloaded. The module cleanup func-
tion simply unregisters the interfaces, performs whatever internal cleanup is
required, and releases the net_device structure back to the system:

void snull_cleanup(void)
{
    int i;

    for (i = 0; i < 2;  i++) {
        if (snull_devs[i]) {
            unregister_netdev(snull_devs[i]);
            snull_teardown_pool(snull_devs[i]);
            free_netdev(snull_devs[i]);
        }
    }
    return;
}

The call to unregister_netdev removes the interface from the system; free_netdev
returns the net_device structure to the kernel. If a reference to that structure exists
somewhere, it may continue to exist, but your driver need not care about that. Once
you have unregistered the interface, the kernel no longer calls its methods.

Note that our internal cleanup (done in snull_teardown_pool) cannot happen until the
device has been unregistered. It must, however, happen before we return the net_device
structure to the system; once we have called free_netdev, we cannot make any further
references to the device or our private area.
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The net_device Structure in Detail
The net_device structure is at the very core of the network driver layer and deserves a
complete description. This list describes all the fields, but more to provide a refer-
ence than to be memorized. The rest of this chapter briefly describes each field as
soon as it is used in the sample code, so you don’t need to keep referring back to this
section.

Global Information
The first part of struct net_device is composed of the following fields:

char name[IFNAMSIZ];
The name of the device. If the name set by the driver contains a %d format string,
register_netdev replaces it with a number to make a unique name; assigned num-
bers start at 0.

unsigned long state;
Device state. The field includes several flags. Drivers do not normally manipu-
late these flags directly; instead, a set of utility functions has been provided.
These functions are discussed shortly when we get into driver operations.

struct net_device *next;
Pointer to the next device in the global linked list. This field shouldn’t be
touched by the driver.

int (*init)(struct net_device *dev);
An initialization function. If this pointer is set, the function is called by register_net-
dev to complete the initialization of the net_device structure. Most modern net-
work drivers do not use this function any longer; instead, initialization is performed
before registering the interface.

Hardware Information
The following fields contain low-level hardware information for relatively simple
devices. They are a holdover from the earlier days of Linux networking; most mod-
ern drivers do make use of them (with the possible exception of if_port). We list
them here for completeness.

unsigned long rmem_end;
unsigned long rmem_start;
unsigned long mem_end;
unsigned long mem_start;

Device memory information. These fields hold the beginning and ending
addresses of the shared memory used by the device. If the device has different
receive and transmit memories, the mem fields are used for transmit memory and
the rmem fields for receive memory. The rmem fields are never referenced outside

,ch17.13860  Page 506  Friday, January 21, 2005  11:10 AM



This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The net_device Structure in Detail | 507

of the driver itself. By convention, the end fields are set so that end - start is the
amount of available onboard memory.

unsigned long base_addr;
The I/O base address of the network interface. This field, like the previous ones,
is assigned by the driver during the device probe. The ifconfig command can be
used to display or modify the current value. The base_addr can be explicitly
assigned on the kernel command line at system boot (via the netdev= parameter)
or at module load time. The field, like the memory fields described above, is not
used by the kernel.

unsigned char irq;
The assigned interrupt number. The value of dev->irq is printed by ifconfig when
interfaces are listed. This value can usually be set at boot or load time and modi-
fied later using ifconfig.

unsigned char if_port;
The port in use on multiport devices. This field is used, for example, with devices
that support both coaxial (IF_PORT_10BASE2) and twisted-pair (IF_PORT_100BASET)
Ethernet connections. The full set of known port types is defined in <linux/netde-
vice.h>.

unsigned char dma;
The DMA channel allocated by the device. The field makes sense only with some
peripheral buses, such as ISA. It is not used outside of the device driver itself but
for informational purposes (in ifconfig).

Interface Information
Most of the information about the interface is correctly set up by the ether_setup
function (or whatever other setup function is appropriate for the given hardware
type). Ethernet cards can rely on this general-purpose function for most of these
fields, but the flags and dev_addr fields are device specific and must be explicitly
assigned at initialization time.

Some non-Ethernet interfaces can use helper functions similar to ether_setup. drivers/
net/net_init.c exports a number of such functions, including the following:

void ltalk_setup(struct net_device *dev);
Sets up the fields for a LocalTalk device

void fc_setup(struct net_device *dev);
Initializes fields for fiber-channel devices

void fddi_setup(struct net_device *dev);
Configures an interface for a Fiber Distributed Data Interface (FDDI) network
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void hippi_setup(struct net_device *dev);
Prepares fields for a High-Performance Parallel Interface (HIPPI) high-speed
interconnect driver

void tr_setup(struct net_device *dev);
Handles setup for token ring network interfaces

Most devices are covered by one of these classes. If yours is something radically new
and different, however, you need to assign the following fields by hand:

unsigned short hard_header_len;
The hardware header length, that is, the number of octets that lead the transmit-
ted packet before the IP header, or other protocol information. The value of
hard_header_len is 14 (ETH_HLEN) for Ethernet interfaces.

unsigned mtu;
The maximum transfer unit (MTU). This field is used by the network layer to
drive packet transmission. Ethernet has an MTU of 1500 octets (ETH_DATA_LEN).
This value can be changed with ifconfig.

unsigned long tx_queue_len;
The maximum number of frames that can be queued on the device’s transmis-
sion queue. This value is set to 1000 by ether_setup, but you can change it. For
example, plip uses 10 to avoid wasting system memory (plip has a lower
throughput than a real Ethernet interface).

unsigned short type;
The hardware type of the interface. The type field is used by ARP to determine
what kind of hardware address the interface supports. The proper value for
Ethernet interfaces is ARPHRD_ETHER, and that is the value set by ether_setup. The
recognized types are defined in <linux/if_arp.h>.

unsigned char addr_len;
unsigned char broadcast[MAX_ADDR_LEN];
unsigned char dev_addr[MAX_ADDR_LEN];

Hardware (MAC) address length and device hardware addresses. The Ethernet
address length is six octets (we are referring to the hardware ID of the interface
board), and the broadcast address is made up of six 0xff octets; ether_setup
arranges for these values to be correct. The device address, on the other hand,
must be read from the interface board in a device-specific way, and the driver
should copy it to dev_addr. The hardware address is used to generate correct
Ethernet headers before the packet is handed over to the driver for transmission.
The snull device doesn’t use a physical interface, and it invents its own hardware
address.

unsigned short flags;
int features;

Interface flags (detailed next).
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The flags field is a bit mask including the following bit values. The IFF_ prefix
stands for “interface flags.” Some flags are managed by the kernel, and some are set
by the interface at initialization time to assert various capabilities and other features
of the interface. The valid flags, which are defined in <linux/if.h>, are:

IFF_UP
This flag is read-only for the driver. The kernel turns it on when the interface is
active and ready to transfer packets.

IFF_BROADCAST
This flag (maintained by the networking code) states that the interface allows
broadcasting. Ethernet boards do.

IFF_DEBUG
This marks debug mode. The flag can be used to control the verbosity of your
printk calls or for other debugging purposes. Although no in-tree driver cur-
rently uses this flag, it can be set and reset by user programs via ioctl, and your
driver can use it. The misc-progs/netifdebug program can be used to turn the flag
on and off.

IFF_LOOPBACK
This flag should be set only in the loopback interface. The kernel checks for
IFF_LOOPBACK instead of hardwiring the lo name as a special interface.

IFF_POINTOPOINT
This flag signals that the interface is connected to a point-to-point link. It is set
by the driver or, sometimes, by ifconfig. For example, plip and the PPP driver
have it set.

IFF_NOARP
This means that the interface can’t perform ARP. For example, point-to-point
interfaces don’t need to run ARP, which would only impose additional traffic
without retrieving useful information. snull runs without ARP capabilities, so it
sets the flag.

IFF_PROMISC
This flag is set (by the networking code) to activate promiscuous operation. By
default, Ethernet interfaces use a hardware filter to ensure that they receive
broadcast packets and packets directed to that interface’s hardware address
only. Packet sniffers such as tcpdump set promiscuous mode on the interface in
order to retrieve all packets that travel on the interface’s transmission medium.

IFF_MULTICAST
This flag is set by drivers to mark interfaces that are capable of multicast trans-
mission. ether_setup sets IFF_MULTICAST by default, so if your driver does not
support multicast, it must clear the flag at initialization time.

IFF_ALLMULTI
This flag tells the interface to receive all multicast packets. The kernel sets it when
the host performs multicast routing, only if IFF_MULTICAST is set. IFF_ALLMULTI is
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read-only for the driver. Multicast flags are used in the section “Multicast,” later
in this chapter.

IFF_MASTER
IFF_SLAVE

These flags are used by the load equalization code. The interface driver doesn’t
need to know about them.

IFF_PORTSEL
IFF_AUTOMEDIA

These flags signal that the device is capable of switching between multiple media
types; for example, unshielded twisted pair (UTP) versus coaxial Ethernet cables.
If IFF_AUTOMEDIA is set, the device selects the proper medium automatically. In
practice, the kernel makes no use of either flag.

IFF_DYNAMIC
This flag, set by the driver, indicates that the address of this interface can
change. It is not currently used by the kernel.

IFF_RUNNING
This flag indicates that the interface is up and running. It is mostly present for
BSD compatibility; the kernel makes little use of it. Most network drivers need
not worry about IFF_RUNNING.

IFF_NOTRAILERS
This flag is unused in Linux, but it exists for BSD compatibility.

When a program changes IFF_UP, the open or stop device method is called. Further-
more, when IFF_UP or any other flag is modified, the set_multicast_list method is
invoked. If the driver needs to perform some action in response to a modification of
the flags, it must take that action in set_multicast_list. For example, when IFF_PROMISC
is set or reset, set_multicast_list must notify the onboard hardware filter. The responsi-
bilities of this device method are outlined in the section “Multicast.”

