
This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

464

Chapter 16CHAPTER 16

Block Drivers

So far, our discussion has been limited to char drivers. There are other types of driv-
ers in Linux systems, however, and the time has come for us to widen our focus
somewhat. Accordingly, this chapter discusses block drivers.

A block driver provides access to devices that transfer randomly accessible data in
fixed-size blocks—disk drives, primarily. The Linux kernel sees block devices as
being fundamentally different from char devices; as a result, block drivers have a dis-
tinct interface and their own particular challenges.

Efficient block drivers are critical for performance—and not just for explicit reads
and writes in user applications. Modern systems with virtual memory work by shift-
ing (hopefully) unneeded data to secondary storage, which is usually a disk drive.
Block drivers are the conduit between core memory and secondary storage; there-
fore, they can be seen as making up part of the virtual memory subsystem. While it is
possible to write a block driver without knowing about struct page and other impor-
tant memory concepts, anybody needing to write a high-performance driver has to
draw upon the material covered in Chapter 15.

Much of the design of the block layer is centered on performance. Many char devices
can run below their maximum speed, and the performance of the system as a whole
is not affected. The system cannot run well, however, if its block I/O subsystem is
not well-tuned. The Linux block driver interface allows you to get the most out of a
block device but imposes, necessarily, a degree of complexity that you must deal
with. Happily, the 2.6 block interface is much improved over what was found in
older kernels.

The discussion in this chapter is, as one would expect, centered on an example driver
that implements a block-oriented, memory-based device. It is, essentially, a ramdisk.
The kernel already contains a far superior ramdisk implementation, but our driver
(called sbull) lets us demonstrate the creation of a block driver while minimizing
unrelated complexity.

,ch16.28124 Page 464 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Registration | 465

Before getting into the details, let’s define a couple of terms precisely. A block is a
fixed-size chunk of data, the size being determined by the kernel. Blocks are often
4096 bytes, but that value can vary depending on the architecture and the exact file-
system being used. A sector, in contrast, is a small block whose size is usually deter-
mined by the underlying hardware. The kernel expects to be dealing with devices
that implement 512-byte sectors. If your device uses a different size, the kernel
adapts and avoids generating I/O requests that the hardware cannot handle. It is
worth keeping in mind, however, that any time the kernel presents you with a sector
number, it is working in a world of 512-byte sectors. If you are using a different
hardware sector size, you have to scale the kernel’s sector numbers accordingly. We
see how that is done in the sbull driver.

Registration
Block drivers, like char drivers, must use a set of registration interfaces to make their
devices available to the kernel. The concepts are similar, but the details of block
device registration are all different. You have a whole new set of data structures and
device operations to learn.

Block Driver Registration
The first step taken by most block drivers is to register themselves with the kernel.
The function for this task is register_blkdev (which is declared in <linux/fs.h>):

int register_blkdev(unsigned int major, const char *name);

The arguments are the major number that your device will be using and the associ-
ated name (which the kernel will display in /proc/devices). If major is passed as 0, the
kernel allocates a new major number and returns it to the caller. As always, a nega-
tive return value from register_blkdev indicates that an error has occurred.

The corresponding function for canceling a block driver registration is:

int unregister_blkdev(unsigned int major, const char *name);

Here, the arguments must match those passed to register_blkdev, or the function
returns -EINVAL and not unregister anything.

In the 2.6 kernel, the call to register_blkdev is entirely optional. The functions per-
formed by register_blkdev have been decreasing over time; the only tasks performed
by this call at this point are (1) allocating a dynamic major number if requested, and
(2) creating an entry in /proc/devices. In future kernels, register_blkdev may be
removed altogether. Meanwhile, however, most drivers still call it; it’s traditional.

,ch16.28124 Page 465 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

466 | Chapter 16: Block Drivers

Disk Registration
While register_blkdev can be used to obtain a major number, it does not make any
disk drives available to the system. There is a separate registration interface that you
must use to manage individual drives. Using this interface requires familiarity with a
pair of new structures, so that is where we start.

Block device operations

Char devices make their operations available to the system by way of the file_
operations structure. A similar structure is used with block devices; it is struct
block_device_operations, which is declared in <linux/fs.h>. The following is a brief
overview of the fields found in this structure; we revisit them in more detail when we
get into the details of the sbull driver:

int (*open)(struct inode *inode, struct file *filp);
int (*release)(struct inode *inode, struct file *filp);

Functions that work just like their char driver equivalents; they are called when-
ever the device is opened and closed. A block driver might respond to an open
call by spinning up the device, locking the door (for removable media), etc. If
you lock media into the device, you should certainly unlock it in the release
method.

int (*ioctl)(struct inode *inode, struct file *filp, unsigned int cmd,
 unsigned long arg);

Method that implements the ioctl system call. The block layer first intercepts a
large number of standard requests, however; so most block driver ioctl methods
are fairly short.

int (*media_changed) (struct gendisk *gd);
Method called by the kernel to check whether the user has changed the media in
the drive, returning a nonzero value if so. Obviously, this method is only appli-
cable to drives that support removable media (and that are smart enough to
make a “media changed” flag available to the driver); it can be omitted in other
cases.

The struct gendisk argument is how the kernel represents a single disk; we will
be looking at that structure in the next section.

int (*revalidate_disk) (struct gendisk *gd);
The revalidate_disk method is called in response to a media change; it gives the
driver a chance to perform whatever work is required to make the new media
ready for use. The function returns an int value, but that value is ignored by the
kernel.

struct module *owner;
A pointer to the module that owns this structure; it should usually be initialized
to THIS_MODULE.

,ch16.28124 Page 466 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Registration | 467

Attentive readers may have noticed an interesting omission from this list: there are
no functions that actually read or write data. In the block I/O subsystem, these oper-
ations are handled by the request function, which deserves a large section of its own
and is discussed later in the chapter. Before we can talk about servicing requests, we
must complete our discussion of disk registration.

The gendisk structure

struct gendisk (declared in <linux/genhd.h>) is the kernel’s representation of an indi-
vidual disk device. In fact, the kernel also uses gendisk structures to represent parti-
tions, but driver authors need not be aware of that. There are several fields in struct
gendisk that must be initialized by a block driver:

int major;
int first_minor;
int minors;

Fields that describe the device number(s) used by the disk. At a minimum, a
drive must use at least one minor number. If your drive is to be partitionable,
however (and most should be), you want to allocate one minor number for each
possible partition as well. A common value for minors is 16, which allows for the
“full disk” device and 15 partitions. Some disk drivers use 64 minor numbers for
each device.

char disk_name[32];
Field that should be set to the name of the disk device. It shows up in /proc/
partitions and sysfs.

struct block_device_operations *fops;
Set of device operations from the previous section.

struct request_queue *queue;
Structure used by the kernel to manage I/O requests for this device; we examine
it in the section “Request Processing.”

int flags;
A (little-used) set of flags describing the state of the drive. If your device has
removable media, you should set GENHD_FL_REMOVABLE. CD-ROM drives can set
GENHD_FL_CD. If, for some reason, you do not want partition information to
show up in /proc/partitions, set GENHD_FL_SUPPRESS_PARTITION_INFO.

sector_t capacity;
The capacity of this drive, in 512-byte sectors. The sector_t type can be 64 bits
wide. Drivers should not set this field directly; instead, pass the number of sec-
tors to set_capacity.

void *private_data;
Block drivers may use this field for a pointer to their own internal data.

,ch16.28124 Page 467 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

468 | Chapter 16: Block Drivers

The kernel provides a small set of functions for working with gendisk structures. We
introduce them here, then see how sbull uses them to make its disk devices available
to the system.

struct gendisk is a dynamically allocated structure that requires special kernel
manipulation to be initialized; drivers cannot allocate the structure on their own.
Instead, you must call:

struct gendisk *alloc_disk(int minors);

The minors argument should be the number of minor numbers this disk uses; note
that you cannot change the minors field later and expect things to work properly.