The features field of the net_device structure is set by the driver to tell the kernel
about any special hardware capabilities that this interface has. We will discuss some
of these features; others are beyond the scope of this book. The full set is:

NETIF_F_SG
NETIF_F_FRAGLIST

Both of these flags control the use of scatter/gather I/O. If your interface can trans-
mit a packet that has been split into several distinct memory segments, you should
set NETIF_F_SG. Of course, you have to actually implement the scatter/gather I/O (we
describe how that is done in the section “Scatter/Gather I/O”). NETIF_F_FRAGLIST
states that your interface can cope with packets that have been fragmented; only the
loopback driver does this in 2.6.

Note that the kernel does not perform scatter/gather I/O to your device if it does
not also provide some form of checksumming as well. The reason is that, if the
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kernel has to make a pass over a fragmented (“nonlinear”) packet to calculate
the checksum, it might as well copy the data and coalesce the packet at the same
time.

NETIF_F_IP_CSUM
NETIF_F_NO_CSUM
NETIF_F_HW_CSUM

These flags are all ways of telling the kernel that it need not apply checksums to
some or all packets leaving the system by this interface. Set NETIF_F_IP_CSUM if
your interface can checksum IP packets but not others. If no checksums are ever
required for this interface, set NETIF_F_NO_CSUM. The loopback driver sets this
flag, and snull does, too; since packets are only transferred through system mem-
ory, there is (one hopes!) no opportunity for them to be corrupted, and no need
to check them. If your hardware does checksumming itself, set NETIF_F_HW_CSUM.

NETIF_F_HIGHDMA
Set this flag if your device can perform DMA to high memory. In the absence of
this flag, all packet buffers provided to your driver are allocated in low memory.

NETIF_F_HW_VLAN_TX
NETIF_F_HW_VLAN_RX
NETIF_F_HW_VLAN_FILTER
NETIF_F_VLAN_CHALLENGED

These options describe your hardware’s support for 802.1q VLAN packets. VLAN
support is beyond what we can cover in this chapter. If VLAN packets confuse
your device (which they really shouldn’t), set the NETIF_F_VLAN_CHALLENGED flag.

NETIF_F_TSO
Set this flag if your device can perform TCP segmentation offloading. TSO is an
advanced feature that we cannot cover here.

The Device Methods
As happens with the char and block drivers, each network device declares the func-
tions that act on it. Operations that can be performed on network interfaces are
listed in this section. Some of the operations can be left NULL, and others are usually
untouched because ether_setup assigns suitable methods to them.

Device methods for a network interface can be divided into two groups: fundamen-
tal and optional. Fundamental methods include those that are needed to be able to
use the interface; optional methods implement more advanced functionalities that
are not strictly required. The following are the fundamental methods:

int (*open)(struct net_device *dev);
Opens the interface. The interface is opened whenever ifconfig activates it. The
open method should register any system resource it needs (I/O ports, IRQ,
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DMA, etc.), turn on the hardware, and perform any other setup your device
requires.

int (*stop)(struct net_device *dev);
Stops the interface. The interface is stopped when it is brought down. This func-
tion should reverse operations performed at open time.

int (*hard_start_xmit) (struct sk_buff *skb, struct net_device *dev);
Method that initiates the transmission of a packet. The full packet (protocol
headers and all) is contained in a socket buffer (sk_buff) structure. Socket buff-
ers are introduced later in this chapter.

int (*hard_header) (struct sk_buff *skb, struct net_device *dev, unsigned
  short type, void *daddr, void *saddr, unsigned len);

Function (called before hard_start_xmit) that builds the hardware header from
the source and destination hardware addresses that were previously retrieved; its
job is to organize the information passed to it as arguments into an appropriate,
device-specific hardware header. eth_header is the default function for Ethernet-
like interfaces, and ether_setup assigns this field accordingly.

int (*rebuild_header)(struct sk_buff *skb);
Function used to rebuild the hardware header after ARP resolution completes
but before a packet is transmitted. The default function used by Ethernet devices
uses the ARP support code to fill the packet with missing information.

void (*tx_timeout)(struct net_device *dev);
Method called by the networking code when a packet transmission fails to com-
plete within a reasonable period, on the assumption that an interrupt has been
missed or the interface has locked up. It should handle the problem and resume
packet transmission.

struct net_device_stats *(*get_stats)(struct net_device *dev);
Whenever an application needs to get statistics for the interface, this method is
called. This happens, for example, when ifconfig or netstat -i is run. A sample
implementation for snull is introduced in the section “Statistical Information.”

int (*set_config)(struct net_device *dev, struct ifmap *map);
Changes the interface configuration. This method is the entry point for configur-
ing the driver. The I/O address for the device and its interrupt number can be
changed at runtime using set_config. This capability can be used by the system
administrator if the interface cannot be probed for. Drivers for modern hard-
ware normally do not need to implement this method.
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The remaining device operations are optional:

int weight;
int (*poll)(struct net_device *dev; int *quota);

Method provided by NAPI-compliant drivers to operate the interface in a polled
mode, with interrupts disabled. NAPI (and the weight field) are covered in the
section “Receive Interrupt Mitigation.”

void (*poll_controller)(struct net_device *dev);
Function that asks the driver to check for events on the interface in situations
where interrupts are disabled. It is used for specific in-kernel networking tasks,
such as remote consoles and kernel debugging over the network.

int (*do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
Performs interface-specific ioctl commands. (Implementation of those com-
mands is described in the section “Custom ioctl Commands.”) The correspond-
ing field in struct net_device can be left as NULL if the interface doesn’t need any
interface-specific commands.

void (*set_multicast_list)(struct net_device *dev);
Method called when the multicast list for the device changes and when the
flags change. See the section “Multicast” for further details and a sample
implementation.

int (*set_mac_address)(struct net_device *dev, void *addr);
Function that can be implemented if the interface supports the ability to change its
hardware address. Many interfaces don’t support this ability at all. Others use the
default eth_mac_addr implementation (from drivers/net/net_init.c). eth_mac_addr
only copies the new address into dev->dev_addr, and it does so only if the interface
is not running. Drivers that use eth_mac_addr should set the hardware MAC
address from dev->dev_addr in their open method.

int (*change_mtu)(struct net_device *dev, int new_mtu);
Function that takes action if there is a change in the maximum transfer unit (MTU)
for the interface. If the driver needs to do anything particular when the MTU is
changed by the user, it should declare its own function; otherwise, the default does
the right thing. snull has a template for the function if you are interested.

int (*header_cache) (struct neighbour *neigh, struct hh_cache *hh);
header_cache is called to fill in the hh_cache structure with the results of an ARP
query. Almost all Ethernet-like drivers can use the default eth_header_cache
implementation.
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int (*header_cache_update) (struct hh_cache *hh, struct net_device *dev,
  unsigned char *haddr);

Method that updates the destination address in the hh_cache structure in
response to a change. Ethernet devices use eth_header_cache_update.

int (*hard_header_parse) (struct sk_buff *skb, unsigned char *haddr);
The hard_header_parse method extracts the source address from the packet con-
tained in skb, copying it into the buffer at haddr. The return value from the func-
tion is the length of that address. Ethernet devices normally use eth_header_parse.

Utility Fields
The remaining struct net_device data fields are used by the interface to hold useful
status information. Some of the fields are used by ifconfig and netstat to provide the
user with information about the current configuration. Therefore, an interface
should assign values to these fields:

unsigned long trans_start;
unsigned long last_rx;

Fields that hold a jiffies value. The driver is responsible for updating these val-
ues when transmission begins and when a packet is received, respectively. The
trans_start value is used by the networking subsystem to detect transmitter
lockups. last_rx is currently unused, but the driver should maintain this field
anyway to be prepared for future use.

int watchdog_timeo;
The minimum time (in jiffies) that should pass before the networking layer
decides that a transmission timeout has occurred and calls the driver’s tx_time-
out function.

void *priv;
The equivalent of filp->private_data. In modern drivers, this field is set by
alloc_netdev and should not be accessed directly; use netdev_priv instead.

struct dev_mc_list *mc_list;
int mc_count;

Fields that handle multicast transmission. mc_count is the count of items in mc_list.
See the section “Multicast” for further details.

spinlock_t xmit_lock;
int xmit_lock_owner;

The xmit_lock is used to avoid multiple simultaneous calls to the driver’s
hard_start_xmit function. xmit_lock_owner is the number of the CPU that has
obtained xmit_lock. The driver should make no changes to these fields.

There are other fields in struct net_device, but they are not used by network drivers.

,ch17.13860  Page 514  Friday, January 21, 2005  11:10 AM



This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Opening and Closing | 515

Opening and Closing
Our driver can probe for the interface at module load time or at kernel boot. Before the
interface can carry packets, however, the kernel must open it and assign an address to
it. The kernel opens or closes an interface in response to the ifconfig command.

When ifconfig is used to assign an address to the interface, it performs two tasks.
First, it assigns the address by means of ioctl(SIOCSIFADDR) (Socket I/O Control Set
Interface Address). Then it sets the IFF_UP bit in dev->flag by means of
ioctl(SIOCSIFFLAGS) (Socket I/O Control Set Interface Flags) to turn the interface on.

As far as the device is concerned, ioctl(SIOCSIFADDR) does nothing. No driver func-
tion is invoked—the task is device independent, and the kernel performs it. The lat-
ter command (ioctl(SIOCSIFFLAGS)), however, calls the open method for the device.

Similarly, when the interface is shut down, ifconfig uses ioctl(SIOCSIFFLAGS) to clear
IFF_UP, and the stop method is called.

Both device methods return 0 in case of success and the usual negative value in case
of error.

As far as the actual code is concerned, the driver has to perform many of the same
tasks as the char and block drivers do. open requests any system resources it needs
and tells the interface to come up; stop shuts down the interface and releases system
resources. Network drivers must perform some additional steps at open time, however.

First, the hardware (MAC) address needs to be copied from the hardware device to
dev->dev_addr before the interface can communicate with the outside world. The
hardware address can then be copied to the device at open time. The snull software
interface assigns it from within open; it just fakes a hardware number using an ASCII
string of length ETH_ALEN, the length of Ethernet hardware addresses.

The open method should also start the interface’s transmit queue (allowing it to
accept packets for transmission) once it is ready to start sending data. The kernel
provides a function to start the queue:

void netif_start_queue(struct net_device *dev);

The open code for snull looks like the following:

int snull_open(struct net_device *dev)
{
    /* request_region( ), request_irq( ), ....  (like fops->open) */

    /*
     * Assign the hardware address of the board: use "\0SNULx", where
     * x is 0 or 1. The first byte is '\0' to avoid being a multicast
     * address (the first byte of multicast addrs is odd).
     */
    memcpy(dev->dev_addr, "\0SNUL0", ETH_ALEN);
    if (dev = = snull_devs[1])
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        dev->dev_addr[ETH_ALEN-1]++; /* \0SNUL1 */
    netif_start_queue(dev);
    return 0;
}

As you can see, in the absence of real hardware, there is little to do in the open
method. The same is true of the stop method; it just reverses the operations of open.
For this reason, the function implementing stop is often called close or release.

int snull_release(struct net_device *dev)
{
    /* release ports, irq and such -- like fops->close */

    netif_stop_queue(dev); /* can't transmit any more */
    return 0;
}

The function:

void netif_stop_queue(struct net_device *dev);

is the opposite of netif_start_queue; it marks the device as being unable to transmit
any more packets. The function must be called when the interface is closed (in the
stop method) but can also be used to temporarily stop transmission, as explained in
the next section.

Packet Transmission
The most important tasks performed by network interfaces are data transmission
and reception. We start with transmission because it is slightly easier to understand.

Transmission refers to the act of sending a packet over a network link. Whenever the
kernel needs to transmit a data packet, it calls the driver’s hard_start_transmit
method to put the data on an outgoing queue. Each packet handled by the kernel is
contained in a socket buffer structure (struct sk_buff), whose definition is found in
<linux/skbuff.h>. The structure gets its name from the Unix abstraction used to rep-
resent a network connection, the socket. Even if the interface has nothing to do with
sockets, each network packet belongs to a socket in the higher network layers, and
the input/output buffers of any socket are lists of struct sk_buff structures. The
same sk_buff structure is used to host network data throughout all the Linux
network subsystems, but a socket buffer is just a packet as far as the interface is
concerned.

A pointer to sk_buff is usually called skb, and we follow this practice both in the
sample code and in the text.

The socket buffer is a complex structure, and the kernel offers a number of func-
tions to act on it. The functions are described later in the section “The Socket Buff-
ers”; for now, a few basic facts about sk_buff are enough for us to write a working
driver.
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The socket buffer passed to hard_start_xmit contains the physical packet as it should
appear on the media, complete with the transmission-level headers. The interface
doesn’t need to modify the data being transmitted. skb->data points to the packet
being transmitted, and skb->len is its length in octets. This situation gets a little more
complicated if your driver can handle scatter/gather I/O; we get to that in the sec-
tion “Scatter/Gather I/O.”

The snull packet transmission code follows; the physical transmission machinery has
been isolated in another function, because every interface driver must implement it
according to the specific hardware being driven:

int snull_tx(struct sk_buff *skb, struct net_device *dev)
{
    int len;
    char *data, shortpkt[ETH_ZLEN];
    struct snull_priv *priv = netdev_priv(dev);

    data = skb->data;
    len = skb->len;
    if (len < ETH_ZLEN) {
        memset(shortpkt, 0, ETH_ZLEN);
        memcpy(shortpkt, skb->data, skb->len);
        len = ETH_ZLEN;
        data = shortpkt;
    }
    dev->trans_start = jiffies; /* save the timestamp */

    /* Remember the skb, so we can free it at interrupt time */
    priv->skb = skb;

    /* actual deliver of data is device-specific, and not shown here */
    snull_hw_tx(data, len, dev);

    return 0; /* Our simple device can not fail */
}

The transmission function, thus, just performs some sanity checks on the packet and
transmits the data through the hardware-related function. Do note, however, the
care that is taken when the packet to be transmitted is shorter than the minimum
length supported by the underlying media (which, for snull, is our virtual “Ether-
net”). Many Linux network drivers (and those for other operating systems as well)
have been found to leak data in such situations. Rather than create that sort of secu-
rity vulnerability, we copy short packets into a separate array that we can explicitly
zero-pad out to the full length required by the media. (We can safely put that data on
the stack, since the minimum length—60 bytes—is quite small).

The return value from hard_start_xmit should be 0 on success; at that point, your
driver has taken responsibility for the packet, should make its best effort to ensure
that transmission succeeds, and must free the skb at the end. A nonzero return value
indicates that the packet could not be transmitted at this time; the kernel will retry
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later. In this situation, your driver should stop the queue until whatever situation
caused the failure has been resolved.

The “hardware-related” transmission function (snull_hw_tx) is omitted here since it
is entirely occupied with implementing the trickery of the snull device, including
manipulating the source and destination addresses, and has little of interest to
authors of real network drivers. It is present, of course, in the sample source for
those who want to go in and see how it works.

Controlling Transmission Concurrency
The hard_start_xmit function is protected from concurrent calls by a spinlock
(xmit_lock) in the net_device structure. As soon as the function returns, however, it
may be called again. The function returns when the software is done instructing the
hardware about packet transmission, but hardware transmission will likely not have
been completed. This is not an issue with snull, which does all of its work using the
CPU, so packet transmission is complete before the transmission function returns.

Real hardware interfaces, on the other hand, transmit packets asynchronously and
have a limited amount of memory available to store outgoing packets. When that
memory is exhausted (which, for some hardware, happens with a single outstanding
packet to transmit), the driver needs to tell the networking system not to start any
more transmissions until the hardware is ready to accept new data.

This notification is accomplished by calling netif_stop_queue, the function intro-
duced earlier to stop the queue. Once your driver has stopped its queue, it must
arrange to restart the queue at some point in the future, when it is again able to
accept packets for transmission. To do so, it should call:

void netif_wake_queue(struct net_device *dev);

This function is just like netif_start_queue, except that it also pokes the networking
system to make it start transmitting packets again.

Most modern network hardware maintains an internal queue with multiple packets
to transmit; in this way it can get the best performance from the network. Network
drivers for these devices must support having multiple transmisions outstanding at
any given time, but device memory can fill up whether or not the hardware supports
multiple outstanding transmissions. Whenever device memory fills to the point that
there is no room for the largest possible packet, the driver should stop the queue
until space becomes available again.

If you must disable packet transmission from anywhere other than your hard_start_xmit
function (in response to a reconfiguration request, perhaps), the function you want to
use is:

void netif_tx_disable(struct net_device *dev);
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This function behaves much like netif_stop_queue, but it also ensures that, when it
returns, your hard_start_xmit method is not running on another CPU. The queue
can be restarted with netif_wake_queue, as usual.

Transmission Timeouts
Most drivers that deal with real hardware have to be prepared for that hardware to
fail to respond occasionally. Interfaces can forget what they are doing, or the system
can lose an interrupt. This sort of problem is common with some devices designed to
run on personal computers.

Many drivers handle this problem by setting timers; if the operation has not com-
pleted by the time the timer expires, something is wrong. The network system, as it
happens, is essentially a complicated assembly of state machines controlled by a
mass of timers. As such, the networking code is in a good position to detect trans-
mission timeouts as part of its regular operation.

Thus, network drivers need not worry about detecting such problems themselves.
Instead, they need only set a timeout period, which goes in the watchdog_timeo field
of the net_device structure. This period, which is in jiffies, should be long enough to
account for normal transmission delays (such as collisions caused by congestion on
the network media).

If the current system time exceeds the device’s trans_start time by at least the time-
out period, the networking layer eventually calls the driver’s tx_timeout method.
That method’s job is to do whatever is needed to clear up the problem and to ensure
the proper completion of any transmissions that were already in progress. It is
important, in particular, that the driver not lose track of any socket buffers that have
been entrusted to it by the networking code.

snull has the ability to simulate transmitter lockups, which is controlled by two load-
time parameters:

static int lockup = 0;
module_param(lockup, int, 0);

static int timeout = SNULL_TIMEOUT;
module_param(timeout, int, 0);

If the driver is loaded with the parameter lockup=n, a lockup is simulated once every
n packets transmitted, and the watchdog_timeo field is set to the given timeout value.
When simulating lockups, snull also calls netif_stop_queue to prevent other transmis-
sion attempts from occurring.

The snull transmission timeout handler looks like this:

void snull_tx_timeout (struct net_device *dev)
{
    struct snull_priv *priv = netdev_priv(dev);
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    PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies,
            jiffies - dev->trans_start);
        /* Simulate a transmission interrupt to get things moving */
    priv->status = SNULL_TX_INTR;
    snull_interrupt(0, dev, NULL);
    priv->stats.tx_errors++;
    netif_wake_queue(dev);
    return;
}

When a transmission timeout happens, the driver must mark the error in the interface
statistics and arrange for the device to be reset to a sane state so that new packets can
be transmitted. When a timeout happens in snull, the driver calls snull_interrupt to fill
in the “missing” interrupt and restarts the transmit queue with netif_wake_queue.

Scatter/Gather I/O
The process of creating a packet for transmission on the network involves assem-
bling multiple pieces. Packet data must often be copied in from user space, and the
headers used by various levels of the network stack must be added as well. This
assembly can require a fair amount of data copying. If, however, the network inter-
face that is destined to transmit the packet can perform scatter/gather I/O, the
packet need not be assembled into a single chunk, and much of that copying can be
avoided. Scatter/gather I/O also enables “zero-copy” transmission of network data
directly from user-space buffers.