When a disk is no longer needed, it should be freed with:

void del_gendisk(struct gendisk *gd);

A gendisk is a reference-counted structure (it contains a kobject). There are get_disk
and put_disk functions available to manipulate the reference count, but drivers
should never need to do that. Normally, the call to del_gendisk removes the final ref-
erence to a gendisk, but there are no guarantees of that. Thus, it is possible that the
structure could continue to exist (and your methods could be called) after a call to
del_gendisk. If you delete the structure when there are no users (that is, after the final
release or in your module cleanup function), however, you can be sure that you will
not hear from it again.

Allocating a gendisk structure does not make the disk available to the system. To do
that, you must initialize the structure and call add_disk:

void add_disk(struct gendisk *gd);

Keep one important thing in mind here: as soon as you call add_disk, the disk is
“live” and its methods can be called at any time. In fact, the first such calls will prob-
ably happen even before add_disk returns; the kernel will read the first few blocks in
an attempt to find a partition table. So you should not call add_disk until your driver
is completely initialized and ready to respond to requests on that disk.

Initialization in sbull
It is time to get down to some examples. The sbull driver (available from O’Reilly’s
FTP site with the rest of the example source) implements a set of in-memory virtual
disk drives. For each drive, sbull allocates (with vmalloc, for simplicity) an array of
memory; it then makes that array available via block operations. The sbull driver can
be tested by partitioning the virtual device, building filesystems on it, and mounting
it in the system hierarchy.

Like our other example drivers, sbull allows a major number to be specified at com-
pile or module load time. If no number is specified, one is allocated dynamically.
Since a call to register_blkdev is required for dynamic allocation, sbull does so:

sbull_major = register_blkdev(sbull_major, "sbull");
if (sbull_major <= 0) {

,ch16.28124 Page 468 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Registration | 469

 printk(KERN_WARNING "sbull: unable to get major number\n");
 return -EBUSY;
 }

Also, like the other virtual devices we have presented in this book, the sbull device is
described by an internal structure:

struct sbull_dev {
 int size; /* Device size in sectors */
 u8 *data; /* The data array */
 short users; /* How many users */
 short media_change; /* Flag a media change? */
 spinlock_t lock; /* For mutual exclusion */
 struct request_queue *queue; /* The device request queue */
 struct gendisk *gd; /* The gendisk structure */
 struct timer_list timer; /* For simulated media changes */
};

Several steps are required to initialize this structure and make the associated device
available to the system. We start with basic initialization and allocation of the under-
lying memory:

memset (dev, 0, sizeof (struct sbull_dev));
dev->size = nsectors*hardsect_size;
dev->data = vmalloc(dev->size);
if (dev->data = = NULL) {
 printk (KERN_NOTICE "vmalloc failure.\n");
 return;
}
spin_lock_init(&dev->lock);

It’s important to allocate and initialize a spinlock before the next step, which is the
allocation of the request queue. We look at this process in more detail when we get
to request processing; for now, suffice it to say that the necessary call is:

dev->queue = blk_init_queue(sbull_request, &dev->lock);

Here, sbull_request is our request function—the function that actually performs
block read and write requests. When we allocate a request queue, we must provide a
spinlock that controls access to that queue. The lock is provided by the driver rather
than the general parts of the kernel because, often, the request queue and other
driver data structures fall within the same critical section; they tend to be accessed
together. As with any function that allocates memory, blk_init_queue can fail, so you
must check the return value before continuing.

Once we have our device memory and request queue in place, we can allocate, initial-
ize, and install the corresponding gendisk structure. The code that does this work is:

dev->gd = alloc_disk(SBULL_MINORS);
if (! dev->gd) {
 printk (KERN_NOTICE "alloc_disk failure\n");
 goto out_vfree;
}
dev->gd->major = sbull_major;

,ch16.28124 Page 469 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

470 | Chapter 16: Block Drivers

dev->gd->first_minor = which*SBULL_MINORS;
dev->gd->fops = &sbull_ops;
dev->gd->queue = dev->queue;
dev->gd->private_data = dev;
snprintf (dev->gd->disk_name, 32, "sbull%c", which + 'a');
set_capacity(dev->gd, nsectors*(hardsect_size/KERNEL_SECTOR_SIZE));
add_disk(dev->gd);

Here, SBULL_MINORS is the number of minor numbers each sbull device supports.
When we set the first minor number for each device, we must take into account all of
the numbers taken by prior devices. The name of the disk is set such that the first
one is sbulla, the second sbullb, and so on. User space can then add partition num-
bers so that the third partition on the second device might be /dev/sbullb3.

Once everything is set up, we finish with a call to add_disk. Chances are that several
of our methods will have been called for that disk by the time add_disk returns, so we
take care to make that call the very last step in the initialization of our device.

A Note on Sector Sizes
As we have mentioned before, the kernel treats every disk as a linear array of 512-
byte sectors. Not all hardware uses that sector size, however. Getting a device with a
different sector size to work is not particularly hard; it is just a matter of taking care
of a few details. The sbull device exports a hardsect_size parameter that can be used
to change the “hardware” sector size of the device; by looking at its implementation,
you can see how to add this sort of support to your own drivers.

The first of those details is to inform the kernel of the sector size your device sup-
ports. The hardware sector size is a parameter in the request queue, rather than in
the gendisk structure. This size is set with a call to blk_queue_hardsect_size immedi-
ately after the queue is allocated:

blk_queue_hardsect_size(dev->queue, hardsect_size);

Once that is done, the kernel adheres to your device’s hardware sector size. All I/O
requests are properly aligned at the beginning of a hardware sector, and the length of
each request is an integral number of sectors. You must remember, however, that the
kernel always expresses itself in 512-byte sectors; thus, it is necessary to translate all
sector numbers accordingly. So, for example, when sbull sets the capacity of the
device in its gendisk structure, the call looks like:

set_capacity(dev->gd, nsectors*(hardsect_size/KERNEL_SECTOR_SIZE));

KERNEL_SECTOR_SIZE is a locally-defined constant that we use to scale between the ker-
nel’s 512-byte sectors and whatever size we have been told to use. This sort of calcu-
lation pops up frequently as we look at the sbull request processing logic.

,ch16.28124 Page 470 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Block Device Operations | 471

The Block Device Operations
We had a brief introduction to the block_device_operations structure in the previ-
ous section. Now we take some time to look at these operations in a bit more detail
before getting into request processing. To that end, it is time to mention one other
feature of the sbull driver: it pretends to be a removable device. Whenever the last
user closes the device, a 30-second timer is set; if the device is not opened during that
time, the contents of the device are cleared, and the kernel will be told that the media
has been changed. The 30-second delay gives the user time to, for example, mount
an sbull device after creating a filesystem on it.

The open and release Methods
To implement the simulated media removal, sbull must know when the last user has
closed the device. A count of users is maintained by the driver. It is the job of the
open and close methods to keep that count current.

The open method looks very similar to its char-driver equivalent; it takes the rele-
vant inode and file structure pointers as arguments. When an inode refers to a block
device, the field i_bdev->bd_disk contains a pointer to the associated gendisk struc-
ture; this pointer can be used to get to a driver’s internal data structures for the
device. That is, in fact, the first thing that the sbull open method does:

static int sbull_open(struct inode *inode, struct file *filp)
{
 struct sbull_dev *dev = inode->i_bdev->bd_disk->private_data;

 del_timer_sync(&dev->timer);
 filp->private_data = dev;
 spin_lock(&dev->lock);
 if (! dev->users)
 check_disk_change(inode->i_bdev);
 dev->users++;
 spin_unlock(&dev->lock);
 return 0;
}

Once sbull_open has its device structure pointer, it calls del_timer_sync to remove the
“media removal” timer, if any is active. Note that we do not lock the device spinlock
until after the timer has been deleted; doing otherwise invites deadlock if the timer
function runs before we can delete it. With the device locked, we call a kernel func-
tion called check_disk_change to check whether a media change has happened. One
might argue that the kernel should make that call, but the standard pattern is for
drivers to handle it at open time.

The last step is to increment the user count and return.