The kernel does not pass scattered packets to your hard_start_xmit method unless
the NETIF_F_SG bit has been set in the features field of your device structure. If you
have set that flag, you need to look at a special “shared info” field within the skb to
see whether the packet is made up of a single fragment or many and to find the scat-
tered fragments if need be. A special macro exists to access this information; it is
called skb_shinfo. The first step when transmitting potentially fragmented packets
usually looks something like this:

if (skb_shinfo(skb)->nr_frags = = 0) {
    /* Just use skb->data and skb->len as usual */
}

The nr_frags field tells how many fragments have been used to build the packet. If it
is 0, the packet exists in a single piece and can be accessed via the data field as usual.
If, however, it is nonzero, your driver must pass through and arrange to transfer each
individual fragment. The data field of the skb structure points conveniently to the first
fragment (as compared to the full packet, as in the unfragmented case). The length of
the fragment must be calculated by subtracting skb->data_len from skb->len (which
still contains the length of the full packet). The remaining fragments are to be found
in an array called frags in the shared information structure; each entry in frags is an
skb_frag_struct structure:

struct skb_frag_struct {
    struct page *page;
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    __u16 page_offset;
    __u16 size;
};

As you can see, we are once again dealing with page structures, rather than kernel vir-
tual addresses. Your driver should loop through the fragments, mapping each for a
DMA transfer and not forgetting the first fragment, which is pointed to by the skb
directly. Your hardware, of course, must assemble the fragments and transmit them
as a single packet. Note that, if you have set the NETIF_F_HIGHDMA feature flag, some
or all of the fragments may be located in high memory.

Packet Reception
Receiving data from the network is trickier than transmitting it, because an sk_buff
must be allocated and handed off to the upper layers from within an atomic context.
There are two modes of packet reception that may be implemented by network driv-
ers: interrupt driven and polled. Most drivers implement the interrupt-driven tech-
nique, and that is the one we cover first. Some drivers for high-bandwidth adapters
may also implement the polled technique; we look at this approach in the section
“Receive Interrupt Mitigation.”

The implementation of snull separates the “hardware” details from the device-inde-
pendent housekeeping. Therefore, the function snull_rx is called from the snull
“interrupt” handler after the hardware has received the packet, and it is already in
the computer’s memory. snull_rx receives a pointer to the data and the length of the
packet; its sole responsibility is to send the packet and some additional information
to the upper layers of networking code. This code is independent of the way the data
pointer and length are obtained.

void snull_rx(struct net_device *dev, struct snull_packet *pkt)
{
    struct sk_buff *skb;
    struct snull_priv *priv = netdev_priv(dev);

    /*
     * The packet has been retrieved from the transmission
     * medium. Build an skb around it, so upper layers can handle it
     */
    skb = dev_alloc_skb(pkt->datalen + 2);
    if (!skb) {
        if (printk_ratelimit( ))
            printk(KERN_NOTICE "snull rx: low on mem - packet dropped\n");
        priv->stats.rx_dropped++;
        goto out;
    }
    memcpy(skb_put(skb, pkt->datalen), pkt->data, pkt->datalen);

    /* Write metadata, and then pass to the receive level */
    skb->dev = dev;
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    skb->protocol = eth_type_trans(skb, dev);
    skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
    priv->stats.rx_packets++;
    priv->stats.rx_bytes += pkt->datalen;
    netif_rx(skb);
  out:
    return;
}

The function is sufficiently general to act as a template for any network driver, but
some explanation is necessary before you can reuse this code fragment with confidence.

The first step is to allocate a buffer to hold the packet. Note that the buffer alloca-
tion function (dev_alloc_skb) needs to know the data length. The information is used
by the function to allocate space for the buffer. dev_alloc_skb calls kmalloc with
atomic priority, so it can be used safely at interrupt time. The kernel offers other
interfaces to socket-buffer allocation, but they are not worth introducing here; socket
buffers are explained in detail in the section “The Socket Buffers.”

Of course, the return value from dev_alloc_skb must be checked, and snull does so.
We call printk_ratelimit before complaining about failures, however. Generating
hundreds or thousands of console messages per second is a good way to bog down
the system entirely and hide the real source of problems; printk_ratelimit helps pre-
vent that problem by returning 0 when too much output has gone to the console, and
things need to be slowed down a bit.

Once there is a valid skb pointer, the packet data is copied into the buffer by calling
memcpy; the skb_put function updates the end-of-data pointer in the buffer and
returns a pointer to the newly created space.

If you are writing a high-performance driver for an interface that can do full bus-mas-
tering I/O, there is a possible optimization that is worth considering here. Some driv-
ers allocate socket buffers for incoming packets prior to their reception, then instruct
the interface to place the packet data directly into the socket buffer’s space. The net-
working layer cooperates with this strategy by allocating all socket buffers in DMA-
capable space (which may be in high memory if your device has the NETIF_F_HIGHDMA
feature flag set). Doing things this way avoids the need for a separate copy operation
to fill the socket buffer, but requires being careful with buffer sizes because you
won’t know in advance how big the incoming packet is. The implementation of a
change_mtu method is also important in this situation, since it allows the driver to
respond to a change in the maximum packet size.

The network layer needs to have some information spelled out before it can make
sense of the packet. To this end, the dev and protocol fields must be assigned before
the buffer is passed upstairs. The Ethernet support code exports a helper function
(eth_type_trans), which finds an appropriate value to put into protocol. Then we
need to specify how checksumming is to be performed or has been performed on the
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packet (snull does not need to perform any checksums). The possible policies for
skb->ip_summed are:

CHECKSUM_HW
The device has already performed checksums in hardware. An example of a
hardware checksum is the SPARC HME interface.

CHECKSUM_NONE
Checksums have not yet been verified, and the task must be accomplished by
system software. This is the default in newly allocated buffers.

CHECKSUM_UNNECESSARY
Don’t do any checksums. This is the policy in snull and in the loopback interface.

You may be wondering why the checksum status must be specified here when we
have already set a flag in the features field of our net_device structure. The answer is
that the features flag tells the kernel about how our device treats outgoing packets.
It is not used for incoming packets, which must, instead, be marked individually.

Finally, the driver updates its statistics counter to record that a packet has been
received. The statistics structure is made up of several fields; the most important are
rx_packets, rx_bytes, tx_packets, and tx_bytes, which contain the number of pack-
ets received and transmitted and the total number of octets transferred. All the fields
are thoroughly described in the section “Statistical Information.”

The last step in packet reception is performed by netif_rx, which hands off the socket
buffer to the upper layers. netif_rx actually returns an integer value; NET_RX_SUCCESS
(0) means that the packet was successfully received; any other value indicates trouble.
There are three return values (NET_RX_CN_LOW, NET_RX_CN_MOD, and NET_RX_CN_HIGH) that
indicate increasing levels of congestion in the networking subsystem; NET_RX_DROP
means the packet was dropped. A driver could use these values to stop feeding pack-
ets into the kernel when congestion gets high, but, in practice, most drivers ignore the
return value from netif_rx. If you are writing a driver for a high-bandwidth device and
wish to do the right thing in response to congestion, the best approach is to imple-
ment NAPI, which we get to after a quick discussion of interrupt handlers.

The Interrupt Handler
Most hardware interfaces are controlled by means of an interrupt handler. The hard-
ware interrupts the processor to signal one of two possible events: a new packet has
arrived or transmission of an outgoing packet is complete. Network interfaces can
also generate interrupts to signal errors, link status changes, and so on.

The usual interrupt routine can tell the difference between a new-packet-arrived inter-
rupt and a done-transmitting notification by checking a status register found on the
physical device. The snull interface works similarly, but its status word is implemented
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in software and lives in dev->priv. The interrupt handler for a network interface looks
like this:

static void snull_regular_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
    int statusword;
    struct snull_priv *priv;
    struct snull_packet *pkt = NULL;
    /*
     * As usual, check the "device" pointer to be sure it is
     * really interrupting.
     * Then assign "struct device *dev"
     */
    struct net_device *dev = (struct net_device *)dev_id;
    /* ... and check with hw if it's really ours */

    /* paranoid */
    if (!dev)
        return;

    /* Lock the device */
    priv = netdev_priv(dev);
    spin_lock(&priv->lock);

    /* retrieve statusword: real netdevices use I/O instructions */
    statusword = priv->status;
    priv->status = 0;
    if (statusword & SNULL_RX_INTR) {
        /* send it to snull_rx for handling */
        pkt = priv->rx_queue;
        if (pkt) {
            priv->rx_queue = pkt->next;
            snull_rx(dev, pkt);
        }
    }
    if (statusword & SNULL_TX_INTR) {
        /* a transmission is over: free the skb */
        priv->stats.tx_packets++;
        priv->stats.tx_bytes += priv->tx_packetlen;
        dev_kfree_skb(priv->skb);
    }

    /* Unlock the device and we are done */
    spin_unlock(&priv->lock);
    if (pkt) snull_release_buffer(pkt); /* Do this outside the lock! */
    return;
}

The handler’s first task is to retrieve a pointer to the correct struct net_device. This
pointer usually comes from the dev_id pointer received as an argument.

The interesting part of this handler deals with the “transmission done” situation. In
this case, the statistics are updated, and dev_kfree_skb is called to return the (no
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longer needed) socket buffer to the system. There are, actually, three variants of this
function that may be called:

dev_kfree_skb(struct sk_buff *skb);
This version should be called when you know that your code will not be run-
ning in interrupt context. Since snull has no actual hardware interrupts, this is
the version we use.

dev_kfree_skb_irq(struct sk_buff *skb);
If you know that you will be freeing the buffer in an interrupt handler, use this
version, which is optimized for that case.

dev_kfree_skb_any(struct sk_buff *skb);
This is the version to use if the relevant code could be running in either inter-
rupt or noninterrupt context.

Finally, if your driver has temporarily stopped the transmission queue, this is usually
the place to restart it with netif_wake_queue.

Packet reception, in contrast to transmission, doesn’t need any special interrupt han-
dling. Calling snull_rx (which we have already seen) is all that’s required.

Receive Interrupt Mitigation
When a network driver is written as we have described above, the processor is inter-
rupted for every packet received by your interface. In many cases, that is the desired
mode of operation, and it is not a problem. High-bandwidth interfaces, however, can
receive thousands of packets per second. With that sort of interrupt load, the overall
performance of the system can suffer.

As a way of improving the performance of Linux on high-end systems, the network-
ing subsystem developers have created an alternative interface (called NAPI)* based
on polling. “Polling” can be a dirty word among driver developers, who often see
polling techniques as inelegant and inefficient. Polling is inefficient, however, only if
the interface is polled when there is no work to do. When the system has a high-
speed interface handling heavy traffic, there is always more packets to process. There
is no need to interrupt the processor in such situations; it is enough that the new
packets be collected from the interface every so often.

Stopping receive interrupts can take a substantial amount of load off the processor.
NAPI-compliant drivers can also be told not to feed packets into the kernel if those
packets are just dropped in the networking code due to congestion, which can also
help performance when that help is needed most. For various reasons, NAPI drivers
are also less likely to reorder packets.

* NAPI stands for “new API”; the networking hackers are better at creating interfaces than naming them.

,ch17.13860  Page 525  Friday, January 21, 2005  11:10 AM



This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

526 | Chapter 17: Network Drivers

Not all devices can operate in the NAPI mode, however. A NAPI-capable interface
must be able to store several packets (either on the card itself, or in an in-memory
DMA ring). The interface should be capable of disabling interrupts for received pack-
ets, while continuing to interrupt for successful transmissions and other events.
There are other subtle issues that can make writing a NAPI-compliant driver harder;
see Documentation/networking/NAPI_HOWTO.txt in the kernel source tree for the
details.

Relatively few drivers implement the NAPI interface. If you are writing a driver for an
interface that may generate a huge number of interrupts, however, taking the time to
implement NAPI may well prove worthwhile.

The snull driver, when loaded with the use_napi parameter set to a nonzero value,
operates in the NAPI mode. At initialization time, we have to set up a couple of extra
struct net_device fields:

if (use_napi) {
    dev->poll        = snull_poll;
    dev->weight      = 2;
}

The poll field must be set to your driver’s polling function; we look at snull_poll
shortly. The weight field describes the relative importance of the interface: how much
traffic should be accepted from the interface when resources are tight. There are no
strict rules for how the weight parameter should be set; by convention, 10 MBps
Ethernet interfaces set weight to 16, while faster interfaces use 64. You should not set
weight to a value greater than the number of packets your interface can store. In
snull, we set the weight to two as a way of demonstrating deferred packet reception.

The next step in the creation of a NAPI-compliant driver is to change the interrupt
handler. When your interface (which should start with receive interrupts enabled)
signals that a packet has arrived, the interrupt handler should not process that
packet. Instead, it should disable further receive interrupts and tell the kernel that it
is time to start polling the interface. In the snull “interrupt” handler, the code that
responds to packet reception interrupts has been changed to the following:

if (statusword & SNULL_RX_INTR) {
    snull_rx_ints(dev, 0);  /* Disable further interrupts */
    netif_rx_schedule(dev);
}

When the interface tells us that a packet is available, the interrupt handler leaves it in
the interface; all that needs to happen at this point is a call to netif_rx_schedule,
which causes our poll method to be called at some future point.

The poll method has this prototype:

int (*poll)(struct net_device *dev, int *budget);

,ch17.13860  Page 526  Friday, January 21, 2005  11:10 AM



This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Receive Interrupt Mitigation | 527

The snull implementation of the poll method looks like this:

static int snull_poll(struct net_device *dev, int *budget)
{
    int npackets = 0, quota = min(dev->quota, *budget);
    struct sk_buff *skb;
    struct snull_priv *priv = netdev_priv(dev);
    struct snull_packet *pkt;

    while (npackets < quota && priv->rx_queue) {
        pkt = snull_dequeue_buf(dev);
        skb = dev_alloc_skb(pkt->datalen + 2);
        if (! skb) {
            if (printk_ratelimit( ))
                printk(KERN_NOTICE "snull: packet dropped\n");
            priv->stats.rx_dropped++;
            snull_release_buffer(pkt);
            continue;
        }
        memcpy(skb_put(skb, pkt->datalen), pkt->data, pkt->datalen);
        skb->dev = dev;
        skb->protocol = eth_type_trans(skb, dev);
        skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
        netif_receive_skb(skb);

            /* Maintain stats */
        npackets++;
        priv->stats.rx_packets++;
        priv->stats.rx_bytes += pkt->datalen;
        snull_release_buffer(pkt);
    }
    /* If we processed all packets, we're done; tell the kernel and reenable ints */
    *budget -= npackets;
    dev->quota -= npackets;
    if (! priv->rx_queue) {
        netif_rx_complete(dev);
        snull_rx_ints(dev, 1);
        return 0;
    }
    /* We couldn't process everything. */
    return 1;
}

The central part of the function is concerned with the creation of an skb holding the
packet; this code is the same as what we saw in snull_rx before. A number of things
are different, however:

• The budget parameter provides a maximum number of packets that we are
allowed to pass into the kernel. Within the device structure, the quota field gives
another maximum; the poll method must respect the lower of the two limits. It
should also decrement both dev->quota and *budget by the number of packets
actually received. The budget value is a maximum number of packets that the
current CPU can receive from all interfaces, while quota is a per-interface value

,ch17.13860  Page 527  Friday, January 21, 2005  11:10 AM



This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

528 | Chapter 17: Network Drivers

that usually starts out as the weight assigned to the interface at initialization
time.

• Packets should be fed to the kernel with netif_receive_skb, rather than netif_rx.

• If the poll method is able to process all of the available packets within the limits
given to it, it should re-enable receive interrupts, call netif_rx_complete to turn
off polling, and return 0. A return value of 1 indicates that there are packets
remaining to be processed.

The networking subsystem guarantees that any given device’s poll method will not
be called concurrently on more than one processor. Calls to poll can still happen
concurrently with calls to your other device methods, however.

Changes in Link State
Network connections, by definition, deal with the world outside the local system.
Therefore, they are often affected by outside events, and they can be transient things.
The networking subsystem needs to know when network links go up or down, and it
provides a few functions that the driver may use to convey that information.

Most networking technologies involving an actual, physical connection provide a
carrier state; the presence of the carrier means that the hardware is present and ready
to function. Ethernet adapters, for example, sense the carrier signal on the wire;
when a user trips over the cable, that carrier vanishes, and the link goes down. By
default, network devices are assumed to have a carrier signal present. The driver can
change that state explicitly, however, with these functions:

void netif_carrier_off(struct net_device *dev);
void netif_carrier_on(struct net_device *dev);

If your driver detects a lack of carrier on one of its devices, it should call netif_carrier_off
to inform the kernel of this change. When the carrier returns, netif_carrier_on should be
called. Some drivers also call netif_carrier_off when making major configuration
changes (such as media type); once the adapter has finished resetting itself, the new car-
rier is detected and traffic can resume.

An integer function also exists:

int netif_carrier_ok(struct net_device *dev);

This can be used to test the current carrier state (as reflected in the device structure).

The Socket Buffers
We’ve now covered most of the issues related to network interfaces. What’s still
missing is some more detailed discussion of the sk_buff structure. The structure is at
the core of the network subsystem of the Linux kernel, and we now introduce both
the main fields of the structure and the functions used to act on it.
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Although there is no strict need to understand the internals of sk_buff, the ability to
look at its contents can be helpful when you are tracking down problems and when
you are trying to optimize your code. For example, if you look in loopback.c, you’ll
find an optimization based on knowledge of the sk_buff internals. The usual warn-
ing applies here: if you write code that takes advantage of knowledge of the sk_buff
structure, you should be prepared to see it break with future kernel releases. Still,
sometimes the performance advantages justify the additional maintenance cost.

We are not going to describe the whole structure here, just the fields that might be
used from within a driver. If you want to see more, you can look at <linux/skbuff.h>,
where the structure is defined and the functions are prototyped. Additional details
about how the fields and functions are used can be easily retrieved by grepping in the
kernel sources.

The Important Fields
The fields introduced here are the ones a driver might need to access. They are listed
in no particular order.

struct net_device *dev;
The device receiving or sending this buffer.

union { /* ... */ } h;
union { /* ... */ } nh;
union { /*... */} mac;

Pointers to the various levels of headers contained within the packet. Each field
of the union is a pointer to a different type of data structure. h hosts pointers to
transport layer headers (for example, struct tcphdr *th); nh includes network
layer headers (such as struct iphdr *iph); and mac collects pointers to link-layer
headers (such as struct ethdr *ethernet).

If your driver needs to look at the source and destination addresses of a TCP
packet, it can find them in skb->h.th. See the header file for the full set of header
types that can be accessed in this way.

Note that network drivers are responsible for setting the mac pointer for incom-
ing packets. This task is normally handled by eth_type_trans, but non-Ethernet
drivers have to set skb->mac.raw directly, as shown in the section “Non-Ethernet
Headers.”

unsigned char *head;
unsigned char *data;
unsigned char *tail;
unsigned char *end;

Pointers used to address the data in the packet. head points to the beginning of
the allocated space, data is the beginning of the valid octets (and is usually
slightly greater than head), tail is the end of the valid octets, and end points to
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the maximum address tail can reach. Another way to look at it is that the avail-
able buffer space is skb->end - skb->head, and the currently used data space is
skb->tail - skb->data.

unsigned int len;
unsigned int data_len;

len is the full length of the data in the packet, while data_len is the length of the
portion of the packet stored in separate fragments. The data_len field is 0 unless
scatter/gather I/O is being used.

unsigned char ip_summed;
The checksum policy for this packet. The field is set by the driver on incoming
packets, as described in the section “Packet Reception.”

unsigned char pkt_type;
Packet classification used in its delivery. The driver is responsible for setting it to
PACKET_HOST (this packet is for me), PACKET_OTHERHOST (no, this packet is not for
me), PACKET_BROADCAST, or PACKET_MULTICAST. Ethernet drivers don’t modify pkt_
type explicitly because eth_type_trans does it for them.

shinfo(struct sk_buff *skb);
unsigned int shinfo(skb)->nr_frags;
skb_frag_t shinfo(skb)->frags;

For performance reasons, some skb information is stored in a separate structure
that appears immediately after the skb in memory. This “shared info” (so called
because it can be shared among copies of the skb within the networking code)
must be accessed via the shinfo macro. There are several fields in this structure,
but most of them are beyond the scope of this book. We saw nr_frags and frags
in the section “Scatter/Gather I/O.”