,ch16.28124 Page 471 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

472 | Chapter 16: Block Drivers

The task of the release method is, in contrast, to decrement the user count and, if
indicated, start the media removal timer:

static int sbull_release(struct inode *inode, struct file *filp)
{
 struct sbull_dev *dev = inode->i_bdev->bd_disk->private_data;

 spin_lock(&dev->lock);
 dev->users--;

 if (!dev->users) {
 dev->timer.expires = jiffies + INVALIDATE_DELAY;
 add_timer(&dev->timer);
 }
 spin_unlock(&dev->lock);

 return 0;
}

In a driver that handles a real, hardware device, the open and release methods would
set the state of the driver and hardware accordingly. This work could involve spin-
ning the disk up or down, locking the door of a removable device, allocating DMA
buffers, etc.

You may be wondering who actually opens a block device. There are some opera-
tions that cause a block device to be opened directly from user space; these include
partitioning a disk, building a filesystem on a partition, or running a filesystem
checker. A block driver also sees an open call when a partition is mounted. In this
case, there is no user-space process holding an open file descriptor for the device; the
open file is, instead, held by the kernel itself. A block driver cannot tell the differ-
ence between a mount operation (which opens the device from kernel space) and the
invocation of a utility such as mkfs (which opens it from user space).

Supporting Removable Media
The block_device_operations structure includes two methods for supporting remov-
able media. If you are writing a driver for a nonremovable device, you can safely omit
these methods. Their implementation is relatively straightforward.

The media_changed method is called (from check_disk_change) to see whether the
media has been changed; it should return a nonzero value if this has happened. The
sbull implementation is simple; it queries a flag that has been set if the media
removal timer has expired:

int sbull_media_changed(struct gendisk *gd)
{
 struct sbull_dev *dev = gd->private_data;

 return dev->media_change;
}

,ch16.28124 Page 472 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

The Block Device Operations | 473

The revalidate method is called after a media change; its job is to do whatever is
required to prepare the driver for operations on the new media, if any. After the call
to revalidate, the kernel attempts to reread the partition table and start over with the
device. The sbull implementation simply resets the media_change flag and zeroes out
the device memory to simulate the insertion of a blank disk.

int sbull_revalidate(struct gendisk *gd)
{
 struct sbull_dev *dev = gd->private_data;

 if (dev->media_change) {
 dev->media_change = 0;
 memset (dev->data, 0, dev->size);
 }
 return 0;
}

The ioctl Method
Block devices can provide an ioctl method to perform device control functions. The
higher-level block subsystem code intercepts a number of ioctl commands before
your driver ever gets to see them, however (see drivers/block/ioctl.c in the kernel
source for the full set). In fact, a modern block driver may not have to implement
very many ioctl commands at all.

The sbull ioctl method handles only one command—a request for the device’s
geometry:

int sbull_ioctl (struct inode *inode, struct file *filp,
 unsigned int cmd, unsigned long arg)
{
 long size;
 struct hd_geometry geo;
 struct sbull_dev *dev = filp->private_data;

 switch(cmd) {
 case HDIO_GETGEO:
 /*
 * Get geometry: since we are a virtual device, we have to make
 * up something plausible. So we claim 16 sectors, four heads,
 * and calculate the corresponding number of cylinders. We set the
 * start of data at sector four.
 */
 size = dev->size*(hardsect_size/KERNEL_SECTOR_SIZE);
 geo.cylinders = (size & ~0x3f) >> 6;
 geo.heads = 4;
 geo.sectors = 16;
 geo.start = 4;
 if (copy_to_user((void __user *) arg, &geo, sizeof(geo)))
 return -EFAULT;

,ch16.28124 Page 473 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

474 | Chapter 16: Block Drivers

 return 0;
 }

 return -ENOTTY; /* unknown command */
}

Providing geometry information may seem like a curious task, since our device is
purely virtual and has nothing to do with tracks and cylinders. Even most real-block
hardware has been furnished with much more complicated structures for many
years. The kernel is not concerned with a block device’s geometry; it sees it simply as
a linear array of sectors. There are certain user-space utilities that still expect to be
able to query a disk’s geometry, however. In particular, the fdisk tool, which edits
partition tables, depends on cylinder information and does not function properly if
that information is not available.

We would like the sbull device to be partitionable, even with older, simple-minded
tools. So, we have provided an ioctl method that comes up with a credible fiction for
a geometry that could match the capacity of our device. Most disk drivers do some-
thing similar. Note that, as usual, the sector count is translated, if need be, to match
the 512-byte convention used by the kernel.

Request Processing
The core of every block driver is its request function. This function is where the real
work gets done—or at least started; all the rest is overhead. Consequently, we spend
a fair amount of time looking at request processing in block drivers.

A disk driver’s performance can be a critical part of the performance of the system as
a whole. Therefore, the kernel’s block subsystem has been written with performance
very much in mind; it does everything possible to enable your driver to get the most
out of the devices it controls. This is a good thing, in that it enables blindingly fast I/O.
On the other hand, the block subsystem unnecessarily exposes a great deal of com-
plexity in the driver API. It is possible to write a very simple request function (we will
see one shortly), but if your driver must perform at a high level on complex hard-
ware, it will be anything but simple.

Introduction to the request Method
The block driver request method has the following prototype:

void request(request_queue_t *queue);

This function is called whenever the kernel believes it is time for your driver to pro-
cess some reads, writes, or other operations on the device. The request function does
not need to actually complete all of the requests on the queue before it returns;
indeed, it probably does not complete any of them for most real devices. It must,

,ch16.28124 Page 474 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Request Processing | 475

however, make a start on those requests and ensure that they are all, eventually, pro-
cessed by the driver.

Every device has a request queue. This is because actual transfers to and from a disk
can take place far away from the time the kernel requests them, and because the ker-
nel needs the flexibility to schedule each transfer at the most propitious moment
(grouping together, for instance, requests that affect sectors close together on the
disk). And the request function, you may remember, is associated with a request
queue when that queue is created. Let us look back at how sbull makes its queue:

dev->queue = blk_init_queue(sbull_request, &dev->lock);

Thus, when the queue is created, the request function is associated with it. We also
provided a spinlock as part of the queue creation process. Whenever our request
function is called, that lock is held by the kernel. As a result, the request function is
running in an atomic context; it must follow all of the usual rules for atomic code
discussed in Chapter 5.

The queue lock also prevents the kernel from queuing any other requests for your
device while your request function holds the lock. Under some conditions, you may
want to consider dropping that lock while the request function runs. If you do so,
however, you must be sure not to access the request queue, or any other data struc-
ture protected by the lock, while the lock is not held. You must also reacquire the
lock before the request function returns.

Finally, the invocation of the request function is (usually) entirely asynchronous with
respect to the actions of any user-space process. You cannot assume that the kernel is
running in the context of the process that initiated the current request. You do not
know if the I/O buffer provided by the request is in kernel or user space. So any sort
of operation that explicitly accesses user space is in error and will certainly lead to
trouble. As you will see, everything your driver needs to know about the request is
contained within the structures passed to you via the request queue.

A Simple request Method
The sbull example driver provides a few different methods for request processing. By
default, sbull uses a method called sbull_request, which is meant to be an example of
the simplest possible request method. Without further ado, here it is:

static void sbull_request(request_queue_t *q)
{
 struct request *req;

 while ((req = elv_next_request(q)) != NULL) {
 struct sbull_dev *dev = req->rq_disk->private_data;
 if (! blk_fs_request(req)) {

,ch16.28124 Page 475 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

476 | Chapter 16: Block Drivers

 printk (KERN_NOTICE "Skip non-fs request\n");
 end_request(req, 0);
 continue;
 }
 sbull_transfer(dev, req->sector, req->current_nr_sectors,
 req->buffer, rq_data_dir(req));
 end_request(req, 1);
 }
}

This function introduces the struct request structure. We will examine struct
request in great detail later on; for now, suffice it to say that it represents a block I/O
request for us to execute.