The remaining fields in the structure are not particularly interesting. They are used to
maintain lists of buffers, to account for memory belonging to the socket that owns
the buffer, and so on.

Functions Acting on Socket Buffers
Network devices that use an sk_buff structure act on it by means of the official inter-
face functions. Many functions operate on socket buffers; here are the most interest-
ing ones:

struct sk_buff *alloc_skb(unsigned int len, int priority);
struct sk_buff *dev_alloc_skb(unsigned int len);

Allocate a buffer. The alloc_skb function allocates a buffer and initializes both
skb->data and skb->tail to skb->head. The dev_alloc_skb function is a shortcut
that calls alloc_skb with GFP_ATOMIC priority and reserves some space between
skb->head and skb->data. This data space is used for optimizations within the
network layer and should not be touched by the driver.
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void kfree_skb(struct sk_buff *skb);
void dev_kfree_skb(struct sk_buff *skb);
void dev_kfree_skb_irq(struct sk_buff *skb);
void dev_kfree_skb_any(struct sk_buff *skb);

Free a buffer. The kfree_skb call is used internally by the kernel. A driver should
use one of the forms of dev_kfree_skb instead: dev_kfree_skb for noninterrupt
context, dev_kfree_skb_irq for interrupt context, or dev_kfree_skb_any for code
that can run in either context.

unsigned char *skb_put(struct sk_buff *skb, int len);
unsigned char *__skb_put(struct sk_buff *skb, int len);

Update the tail and len fields of the sk_buff structure; they are used to add data
to the end of the buffer. Each function’s return value is the previous value of
skb->tail (in other words, it points to the data space just created). Drivers can
use the return value to copy data by invoking memcpy(skb_put(...), data, len)
or an equivalent. The difference between the two functions is that skb_put
checks to be sure that the data fits in the buffer, whereas __skb_put omits the
check.

unsigned char *skb_push(struct sk_buff *skb, int len);
unsigned char *__skb_push(struct sk_buff *skb, int len);

Functions to decrement skb->data and increment skb->len. They are similar to
skb_put, except that data is added to the beginning of the packet instead of the
end. The return value points to the data space just created. The functions are used
to add a hardware header before transmitting a packet. Once again, __skb_push
differs in that it does not check for adequate available space.

int skb_tailroom(struct sk_buff *skb);
Returns the amount of space available for putting data in the buffer. If a driver
puts more data into the buffer than it can hold, the system panics. Although you
might object that a printk would be sufficient to tag the error, memory corrup-
tion is so harmful to the system that the developers decided to take definitive
action. In practice, you shouldn’t need to check the available space if the buffer
has been correctly allocated. Since drivers usually get the packet size before allo-
cating a buffer, only a severely broken driver puts too much data in the buffer,
and a panic might be seen as due punishment.

int skb_headroom(struct sk_buff *skb);
Returns the amount of space available in front of data, that is, how many octets
one can “push” to the buffer.

void skb_reserve(struct sk_buff *skb, int len);
Increments both data and tail. The function can be used to reserve headroom
before filling the buffer. Most Ethernet interfaces reserve two bytes in front of
the packet; thus, the IP header is aligned on a 16-byte boundary, after a 14-byte
Ethernet header. snull does this as well, although the instruction was not shown
in “Packet Reception” to avoid introducing extra concepts at that point.
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unsigned char *skb_pull(struct sk_buff *skb, int len);
Removes data from the head of the packet. The driver won’t need to use this
function, but it is included here for completeness. It decrements skb->len and
increments skb->data; this is how the hardware header (Ethernet or equivalent)
is stripped from the beginning of incoming packets.

int skb_is_nonlinear(struct sk_buff *skb);
Returns a true value if this skb is separated into multiple fragments for scat-
ter/gather I/O.

int skb_headlen(struct sk_buff *skb);
Returns the length of the first segment of the skb (that part pointed to by skb->
data).

void *kmap_skb_frag(skb_frag_t *frag);
void kunmap_skb_frag(void *vaddr);

If you must directly access fragments in a nonlinear skb from within the kernel,
these functions map and unmap them for you. An atomic kmap is used, so you
cannot have more than one fragment mapped at a time.

The kernel defines several other functions that act on socket buffers, but they are
meant to be used in higher layers of networking code, and the driver doesn’t need
them.

MAC Address Resolution
An interesting issue with Ethernet communication is how to associate the MAC
addresses (the interface’s unique hardware ID) with the IP number. Most protocols
have a similar problem, but we concentrate on the Ethernet-like case here. We try to
offer a complete description of the issue, so we show three situations: ARP, Ethernet
headers without ARP (such as plip), and non-Ethernet headers.

Using ARP with Ethernet
The usual way to deal with address resolution is by using the Address Resolution
Protocol (ARP). Fortunately, ARP is managed by the kernel, and an Ethernet inter-
face doesn’t need to do anything special to support ARP. As long as dev->addr and
dev->addr_len are correctly assigned at open time, the driver doesn’t need to worry
about resolving IP numbers to MAC addresses; ether_setup assigns the correct device
methods to dev->hard_header and dev->rebuild_header.

Although the kernel normally handles the details of address resolution (and caching
of the results), it calls upon the interface driver to help in the building of the packet.
After all, the driver knows about the details of the physical layer header, while the
authors of the networking code have tried to insulate the rest of the kernel from that
knowledge. To this end, the kernel calls the driver’s hard_header method to lay out
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the packet with the results of the ARP query. Normally, Ethernet driver writers need
not know about this process—the common Ethernet code takes care of everything.

Overriding ARP
Simple point-to-point network interfaces, such as plip, might benefit from using
Ethernet headers, while avoiding the overhead of sending ARP packets back and
forth. The sample code in snull also falls into this class of network devices. snull can-
not use ARP because the driver changes IP addresses in packets being transmitted,
and ARP packets exchange IP addresses as well. Although we could have imple-
mented a simple ARP reply generator with little trouble, it is more illustrative to
show how to handle physical-layer headers directly.

If your device wants to use the usual hardware header without running ARP, you
need to override the default dev->hard_header method. This is how snull imple-
ments it, as a very short function:

int snull_header(struct sk_buff *skb, struct net_device *dev,
                unsigned short type, void *daddr, void *saddr,
                unsigned int len)
{
    struct ethhdr *eth = (struct ethhdr *)skb_push(skb,ETH_HLEN);

    eth->h_proto = htons(type);
    memcpy(eth->h_source, saddr ? saddr : dev->dev_addr, dev->addr_len);
    memcpy(eth->h_dest,   daddr ? daddr : dev->dev_addr, dev->addr_len);
    eth->h_dest[ETH_ALEN-1]   ^= 0x01;   /* dest is us xor 1 */
    return (dev->hard_header_len);
}

The function simply takes the information provided by the kernel and formats it into
a standard Ethernet header. It also toggles a bit in the destination Ethernet address,
for reasons described later.

When a packet is received by the interface, the hardware header is used in a couple
of ways by eth_type_trans. We have already seen this call in snull_rx:

skb->protocol = eth_type_trans(skb, dev);

The function extracts the protocol identifier (ETH_P_IP, in this case) from the Ethernet
header; it also assigns skb->mac.raw, removes the hardware header from packet data
(with skb_pull), and sets skb->pkt_type. This last item defaults to PACKET_HOST at skb
allocation (which indicates that the packet is directed to this host), and eth_type_trans
changes it to reflect the Ethernet destination address: if that address does not match the
address of the interface that received it, the pkt_type field is set to PACKET_OTHERHOST.
Subsequently, unless the interface is in promiscuous mode or packet forwarding is
enabled in the kernel, netif_rx drops any packet of type PACKET_OTHERHOST. For this rea-
son, snull_header is careful to make the destination hardware address match that of the
“receiving” interface.
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If your interface is a point-to-point link, you won’t want to receive unexpected multi-
cast packets. To avoid this problem, remember that a destination address whose first
octet has 0 as the least significant bit (LSB) is directed to a single host (i.e., it is either
PACKET_HOST or PACKET_OTHERHOST). The plip driver uses 0xfc as the first octet of its
hardware address, while snull uses 0x00. Both addresses result in a working Ethernet-
like point-to-point link.

Non-Ethernet Headers
We have just seen that the hardware header contains some information in addition to
the destination address, the most important being the communication protocol. We
now describe how hardware headers can be used to encapsulate relevant information.
If you need to know the details, you can extract them from the kernel sources or the
technical documentation for the particular transmission medium. Most driver writers
are able to ignore this discussion and just use the Ethernet implementation.

It’s worth noting that not all information has to be provided by every protocol. A
point-to-point link such as plip or snull could avoid transferring the whole Ethernet
header without losing generality. The hard_header device method, shown earlier as
implemented by snull_header, receives the delivery information—both protocol-level
and hardware addresses—from the kernel. It also receives the 16-bit protocol num-
ber in the type argument; IP, for example, is identified by ETH_P_IP. The driver is
expected to correctly deliver both the packet data and the protocol number to the
receiving host. A point-to-point link could omit addresses from its hardware header,
transferring only the protocol number, because delivery is guaranteed independent of
the source and destination addresses. An IP-only link could even avoid transmitting
any hardware header whatsoever.

When the packet is picked up at the other end of the link, the receiving function in the
driver should correctly set the fields skb->protocol, skb->pkt_type, and skb->mac.raw.

skb->mac.raw is a char pointer used by the address-resolution mechanism imple-
mented in higher layers of the networking code (for instance, net/ipv4/arp.c). It must
point to a machine address that matches dev->type. The possible values for the
device type are defined in <linux/if_arp.h>; Ethernet interfaces use ARPHRD_ETHER. For
example, here is how eth_type_trans deals with the Ethernet header for received
packets:

skb->mac.raw = skb->data;
skb_pull(skb, dev->hard_header_len);

In the simplest case (a point-to-point link with no headers), skb->mac.raw can point
to a static buffer containing the hardware address of this interface, protocol can be
set to ETH_P_IP, and packet_type can be left with its default value of PACKET_HOST.