The kernel provides the function elv_next_request to obtain the first incomplete
request on the queue; that function returns NULL when there are no requests to be
processed. Note that elv_next_request does not remove the request from the queue. If
you call it twice with no intervening operations, it returns the same request struc-
ture both times. In this simple mode of operation, requests are taken off the queue
only when they are complete.

A block request queue can contain requests that do not actually move blocks to and
from a disk. Such requests can include vendor-specific, low-level diagnostics operations
or instructions relating to specialized device modes, such as the packet writing mode for
recordable media. Most block drivers do not know how to handle such requests and
simply fail them; sbull works in this way as well. The call to block_fs_request tells us
whether we are looking at a filesystem request—one that moves blocks of data. If a
request is not a filesystem request, we pass it to end_request:

void end_request(struct request *req, int succeeded);

When we dispose of nonfilesystem requests, we pass succeeded as 0 to indicate that
we did not successfully complete the request. Otherwise, we call sbull_transfer to
actually move the data, using a set of fields provided in the request structure:

sector_t sector;
The index of the beginning sector on our device. Remember that this sector
number, like all such numbers passed between the kernel and the driver, is
expressed in 512-byte sectors. If your hardware uses a different sector size, you
need to scale sector accordingly. For example, if the hardware uses 2048-byte
sectors, you need to divide the beginning sector number by four before putting it
into a request for the hardware.

unsigned long nr_sectors;
The number of (512-byte) sectors to be transferred.

,ch16.28124 Page 476 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Request Processing | 477

char *buffer;
A pointer to the buffer to or from which the data should be transferred. This
pointer is a kernel virtual address and can be dereferenced directly by the driver
if need be.

rq_data_dir(struct request *req);
This macro extracts the direction of the transfer from the request; a zero return
value denotes a read from the device, and a nonzero return value denotes a write
to the device.

Given this information, the sbull driver can implement the actual data transfer with a
simple memcpy call—our data is already in memory, after all. The function that per-
forms this copy operation (sbull_transfer) also handles the scaling of sector sizes and
ensures that we do not try to copy beyond the end of our virtual device:

static void sbull_transfer(struct sbull_dev *dev, unsigned long sector,
 unsigned long nsect, char *buffer, int write)
{
 unsigned long offset = sector*KERNEL_SECTOR_SIZE;
 unsigned long nbytes = nsect*KERNEL_SECTOR_SIZE;

 if ((offset + nbytes) > dev->size) {
 printk (KERN_NOTICE "Beyond-end write (%ld %ld)\n", offset, nbytes);
 return;
 }
 if (write)
 memcpy(dev->data + offset, buffer, nbytes);
 else
 memcpy(buffer, dev->data + offset, nbytes);
}

With the code, sbull implements a complete, simple RAM-based disk device. It is
not, however, a realistic driver for many types of devices, for a couple of reasons.

The first of those reasons is that sbull executes requests synchronously, one at a time.
High-performance disk devices are capable of having numerous requests outstand-
ing at the same time; the disk’s onboard controller can then choose to execute them
in the optimal order (one hopes). As long as we process only the first request in the
queue, we can never have multiple requests being fulfilled at a given time. Being able
to work with more than one request requires a deeper understanding of request
queues and the request structure; the next few sections help build that understanding.

There is another issue to consider, however. The best performance is obtained from
disk devices when the system performs large transfers involving multiple sectors that
are located together on the disk. The highest cost in a disk operation is always the
positioning of the read and write heads; once that is done, the time required to actu-
ally read or write the data is almost insignificant. The developers who design and
implement filesystems and virtual memory subsystems understand this, so they do
their best to locate related data contiguously on the disk and to transfer as many sec-
tors as possible in a single request. The block subsystem also helps in this regard;

,ch16.28124 Page 477 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

478 | Chapter 16: Block Drivers

request queues contain a great deal of logic aimed at finding adjacent requests and
coalescing them into larger operations.

The sbull driver, however, takes all that work and simply ignores it. Only one buffer
is transferred at a time, meaning that the largest single transfer is almost never going
to exceed the size of a single page. A block driver can do much better than that, but
it requires a deeper understanding of request structures and the bio structures from
which requests are built.

The next few sections delve more deeply into how the block layer does its job and
the data structures that result from that work.

Request Queues
In the simplest sense, a block request queue is exactly that: a queue of block I/O
requests. If you look under the hood, a request queue turns out to be a surprisingly
complex data structure. Fortunately, drivers need not worry about most of that
complexity.

Request queues keep track of outstanding block I/O requests. But they also play a
crucial role in the creation of those requests. The request queue stores parameters
that describe what kinds of requests the device is able to service: their maximum size,
how many separate segments may go into a request, the hardware sector size, align-
ment requirements, etc. If your request queue is properly configured, it should never
present you with a request that your device cannot handle.

Request queues also implement a plug-in interface that allows the use of multiple I/O
schedulers (or elevators) to be used. An I/O scheduler’s job is to present I/O requests
to your driver in a way that maximizes performance. To this end, most I/O schedul-
ers accumulate a batch of requests, sort them into increasing (or decreasing) block
index order, and present the requests to the driver in that order. The disk head,
when given a sorted list of requests, works its way from one end of the disk to the
other, much like a full elevator moves in a single direction until all of its “requests”
(people waiting to get off) have been satisfied. The 2.6 kernel includes a “deadline
scheduler,” which makes an effort to ensure that every request is satisfied within a
preset maximum time, and an “anticipatory scheduler,” which actually stalls a device
briefly after a read request in anticipation that another, adjacent read will arrive
almost immediately. As of this writing, the default scheduler is the anticipatory
scheduler, which seems to give the best interactive system performance.

The I/O scheduler is also charged with merging adjacent requests. When a new I/O
request is handed to the scheduler, it searches the queue for requests involving adja-
cent sectors; if one is found and if the resulting request would not be too large, the
two requests are merged.

Request queues have a type of struct request_queue or request_queue_t. This type,
and the many functions that operate on it, are defined in <linux/blkdev.h>. If you are

,ch16.28124 Page 478 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Request Processing | 479

interested in the implementation of request queues, you can find most of the code in
drivers/block/ll_rw_block.c and elevator.c.

Queue creation and deletion

As we saw in our example code, a request queue is a dynamic data structure that
must be created by the block I/O subsystem. The function to create and initialize a
request queue is:

request_queue_t *blk_init_queue(request_fn_proc *request, spinlock_t *lock);

The arguments are, of course, the request function for this queue and a spinlock that
controls access to the queue. This function allocates memory (quite a bit of memory,
actually) and can fail because of this; you should always check the return value
before attempting to use the queue.

As part of the initialization of a request queue, you can set the field queuedata (which
is a void * pointer) to any value you like. This field is the request queue’s equivalent
to the private_data we have seen in other structures.

To return a request queue to the system (at module unload time, generally), call
blk_cleanup_queue:

void blk_cleanup_queue(request_queue_t *);

After this call, your driver sees no more requests from the given queue and should
not reference it again.

Queueing functions

There is a very small set of functions for the manipulation of requests on queues—at
least, as far as drivers are concerned. You must hold the queue lock before you call
these functions.

The function that returns the next request to process is elv_next_request:

struct request *elv_next_request(request_queue_t *queue);

We have already seen this function in the simple sbull example. It returns a pointer
to the next request to process (as determined by the I/O scheduler) or NULL if no
more requests remain to be processed. elv_next_request leaves the request on the
queue but marks it as being active; this mark prevents the I/O scheduler from
attempting to merge other requests with this one once you start to execute it.

To actually remove a request from a queue, use blkdev_dequeue_request:

void blkdev_dequeue_request(struct request *req);

If your driver operates on multiple requests from the same queue simultaneously, it
must dequeue them in this manner.

,ch16.28124 Page 479 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

480 | Chapter 16: Block Drivers

Should you need to put a dequeued request back on the queue for some reason, you
can call:

void elv_requeue_request(request_queue_t *queue, struct request *req);

Queue control functions

The block layer exports a set of functions that can be used by a driver to control how
a request queue operates. These functions include:

void blk_stop_queue(request_queue_t *queue);
void blk_start_queue(request_queue_t *queue);

If your device has reached a state where it can handle no more outstanding com-
mands, you can call blk_stop_queue to tell the block layer. After this call, your
request function will not be called until you call blk_start_queue. Needless to say,
you should not forget to restart the queue when your device can handle more
requests. The queue lock must be held when calling either of these functions.

void blk_queue_bounce_limit(request_queue_t *queue, u64 dma_addr);
Function that tells the kernel the highest physical address to which your device
can perform DMA. If a request comes in containing a reference to memory above
the limit, a bounce buffer will be used for the operation; this is, of course, an
expensive way to perform block I/O and should be avoided whenever possible.
You can provide any reasonable physical address in this argument, or make use
of the predefined symbols BLK_BOUNCE_HIGH (use bounce buffers for high-mem-
ory pages), BLK_BOUNCE_ISA (the driver can DMA only into the 16-MB ISA zone),
or BLK_BOUNCE_ANY (the driver can perform DMA to any address). The default
value is BLK_BOUNCE_HIGH.

void blk_queue_max_sectors(request_queue_t *queue, unsigned short max);
void blk_queue_max_phys_segments(request_queue_t *queue, unsigned short max);
void blk_queue_max_hw_segments(request_queue_t *queue, unsigned short max);
void blk_queue_max_segment_size(request_queue_t *queue, unsigned int max);

Functions that set parameters describing the requests that can be satisfied by this
device. blk_queue_max_sectors can be used to set the maximum size of any
request in (512-byte) sectors; the default is 255. blk_queue_max_phys_segments
and blk_queue_max_hw_segments both control how many physical segments
(nonadjacent areas in system memory) may be contained within a single request.
Use blk_queue_max_phys_segments to say how many segments your driver is
prepared to cope with; this may be the size of a staticly allocated scatterlist, for
example. blk_queue_max_hw_segments, in contrast, is the maximum number of
segments that the device itself can handle. Both of these parameters default to
128. Finally, blk_queue_max_segment_size tells the kernel how large any individ-
ual segment of a request can be in bytes; the default is 65,536 bytes.

,ch16.28124 Page 480 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Request Processing | 481

blk_queue_segment_boundary(request_queue_t *queue, unsigned long mask);
Some devices cannot handle requests that cross a particular size memory bound-
ary; if your device is one of those, use this function to tell the kernel about that
boundary. For example, if your device has trouble with requests that cross a 4-
MB boundary, pass in a mask of 0x3fffff. The default mask is 0xffffffff.

void blk_queue_dma_alignment(request_queue_t *queue, int mask);
Function that tells the kernel about the memory alignment constraints your
device imposes on DMA transfers. All requests are created with the given align-
ment, and the length of the request also matches the alignment. The default
mask is 0x1ff, which causes all requests to be aligned on 512-byte boundaries.

void blk_queue_hardsect_size(request_queue_t *queue, unsigned short max);
Tells the kernel about your device’s hardware sector size. All requests generated
by the kernel are a multiple of this size and are properly aligned. All communica-
tions between the block layer and the driver continues to be expressed in 512-
byte sectors, however.

The Anatomy of a Request
In our simple example, we encountered the request structure. However, we have
barely scratched the surface of that complicated data structure. In this section, we
look, in some detail, at how block I/O requests are represented in the Linux kernel.

Each request structure represents one block I/O request, although it may have been
formed through a merger of several independent requests at a higher level. The sec-
tors to be transferred for any particular request may be distributed throughout main
memory, although they always correspond to a set of consecutive sectors on the
block device. The request is represented as a set of segments, each of which corre-
sponds to one in-memory buffer. The kernel may join multiple requests that involve
adjacent sectors on the disk, but it never combines read and write operations within
a single request structure. The kernel also makes sure not to combine requests if the
result would violate any of the request queue limits described in the previous section.

A request structure is implemented, essentially, as a linked list of bio structures com-
bined with some housekeeping information to enable the driver to keep track of its
position as it works through the request. The bio structure is a low-level description
of a portion of a block I/O request; we take a look at it now.

The bio structure

When the kernel, in the form of a filesystem, the virtual memory subsystem, or a sys-
tem call, decides that a set of blocks must be transferred to or from a block I/O
device; it puts together a bio structure to describe that operation. That structure is
then handed to the block I/O code, which merges it into an existing request struc-
ture or, if need be, creates a new one. The bio structure contains everything that a

,ch16.28124 Page 481 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

482 | Chapter 16: Block Drivers

block driver needs to carry out the request without reference to the user-space pro-
cess that caused that request to be initiated.

The bio structure, which is defined in <linux/bio.h>, contains a number of fields that
may be of use to driver authors:

sector_t bi_sector;
The first (512-byte) sector to be transferred for this bio.

unsigned int bi_size;
The size of the data to be transferred, in bytes. Instead, it is often easier to use
bio_sectors(bio), a macro that gives the size in sectors.

unsigned long bi_flags;
A set of flags describing the bio; the least significant bit is set if this is a write
request (although the macro bio_data_dir(bio) should be used instead of look-
ing at the flags directly).

unsigned short bio_phys_segments;
unsigned short bio_hw_segments;

The number of physical segments contained within this BIO and the number of
segments seen by the hardware after DMA mapping is done, respectively.

The core of a bio, however, is an array called bi_io_vec, which is made up of the fol-
lowing structure:

struct bio_vec {
 struct page *bv_page;
 unsigned int bv_len;
 unsigned int bv_offset;
};

Figure 16-1 shows how these structures all tie together. As you can see, by the time a
block I/O request is turned into a bio structure, it has been broken down into indi-
vidual pages of physical memory. All a driver needs to do is to step through this array
of structures (there are bi_vcnt of them), and transfer data within each page (but
only len bytes starting at offset).

Figure 16-1. The bio structure

struct bio_vec

struct bio_vec

bv_page

bv_page

struct bio_vec

bv_page

struct bio

bi_next
bi_io_vec

struct bio

bi_next
bi_io_vec

. . . System memory map

,ch16.28124 Page 482 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Request Processing | 483

Working directly with the bi_io_vec array is discouraged in the interest of kernel
developers being able to change the bio structure in the future without breaking
things. To that end, a set of macros has been provided to ease the process of work-
ing with the bio structure. The place to start is with bio_for_each_segment, which
simply loops through every unprocessed entry in the bi_io_vec array. This macro
should be used as follows:

int segno;
struct bio_vec *bvec;

bio_for_each_segment(bvec, bio, segno) {
 /* Do something with this segment
}

Within this loop, bvec points to the current bio_vec entry, and segno is the current
segment number. These values can be used to set up DMA transfers (an alternative
way using blk_rq_map_sg is described in the section “Block requests and DMA”). If
you need to access the pages directly, you should first ensure that a proper kernel vir-
tual address exists; to that end, you can use:

char *__bio_kmap_atomic(struct bio *bio, int i, enum km_type type);
void __bio_kunmap_atomic(char *buffer, enum km_type type);

This low-level function allows you to directly map the buffer found in a given bio_vec,
as indicated by the index i. An atomic kmap is created; the caller must provide the
appropriate slot to use (as described in the section “The Memory Map and Struct
Page” in Chapter 15).

The block layer also maintains a set of pointers within the bio structure to keep track
of the current state of request processing. Several macros exist to provide access to
that state:

struct page *bio_page(struct bio *bio);
Returns a pointer to the page structure representing the page to be transferred
next.

int bio_offset(struct bio *bio);
Returns the offset within the page for the data to be transferred.

int bio_cur_sectors(struct bio *bio);
Returns the number of sectors to be transferred out of the current page.

char *bio_data(struct bio *bio);
Returns a kernel logical address pointing to the data to be transferred. Note that
this address is available only if the page in question is not located in high mem-
ory; calling it in other situations is a bug. By default, the block subsystem does
not pass high-memory buffers to your driver, but if you have changed that set-
ting with blk_queue_bounce_limit, you probably should not be using bio_data.