Because every hardware type is unique, it is hard to give more specific advice than
already discussed. The kernel is full of examples, however. See, for example, the
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AppleTalk driver (drivers/net/appletalk/cops.c), the infrared drivers (such as drivers/
net/irda/smc_ircc.c), or the PPP driver (drivers/net/ppp_generic.c).

Custom ioctl Commands
We have seen that the ioctl system call is implemented for sockets; SIOCSIFADDR and
SIOCSIFMAP are examples of “socket ioctls.” Now let’s see how the third argument of
the system call is used by networking code.

When the ioctl system call is invoked on a socket, the command number is one of the
symbols defined in <linux/sockios.h>, and the sock_ioctl function directly invokes a
protocol-specific function (where “protocol” refers to the main network protocol
being used, for example, IP or AppleTalk).

Any ioctl command that is not recognized by the protocol layer is passed to the
device layer. These device-related ioctl commands accept a third argument from user
space, a struct ifreq *. This structure is defined in <linux/if.h>. The SIOCSIFADDR
and SIOCSIFMAP commands actually work on the ifreq structure. The extra argument
to SIOCSIFMAP, although defined as ifmap, is just a field of ifreq.

In addition to using the standardized calls, each interface can define its own ioctl
commands. The plip interface, for example, allows the interface to modify its inter-
nal timeout values via ioctl. The ioctl implementation for sockets recognizes 16 com-
mands as private to the interface: SIOCDEVPRIVATE through SIOCDEVPRIVATE+15.*

When one of these commands is recognized, dev->do_ioctl is called in the relevant
interface driver. The function receives the same struct ifreq * pointer that the
general-purpose ioctl function uses:

int (*do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);

The ifr pointer points to a kernel-space address that holds a copy of the structure
passed by the user. After do_ioctl returns, the structure is copied back to user space;
Therefore, the driver can use the private commands to both receive and return data.

The device-specific commands can choose to use the fields in struct ifreq, but they
already convey a standardized meaning, and it’s unlikely that the driver can adapt
the structure to its needs. The field ifr_data is a caddr_t item (a pointer) that is
meant to be used for device-specific needs. The driver and the program used to
invoke its ioctl commands should agree about the use of ifr_data. For example, ppp-
stats uses device-specific commands to retrieve information from the ppp interface
driver.

* Note that, according to <linux/sockios.h>, the SIOCDEVPRIVATE commands are deprecated. What should
replace them is not clear, however, and numerous in-tree drivers still use them.
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It’s not worth showing an implementation of do_ioctl here, but with the information
in this chapter and the kernel examples, you should be able to write one when you
need it. Note, however, that the plip implementation uses ifr_data incorrectly and
should not be used as an example for an ioctl implementation.

Statistical Information
The last method a driver needs is get_stats. This method returns a pointer to the sta-
tistics for the device. Its implementation is pretty easy; the one shown works even
when several interfaces are managed by the same driver, because the statistics are
hosted within the device data structure.

struct net_device_stats *snull_stats(struct net_device *dev)
{
    struct snull_priv *priv = netdev_priv(dev);
    return &priv->stats;
}

The real work needed to return meaningful statistics is distributed throughout the
driver, where the various fields are updated. The following list shows the most inter-
esting fields in struct net_device_stats:

unsigned long rx_packets;
unsigned long tx_packets;

The total number of incoming and outgoing packets successfully transferred by
the interface.

unsigned long rx_bytes;
unsigned long tx_bytes;

The number of bytes received and transmitted by the interface.

unsigned long rx_errors;
unsigned long tx_errors;

The number of erroneous receptions and transmissions. There’s no end of things
that can go wrong with packet transmission, and the net_device_stats structure
includes six counters for specific receive errors and five for transmit errors. See
<linux/netdevice.h> for the full list. If possible, your driver should maintain
detailed error statistics, because they can be most helpful to system administra-
tors trying to track down a problem.

unsigned long rx_dropped;
unsigned long tx_dropped;

The number of packets dropped during reception and transmission. Packets are
dropped when there’s no memory available for packet data. tx_dropped is rarely
used.
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unsigned long collisions;
The number of collisions due to congestion on the medium.

unsigned long multicast;
The number of multicast packets received.

It is worth repeating that the get_stats method can be called at any time—even when
the interface is down—so the driver must retain statistical information for as long as
the net_device structure exists.

Multicast
A multicast packet is a network packet meant to be received by more than one host,
but not by all hosts. This functionality is obtained by assigning special hardware
addresses to groups of hosts. Packets directed to one of the special addresses should
be received by all the hosts in that group. In the case of Ethernet, a multicast address
has the least significant bit of the first address octet set in the destination address,
while every device board has that bit clear in its own hardware address.

The tricky part of dealing with host groups and hardware addresses is performed by
applications and the kernel, and the interface driver doesn’t need to deal with these
problems.

Transmission of multicast packets is a simple problem because they look exactly like
any other packets. The interface transmits them over the communication medium
without looking at the destination address. It’s the kernel that has to assign a correct
hardware destination address; the hard_header device method, if defined, doesn’t
need to look in the data it arranges.

The kernel handles the job of tracking which multicast addresses are of interest at
any given time. The list can change frequently, since it is a function of the applica-
tions that are running at any given time and the users’ interest. It is the driver’s job to
accept the list of interesting multicast addresses and deliver to the kernel any pack-
ets sent to those addresses. How the driver implements the multicast list is some-
what dependent on how the underlying hardware works. Typically, hardware
belongs to one of three classes, as far as multicast is concerned:

• Interfaces that cannot deal with multicast. These interfaces either receive pack-
ets directed specifically to their hardware address (plus broadcast packets) or
receive every packet. They can receive multicast packets only by receiving every
packet, thus, potentially overwhelming the operating system with a huge num-
ber of “uninteresting” packets. You don’t usually count these interfaces as multi-
cast capable, and the driver won’t set IFF_MULTICAST in dev->flags.

Point-to-point interfaces are a special case because they always receive every
packet without performing any hardware filtering.
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• Interfaces that can tell multicast packets from other packets (host-to-host or
broadcast). These interfaces can be instructed to receive every multicast packet
and let the software determine if the address is interesting for this host. The
overhead introduced in this case is acceptable, because the number of multicast
packets on a typical network is low.

• Interfaces that can perform hardware detection of multicast addresses. These
interfaces can be passed a list of multicast addresses for which packets are to be
received, and ignore other multicast packets. This is the optimal case for the ker-
nel, because it doesn’t waste processor time dropping “uninteresting” packets
received by the interface.

The kernel tries to exploit the capabilities of high-level interfaces by supporting the
third device class, which is the most versatile, at its best. Therefore, the kernel noti-
fies the driver whenever the list of valid multicast addresses is changed, and it passes
the new list to the driver so it can update the hardware filter according to the new
information.

Kernel Support for Multicasting
Support for multicast packets is made up of several items: a device method, a data
structure, and device flags:

void (*dev->set_multicast_list)(struct net_device *dev);
Device method called whenever the list of machine addresses associated with the
device changes. It is also called when dev->flags is modified, because some flags
(e.g., IFF_PROMISC) may also require you to reprogram the hardware filter. The
method receives a pointer to struct net_device as an argument and returns
void. A driver not interested in implementing this method can leave the field set
to NULL.

struct dev_mc_list *dev->mc_list;
A linked list of all the multicast addresses associated with the device. The actual
definition of the structure is introduced at the end of this section.

int dev->mc_count;
The number of items in the linked list. This information is somewhat redun-
dant, but checking mc_count against 0 is a useful shortcut for checking the list.

IFF_MULTICAST
Unless the driver sets this flag in dev->flags, the interface won’t be asked to han-
dle multicast packets. Nonetheless, the kernel calls the driver’s set_multicast_list
method when dev->flags changes, because the multicast list may have changed
while the interface was not active.
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IFF_ALLMULTI
Flag set in dev->flags by the networking software to tell the driver to retrieve all
multicast packets from the network. This happens when multicast routing is
enabled. If the flag is set, dev->mc_list shouldn’t be used to filter multicast packets.

IFF_PROMISC
Flag set in dev->flags when the interface is put into promiscuous mode. Every
packet should be received by the interface, independent of dev->mc_list.

The last bit of information needed by the driver developer is the definition of struct
dev_mc_list, which lives in <linux/netdevice.h>:

struct dev_mc_list {
    struct dev_mc_list   *next;          /* Next address in list */
    __u8                 dmi_addr[MAX_ADDR_LEN]; /* Hardware address */
    unsigned char        dmi_addrlen;    /* Address length */
    int                  dmi_users;      /* Number of users */
    int                  dmi_gusers;     /* Number of groups */
};

Because multicasting and hardware addresses are independent of the actual transmis-
sion of packets, this structure is portable across network implementations, and each
address is identified by a string of octets and a length, just like dev->dev_addr.

A Typical Implementation
The best way to describe the design of set_multicast_list is to show you some
pseudocode.

The following function is a typical implementation of the function in a full-featured
(ff) driver. The driver is full featured in that the interface it controls has a complex
hardware packet filter, which can hold a table of multicast addresses to be received
by this host. The maximum size of the table is FF_TABLE_SIZE.

All the functions prefixed with ff_ are placeholders for hardware-specific operations:

void ff_set_multicast_list(struct net_device *dev)
{
    struct dev_mc_list *mcptr;

    if (dev->flags & IFF_PROMISC) {
        ff_get_all_packets( );
        return;
    }
    /* If there's more addresses than we handle, get all multicast
    packets and sort them out in software. */
    if (dev->flags & IFF_ALLMULTI || dev->mc_count > FF_TABLE_SIZE) {
        ff_get_all_multicast_packets( );
        return;
    }
    /* No multicast?  Just get our own stuff */
    if (dev->mc_count = = 0) {
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        ff_get_only_own_packets( );
        return;
    }
    /* Store all of the multicast addresses in the hardware filter */
    ff_clear_mc_list( );
    for (mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next)
        ff_store_mc_address(mc_ptr->dmi_addr);
    ff_get_packets_in_multicast_list( );
}

This implementation can be simplified if the interface cannot store a multicast table
in the hardware filter for incoming packets. In that case, FF_TABLE_SIZE reduces to 0,
and the last four lines of code are not needed.