,ch16.28124 Page 483 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

484 | Chapter 16: Block Drivers

char *bio_kmap_irq(struct bio *bio, unsigned long *flags);
void bio_kunmap_irq(char *buffer, unsigned long *flags);

bio_kmap_irq returns a kernel virtual address for any buffer, regardless of
whether it resides in high or low memory. An atomic kmap is used, so your
driver cannot sleep while this mapping is active. Use bio_kunmap_irq to unmap
the buffer. Note that the flags argument is passed by pointer here. Note also
that since an atomic kmap is used, you cannot map more than one segment at a
time.

All of the functions just described access the “current” buffer—the first buffer that,
as far as the kernel knows, has not been transferred. Drivers often want to work
through several buffers in the bio before signaling completion on any of them (with
end_that_request_first, to be described shortly), so these functions are often not use-
ful. Several other macros exist for working with the internals of the bio structure (see
<linux/bio.h> for details).

Request structure fields

Now that we have an idea of how the bio structure works, we can get deep into
struct request and see how request processing works. The fields of this structure
include:

sector_t hard_sector;
unsigned long hard_nr_sectors;
unsigned int hard_cur_sectors;

Fields that track the sectors that the driver has yet to complete. The first sector
that has not been transferred is stored in hard_sector, the total number of sec-
tors yet to transfer is in hard_nr_sectors, and the number of sectors remaining in
the current bio is hard_cur_sectors. These fields are intended for use only within
the block subsystem; drivers should not make use of them.

struct bio *bio;
bio is the linked list of bio structures for this request. You should not access this
field directly; use rq_for_each_bio (described later) instead.

char *buffer;
The simple driver example earlier in this chapter used this field to find the buffer
for the transfer. With our deeper understanding, we can now see that this field is
simply the result of calling bio_data on the current bio.

unsigned short nr_phys_segments;
The number of distinct segments occupied by this request in physical memory
after adjacent pages have been merged.

struct list_head queuelist;
The linked-list structure (as described in the section “Linked Lists” in
Chapter 11) that links the request into the request queue. If (and only if) you

,ch16.28124 Page 484 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Request Processing | 485

remove the request from the queue with blkdev_dequeue_request, you may use
this list head to track the request in an internal list maintained by your driver.

Figure 16-2 shows how the request structure and its component bio structures fit
together. In the figure, the request has been partially satisfied; the cbio and buffer
fields point to the first bio that has not yet been transferred.

There are many other fields inside the request structure, but the list in this section
should be enough for most driver writers.

Barrier requests

The block layer reorders requests before your driver sees them to improve I/O perfor-
mance. Your driver, too, can reorder requests if there is a reason to do so. Often, this
reordering happens by passing multiple requests to the drive and letting the hard-
ware figure out the optimal ordering. There is a problem with unrestricted reorder-
ing of requests, however: some applications require guarantees that certain
operations will complete before others are started. Relational database managers, for
example, must be absolutely sure that their journaling information has been flushed
to the drive before executing a transaction on the database contents. Journaling file-
systems, which are now in use on most Linux systems, have very similar ordering
constraints. If the wrong operations are reordered, the result can be severe, undetec-
ted data corruption.

The 2.6 block layer addresses this problem with the concept of a barrier request. If a
request is marked with the REQ_HARDBARRER flag, it must be written to the drive before
any following request is initiated. By “written to the drive,” we mean that the data
must actually reside and be persistent on the physical media. Many drives perform
caching of write requests; this caching improves performance, but it can defeat the pur-
pose of barrier requests. If a power failure occurs when the critical data is still sitting in

Figure 16-2. A request queue with a partially processed request

bio
bi_io_vec

bi_next

Memory

bio
bi_io_vec

bi_next

bio
bi_io_vec

bi_next
struct request

queuelist

struct request

queuelist

bio
cbio
buffer

struct request

queuelist

,ch16.28124 Page 485 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

486 | Chapter 16: Block Drivers

the drive’s cache, that data is still lost even if the drive has reported completion. So a
driver that implements barrier requests must take steps to force the drive to actually
write the data to the media.

If your driver honors barrier requests, the first step is to inform the block layer of this
fact. Barrier handling is another of the request queues; it is set with:

void blk_queue_ordered(request_queue_t *queue, int flag);

To indicate that your driver implements barrier requests, set the flag parameter to a
nonzero value.

The actual implementation of barrier requests is simply a matter of testing for the
associated flag in the request structure. A macro has been provided to perform this
test:

int blk_barrier_rq(struct request *req);

If this macro returns a nonzero value, the request is a barrier request. Depending on
how your hardware works, you may have to stop taking requests from the queue
until the barrier request has been completed. Other drives can understand barrier
requests themselves; in this case, all your driver has to do is to issue the proper oper-
ations for those drives.

Nonretryable requests

Block drivers often attempt to retry requests that fail the first time. This behavior can
lead to a more reliable system and help to avoid data loss. The kernel, however,
sometimes marks requests as not being retryable. Such requests should simply fail as
quickly as possible if they cannot be executed on the first try.

If your driver is considering retrying a failed request, it should first make a call to:

int blk_noretry_request(struct request *req);

If this macro returns a nonzero value, your driver should simply abort the request
with an error code instead of retrying it.

Request Completion Functions
There are, as we will see, several different ways of working through a request struc-
ture. All of them make use of a couple of common functions, however, which han-
dle the completion of an I/O request or parts of a request. Both of these functions are
atomic and can be safely called from an atomic context.

When your device has completed transferring some or all of the sectors in an I/O
request, it must inform the block subsystem with:

int end_that_request_first(struct request *req, int success, int count);

This function tells the block code that your driver has finished with the transfer of
count sectors starting where you last left off. If the I/O was successful, pass success

,ch16.28124 Page 486 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Request Processing | 487

as 1; otherwise pass 0. Note that you must signal completion in order from the first
sector to the last; if your driver and device somehow conspire to complete requests
out of order, you have to store the out-of-order completion status until the interven-
ing sectors have been transferred.

The return value from end_that_request_first is an indication of whether all sectors in
this request have been transferred or not. A return value of 0 means that all sectors
have been transferred and that the request is complete. At that point, you must
dequeue the request with blkdev_dequeue_request (if you have not already done so)
and pass it to:

void end_that_request_last(struct request *req);

end_that_request_last informs whoever is waiting for the request that it has com-
pleted and recycles the request structure; it must be called with the queue lock held.

In our simple sbull example, we didn’t use any of the above functions. That exam-
ple, instead, is called end_request. To show the effects of this call, here is the entire
end_request function as seen in the 2.6.10 kernel:

void end_request(struct request *req, int uptodate)
{
 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
 add_disk_randomness(req->rq_disk);
 blkdev_dequeue_request(req);
 end_that_request_last(req);
 }
}

The function add_disk_randomness uses the timing of block I/O requests to contrib-
ute entropy to the system’s random number pool; it should be called only if the disk’s
timing is truly random. That is true for most mechanical devices, but it is not true for
a memory-based virtual device, such as sbull. For this reason, the more complicated
version of sbull shown in the next section does not call add_disk_randomness.

Working with bios

You now know enough to write a block driver that works directly with the bio struc-
tures that make up a request. An example might help, however. If the sbull driver is
loaded with the request_mode parameter set to 1, it registers a bio-aware request func-
tion instead of the simple function we saw above. That function looks like this:

static void sbull_full_request(request_queue_t *q)
{
 struct request *req;
 int sectors_xferred;
 struct sbull_dev *dev = q->queuedata;

 while ((req = elv_next_request(q)) != NULL) {
 if (! blk_fs_request(req)) {
 printk (KERN_NOTICE "Skip non-fs request\n");

,ch16.28124 Page 487 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

488 | Chapter 16: Block Drivers

 end_request(req, 0);
 continue;
 }
 sectors_xferred = sbull_xfer_request(dev, req);
 if (! end_that_request_first(req, 1, sectors_xferred)) {
 blkdev_dequeue_request(req);
 end_that_request_last(req);
 }
 }
}

This function simply takes each request, passes it to sbull_xfer_request, then com-
pletes it with end_that_request_first and, if necessary, end_that_request_last. Thus,
this function is handling the high-level queue and request management parts of the
problem. The job of actually executing a request, however, falls to sbull_xfer_request:

static int sbull_xfer_request(struct sbull_dev *dev, struct request *req)
{
 struct bio *bio;
 int nsect = 0;

 rq_for_each_bio(bio, req) {
 sbull_xfer_bio(dev, bio);
 nsect += bio->bi_size/KERNEL_SECTOR_SIZE;
 }
 return nsect;
}

Here we introduce another macro: rq_for_each_bio. As you might expect, this macro
simply steps through each bio structure in the request, giving us a pointer that we
can pass to sbull_xfer_bio for the transfer. That function looks like:

static int sbull_xfer_bio(struct sbull_dev *dev, struct bio *bio)
{
 int i;
 struct bio_vec *bvec;
 sector_t sector = bio->bi_sector;

 /* Do each segment independently. */
 bio_for_each_segment(bvec, bio, i) {
 char *buffer = __bio_kmap_atomic(bio, i, KM_USER0);
 sbull_transfer(dev, sector, bio_cur_sectors(bio),
 buffer, bio_data_dir(bio) = = WRITE);
 sector += bio_cur_sectors(bio);
 __bio_kunmap_atomic(bio, KM_USER0);
 }
 return 0; /* Always "succeed" */
}

This function simply steps through each segment in the bio structure, gets a kernel
virtual address to access the buffer, then calls the same sbull_transfer function we
saw earlier to copy the data over.

,ch16.28124 Page 488 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Request Processing | 489

Each device has its own needs, but, as a general rule, the code just shown should
serve as a model for many situations where digging through the bio structures is
needed.

Block requests and DMA

If you are working on a high-performance block driver, chances are you will be using
DMA for the actual data transfers. A block driver can certainly step through the bio
structures, as described above, create a DMA mapping for each one, and pass the result
to the device. There is an easier way, however, if your device can do scatter/gather I/O.
The function:

int blk_rq_map_sg(request_queue_t *queue, struct request *req,
 struct scatterlist *list);

fills in the given list with the full set of segments from the given request. Segments
that are adjacent in memory are coalesced prior to insertion into the scatterlist, so
you need not try to detect them yourself. The return value is the number of entries in
the list. The function also passes back, in its third argument, a scatterlist suitable for
passing to dma_map_sg. (See the section “Scatter-gather mappings” in Chapter 15
for more information on dma_map_sg.)

Your driver must allocate the storage for the scatterlist before calling blk_rq_map_sg.
The list must be able to hold at least as many entries as the request has physical seg-
ments; the struct request field nr_phys_segments holds that count, which will not
exceed the maximum number of physical segments specified with blk_queue_max_
phys_segments.

If you do not want blk_rq_map_sg to coalesce adjacent segments, you can change the
default behavior with a call such as:

clear_bit(QUEUE_FLAG_CLUSTER, &queue->queue_flags);

Some SCSI disk drivers mark their request queue in this way, since they do not bene-
fit from the coalescing of requests.

Doing without a request queue

Previously, we have discussed the work the kernel does to optimize the order of
requests in the queue; this work involves sorting requests and, perhaps, even stalling
the queue to allow an anticipated request to arrive. These techniques help the sys-
tem’s performance when dealing with a real, spinning disk drive. They are com-
pletely wasted, however, with a device like sbull. Many block-oriented devices, such
as flash memory arrays, readers for media cards used in digital cameras, and RAM
disks have truly random-access performance and do not benefit from advanced-
request queueing logic. Other devices, such as software RAID arrays or virtual disks
created by logical volume managers, do not have the performance characteristics for
which the block layer’s request queues are optimized. For this kind of device, it

,ch16.28124 Page 489 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

490 | Chapter 16: Block Drivers

would be better to accept requests directly from the block layer and not bother with
the request queue at all.

For these situations, the block layer supports a “no queue” mode of operation. To
make use of this mode, your driver must provide a “make request” function, rather
than a request function. The make_request function has this prototype:

typedef int (make_request_fn) (request_queue_t *q, struct bio *bio);

Note that a request queue is still present, even though it will never actually hold any
requests. The make_request function takes as its main parameter a bio structure,
which represents one or more buffers to be transferred. The make_request function
can do one of two things: it can either perform the transfer directly, or it can redirect
the request to another device.

Performing the transfer directly is just a matter of working through the bio with the
accessor methods we described earlier. Since there is no request structure to work
with, however, your function should signal completion directly to the creator of the
bio structure with a call to bio_endio:

void bio_endio(struct bio *bio, unsigned int bytes, int error);

Here, bytes is the number of bytes you have transferred so far. It can be less than the
number of bytes represented by the bio as a whole; in this way, you can signal par-
tial completion, and update the internal “current buffer” pointers within the bio.
You should either call bio_endio again as your device makes further process, or sig-
nal an error if you are unable to complete the request. Errors are indicated by provid-
ing a nonzero value for the error parameter; this value is normally an error code such
as -EIO. The make_request should return 0, regardless of whether the I/O is successful.

If sbull is loaded with request_mode=2, it operates with a make_request function.
Since sbull already has a function that can transfer a single bio, the make_request
function is simple:

static int sbull_make_request(request_queue_t *q, struct bio *bio)
{
 struct sbull_dev *dev = q->queuedata;
 int status;

 status = sbull_xfer_bio(dev, bio);
 bio_endio(bio, bio->bi_size, status);
 return 0;
}

Please note that you should never call bio_endio from a regular request function; that
job is handled by end_that_request_first instead.

Some block drivers, such as those implementing volume managers and software
RAID arrays, really need to redirect the request to another device that handles the
actual I/O. Writing such a driver is beyond the scope of this book. We note, how-
ever, that if the make_request function returns a nonzero value, the bio is submitted

,ch16.28124 Page 490 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Some Other Details | 491

again. A “stacking” driver can, therefore, modify the bi_bdev field to point to a differ-
ent device, change the starting sector value, then return; the block system then
passes the bio to the new device. There is also a bio_split call that can be used to split
a bio into multiple chunks for submission to more than one device. Although if the
queue parameters are set up correctly, splitting a bio in this way should almost never
be necessary.

Either way, you must tell the block subsystem that your driver is using a custom
make_request function. To do so, you must allocate a request queue with:

request_queue_t *blk_alloc_queue(int flags);

This function differs from blk_init_queue in that it does not actually set up the queue
to hold requests. The flags argument is a set of allocation flags to be used in allocat-
ing memory for the queue; usually the right value is GFP_KERNEL. Once you have a
queue, pass it and your make_request function to blk_queue_make_request:

void blk_queue_make_request(request_queue_t *queue, make_request_fn *func);

The sbull code to set up the make_request function looks like:

dev->queue = blk_alloc_queue(GFP_KERNEL);
if (dev->queue = = NULL)
 goto out_vfree;
blk_queue_make_request(dev->queue, sbull_make_request);

For the curious, some time spent digging through drivers/block/ll_rw_block.c shows
that all queues have a make_request function. The default version, generic_make_
request, handles the incorporation of the bio into a request structure. By providing a
make_request function of its own, a driver is really just overriding a specific request
queue method and sorting out much of the work.

Some Other Details
This section covers a few other aspects of the block layer that may be of interest for
advanced drivers. None of the following facilities need to be used to write a correct
driver, but they may be helpful in some situations.

Command Pre-Preparation
The block layer provides a mechanism for drivers to examine and preprocess
requests before they are returned from elv_next_request. This mechanism allows
drivers to set up the actual drive commands ahead of time, decide whether the
request can be handled at all, or perform other sorts of housekeeping.

If you want to use this feature, create a command preparation function that fits this
prototype:

typedef int (prep_rq_fn) (request_queue_t *queue, struct request *req);

,ch16.28124 Page 491 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

492 | Chapter 16: Block Drivers

The request structure includes a field called cmd, which is an array of BLK_MAX_CDB
bytes; this array may be used by the preparation function to store the actual hard-
ware command (or any other useful information). This function should return one of
the following values:

BLKPREP_OK
Command preparation went normally, and the request can be handed to your
driver’s request function.