As was mentioned earlier, even interfaces that can’t deal with multicast packets need
to implement the set_multicast_list method to be notified about changes in dev->
flags. This approach could be called a “nonfeatured” (nf) implementation. The
implementation is very simple, as shown by the following code:

void nf_set_multicast_list(struct net_device *dev)
{
    if (dev->flags & IFF_PROMISC)
        nf_get_all_packets( );
    else
        nf_get_only_own_packets( );
}

Implementing IFF_PROMISC is important, because otherwise the user won’t be able to
run tcpdump or any other network analyzers. If the interface runs a point-to-point
link, on the other hand, there’s no need to implement set_multicast_list at all,
because users receive every packet anyway.

A Few Other Details
This section covers a few other topics that may be of interest to network driver
authors. In each case, we simply try to point you in the right direction. Obtaining a
complete picture of the subject probably requires spending some time digging
through the kernel source as well.

Media Independent Interface Support
Media Independent Interface (or MII) is an IEEE 802.3 standard describing how
Ethernet transceivers can interface with network controllers; many products on the
market conform with this interface. If you are writing a driver for an MII-compliant
controller, the kernel exports a generic MII support layer that may make your life
easier.
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To use the generic MII layer, you should include <linux/mii.h>. You need to fill out an
mii_if_info structure with information on the physical ID of the transceiver, whether
full duplex is in effect, etc. Also required are two methods for the mii_if_info structure:

int (*mdio_read) (struct net_device *dev, int phy_id, int location);
void (*mdio_write) (struct net_device *dev, int phy_id, int location, int val);

As you might expect, these methods should implement communications with your
specific MII interface.

The generic MII code provides a set of functions for querying and changing the oper-
ating mode of the transceiver; many of these are designed to work with the ethtool
utility (described in the next section). Look in <linux/mii.h> and drivers/net/mii.c for
the details.

Ethtool Support
Ethtool is a utility designed to give system administrators a great deal of control over
the operation of network interfaces. With ethtool, it is possible to control various
interface parameters including speed, media type, duplex operation, DMA ring
setup, hardware checksumming, wake-on-LAN operation, etc., but only if ethtool is
supported by the driver. Ethtool may be downloaded from http://sf.net/projects/
gkernel/.

The relevant declarations for ethtool support may be found in <linux/ethtool.h>. At
the core of it is a structure of type ethtool_ops, which contains a full 24 different
methods for ethtool support. Most of these methods are relatively straightforward;
see <linux/ethtool.h> for the details. If your driver is using the MII layer, you can use
mii_ethtool_gset and mii_ethtool_sset to implement the get_settings and set_settings
methods, respectively.

For ethtool to work with your device, you must place a pointer to your ethtool_ops
structure in the net_device structure. The macro SET_ETHTOOL_OPS (defined in <linux/
netdevice.h>) should be used for this purpose. Do note that your ethtool methods can
be called even when the interface is down.

Netpoll
“Netpoll” is a relatively late (2.6.5) addition to the network stack; its purpose is to
enable the kernel to send and receive packets in situations where the full network
and I/O subsystems may not be available. It is used for features like remote network
consoles and remote kernel debugging. Supporting netpoll in your driver is not, by
any means, necessary, but it may make your device more useful in some situations.
Supporting netpoll is also relatively easy in most cases.
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Drivers implementing netpoll should implement the poll_controller method. Its job is
to keep up with anything that may be happening on the controller in the absence of
device interrupts. Almost all poll_controller methods take the following form:

void my_poll_controller(struct net_device *dev)
{
    disable_device_interrupts(dev);
    call_interrupt_handler(dev->irq, dev, NULL);
    reenable_device_interrupts(dev);
}

The poll_controller method, in essence, is simply simulating interrupts from the
given device.

Quick Reference
This section provides a reference for the concepts introduced in this chapter. It also
explains the role of each header file that a driver needs to include. The lists of fields
in the net_device and sk_buff structures, however, are not repeated here.

#include <linux/netdevice.h>
Header that hosts the definitions of struct net_device and struct net_device_
stats, and includes a few other headers that are needed by network drivers.

struct net_device *alloc_netdev(int sizeof_priv, char *name, void
  (*setup)(struct net_device *);
struct net_device *alloc_etherdev(int sizeof_priv);
void free_netdev(struct net_device *dev);

Functions for allocating and freeing net_device structures.

int register_netdev(struct net_device *dev);
void unregister_netdev(struct net_device *dev);

Registers and unregisters a network device.

void *netdev_priv(struct net_device *dev);
A function that retrieves the pointer to the driver-private area of a network
device structure.

struct net_device_stats;
A structure that holds device statistics.

netif_start_queue(struct net_device *dev);
netif_stop_queue(struct net_device *dev);
netif_wake_queue(struct net_device *dev);

Functions that control the passing of packets to the driver for transmission. No
packets are transmitted until netif_start_queue has been called. netif_stop_queue
suspends transmission, and netif_wake_queue restarts the queue and pokes the
network layer to restart transmitting packets.
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skb_shinfo(struct sk_buff *skb);
A macro that provides access to the “shared info” portion of a packet buffer.

void netif_rx(struct sk_buff *skb);
Function that can be called (including at interrupt time) to notify the kernel that
a packet has been received and encapsulated into a socket buffer.

void netif_rx_schedule(dev);
Function that informs the kernel that packets are available and that polling
should be started on the interface; it is used only by NAPI-compliant drivers.

int netif_receive_skb(struct sk_buff *skb);
void netif_rx_complete(struct net_device *dev);

Functions that should be used only by NAPI-compliant drivers. netif_receive_skb
is the NAPI equivalent to netif_rx; it feeds a packet into the kernel. When a
NAPI-compliant driver has exhausted the supply of received packets, it should
reenable interrupts, and call netif_rx_complete to stop polling.

#include <linux/if.h>
Included by netdevice.h, this file declares the interface flags (IFF_ macros) and
struct ifmap, which has a major role in the ioctl implementation for network
drivers.

void netif_carrier_off(struct net_device *dev);
void netif_carrier_on(struct net_device *dev);
int netif_carrier_ok(struct net_device *dev);

The first two functions may be used to tell the kernel whether a carrier signal is
currently present on the given interface. netif_carrier_ok tests the carrier state as
reflected in the device structure.

#include <linux/if_ether.h>
ETH_ALEN
ETH_P_IP
struct ethhdr;

Included by netdevice.h, if_ether.h defines all the ETH_ macros used to represent
octet lengths (such as the address length) and network protocols (such as IP). It
also defines the ethhdr structure.

#include <linux/skbuff.h>
The definition of struct sk_buff and related structures, as well as several inline
functions to act on the buffers. This header is included by netdevice.h.
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struct sk_buff *alloc_skb(unsigned int len, int priority);
struct sk_buff *dev_alloc_skb(unsigned int len);
void kfree_skb(struct sk_buff *skb);
void dev_kfree_skb(struct sk_buff *skb);
void dev_kfree_skb_irq(struct sk_buff *skb);
void dev_kfree_skb_any(struct sk_buff *skb);

Functions that handle the allocation and freeing of socket buffers. Drivers
should normally use the dev_ variants, which are intended for that purpose.

unsigned char *skb_put(struct sk_buff *skb, int len);
unsigned char *__skb_put(struct sk_buff *skb, int len);
unsigned char *skb_push(struct sk_buff *skb, int len);
unsigned char *__skb_push(struct sk_buff *skb, int len);

Functions that add data to an skb; skb_put puts the data at the end of the skb,
while skb_push puts it at the beginning. The regular versions perform checking
to ensure that adequate space is available; double-underscore versions leave
those tests out.

int skb_headroom(struct sk_buff *skb);
int skb_tailroom(struct sk_buff *skb);
void skb_reserve(struct sk_buff *skb, int len);

Functions that perform management of space within an skb. skb_headroom and
skb_tailroom tell how much space is available at the beginning and end, respec-
tively, of an skb. skb_reserve may be used to reserve space at the beginning of an
skb, which must be empty.

unsigned char *skb_pull(struct sk_buff *skb, int len);
skb_pull “removes” data from an skb by adjusting the internal pointers.

int skb_is_nonlinear(struct sk_buff *skb);
Function that returns a true value if this skb is separated into multiple fragments
for scatter/gather I/O.

int skb_headlen(struct sk_buff *skb);
Returns the length of the first segment of the skb—that part pointed to by skb->
data.

void *kmap_skb_frag(skb_frag_t *frag);
void kunmap_skb_frag(void *vaddr);

Functions that provide direct access to fragments within a nonlinear skb.

#include <linux/etherdevice.h>
void ether_setup(struct net_device *dev);

Function that sets most device methods to the general-purpose implementation
for Ethernet drivers. It also sets dev->flags and assigns the next available ethx
name to dev->name if the first character in the name is a blank space or the NULL
character.
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unsigned short eth_type_trans(struct sk_buff *skb, struct net_device *dev);
When an Ethernet interface receives a packet, this function can be called to set
skb->pkt_type. The return value is a protocol number that is usually stored in
skb->protocol.

#include <linux/sockios.h>
SIOCDEVPRIVATE

The first of 16 ioctl commands that can be implemented by each driver for its
own private use. All the network ioctl commands are defined in sockios.h.

#include <linux/mii.h>
struct mii_if_info;

Declarations and a structure supporting drivers of devices that implement the
MII standard.

#include <linux/ethtool.h>
struct ethtool_ops;

Declarations and structures that let devices work with the ethtool utility.

,ch17.13860  Page 545  Friday, January 21, 2005  11:10 AM