BLKPREP_KILL
This request cannot be completed; it is failed with an error code.

BLKPREP_DEFER
This request cannot be completed at this time. It stays at the front of the queue
but is not handed to the request function.

The preparation function is called by elv_next_request immediately before the
request is returned to your driver. If this function returns BLKPREP_DEFER, the return
value from elv_next_request to your driver is NULL. This mode of operation can be
useful if, for example, your device has reached the maximum number of requests it
can have outstanding.

To have the block layer call your preparation function, pass it to:

void blk_queue_prep_rq(request_queue_t *queue, prep_rq_fn *func);

By default, request queues have no preparation function.

Tagged Command Queueing
Hardware that can have multiple requests active at once usually supports some form
of tagged command queueing (TCQ). TCQ is simply the technique of attaching an
integer “tag” to each request so that when the drive completes one of those requests,
it can tell the driver which one. In previous versions of the kernel, block drivers that
implemented TCQ had to do all of the work themselves; in 2.6, a TCQ support
infrastructure has been added to the block layer for all drivers to use.

If your drive performs tagged command queueing, you should inform the kernel of
that fact at initialization time with a call to:

int blk_queue_init_tags(request_queue_t *queue, int depth,
 struct blk_queue_tag *tags);

Here, queue is your request queue, and depth is the number of tagged requests your
device can have outstanding at any given time. tags is an optional pointer to an array of
struct blk_queue_tag structures; there must be depth of them. Normally, tags can be
passed as NULL, and blk_queue_init_tags allocates the array. If, however, you need to
share the same tags between multiple devices, you can pass the tags array pointer
(stored in the queue_tags field) from another request queue. You should never actually

,ch16.28124 Page 492 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Some Other Details | 493

allocate the tags array yourself; the block layer needs to initialize the array and does
not export the initialization function to modules.

Since blk_queue_init_tags allocates memory, it can fail; it returns a negative error
code to the caller in that case.

If the number of tags your device can handle changes, you can inform the kernel
with:

int blk_queue_resize_tags(request_queue_t *queue, int new_depth);

The queue lock must be held during the call. This call can fail, returning a negative
error code in that case.

The association of a tag with a request structure is done with blk_queue_start_tag,
which must be called with the queue lock held:

int blk_queue_start_tag(request_queue_t *queue, struct request *req);

If a tag is available, this function allocates it for this request, stores the tag number in
req->tag, and returns 0. It also dequeues the request from the queue and links it into
its own tag-tracking structure, so your driver should take care not to dequeue the
request itself if it’s using tags. If no more tags are available, blk_queue_start_tag
leaves the request on the queue and returns a nonzero value.

When all transfers for a given request have been completed, your driver should
return the tag with:

void blk_queue_end_tag(request_queue_t *queue, struct request *req);

Once again, you must hold the queue lock before calling this function. The call
should be made after end_that_request_first returns 0 (meaning that the request is
complete) but before calling end_that_request_last. Remember that the request is
already dequeued, so it would be a mistake for your driver to do so at this point.

If you need to find the request associated with a given tag (when the drive reports
completion, for example), use blk_queue_find_tag:

struct request *blk_queue_find_tag(request_queue_t *qeue, int tag);

The return value is the associated request structure, unless something has gone truly
wrong.

If things really do go wrong, your driver may find itself having to reset or perform
some other act of violence against one of its devices. In that case, any outstanding
tagged commands will not be completed. The block layer provides a function that
can help with the recovery effort in such situations:

void blk_queue_invalidate_tags(request_queue_t *queue);

This function returns all outstanding tags to the pool and puts the associated
requests back into the request queue. The queue lock must be held when you call
this function.

,ch16.28124 Page 493 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

494 | Chapter 16: Block Drivers

Quick Reference
#include <linux/fs.h>
int register_blkdev(unsigned int major, const char *name);
int unregister_blkdev(unsigned int major, const char *name);

register_blkdev registers a block driver with the kernel and, optionally, obtains a
major number. A driver can be unregistered with unregister_blkdev.

struct block_device_operations
Structure that holds most of the methods for block drivers.

#include <linux/genhd.h>
struct gendisk;

Structure that describes a single block device within the kernel.

struct gendisk *alloc_disk(int minors);
void add_disk(struct gendisk *gd);

Functions that allocate gendisk structures and return them to the system.

void set_capacity(struct gendisk *gd, sector_t sectors);
Stores the capacity of the device (in 512-byte sectors) within the gendisk structure.

void add_disk(struct gendisk *gd);
Adds a disk to the kernel. As soon as this function is called, your disk’s methods
can be invoked by the kernel.

int check_disk_change(struct block_device *bdev);
A kernel function that checks for a media change in the given disk drive and
takes the required cleanup action when such a change is detected.

#include <linux/blkdev.h>
request_queue_t blk_init_queue(request_fn_proc *request, spinlock_t *lock);
void blk_cleanup_queue(request_queue_t *);

Functions that handle the creation and deletion of block request queues.

struct request *elv_next_request(request_queue_t *queue);
void end_request(struct request *req, int success);

elv_next_request obtains the next request from a request queue; end_request may
be used in very simple drivers to mark the completion of (or part of) a request.

void blkdev_dequeue_request(struct request *req);
void elv_requeue_request(request_queue_t *queue, struct request *req);

Functions that remove a request from a queue and put it back on if necessary.

void blk_stop_queue(request_queue_t *queue);
void blk_start_queue(request_queue_t *queue);

If you need to prevent further calls to your request method, a call to blk_stop_queue
does the trick. A call to blk_start_queue is necessary to cause your request method
to be invoked again.

,ch16.28124 Page 494 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Quick Reference | 495

void blk_queue_bounce_limit(request_queue_t *queue, u64 dma_addr);
void blk_queue_max_sectors(request_queue_t *queue, unsigned short max);
void blk_queue_max_phys_segments(request_queue_t *queue, unsigned short max);
void blk_queue_max_hw_segments(request_queue_t *queue, unsigned short max);
void blk_queue_max_segment_size(request_queue_t *queue, unsigned int max);
blk_queue_segment_boundary(request_queue_t *queue, unsigned long mask);
void blk_queue_dma_alignment(request_queue_t *queue, int mask);
void blk_queue_hardsect_size(request_queue_t *queue, unsigned short max);

Functions that set various queue parameters that control how requests are cre-
ated for a particular device; the parameters are described in the section “Queue
control functions.”

#include <linux/bio.h>
struct bio;

Low-level structure representing a portion of a block I/O request.

bio_sectors(struct bio *bio);
bio_data_dir(struct bio *bio);

Two macros that yield the size and direction of a transfer described by a bio
structure.

bio_for_each_segment(bvec, bio, segno);
A pseudocontrol structure used to loop through the segments that make up a bio
structure.

char *__bio_kmap_atomic(struct bio *bio, int i, enum km_type type);
void __bio_kunmap_atomic(char *buffer, enum km_type type);

__bio_kmap_atomic may be used to create a kernel virtual address for a given
segment within a bio structure. The mapping must be undone with __bio_
kunmap_atomic.

struct page *bio_page(struct bio *bio);
int bio_offset(struct bio *bio);
int bio_cur_sectors(struct bio *bio);
char *bio_data(struct bio *bio);
char *bio_kmap_irq(struct bio *bio, unsigned long *flags);
void bio_kunmap_irq(char *buffer, unsigned long *flags);

A set of accessor macros that provide access to the “current” segment within a
bio structure.

void blk_queue_ordered(request_queue_t *queue, int flag);
int blk_barrier_rq(struct request *req);

Call blk_queue_ordered if your driver implements barrier requests—as it should.
The macro blk_barrier_rq returns a nonzero value if the current request is a bar-
rier request.

,ch16.28124 Page 495 Friday, January 21, 2005 9:09 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

496 | Chapter 16: Block Drivers

int blk_noretry_request(struct request *req);
This macro returns a nonzero value if the given request should not be retried on
errors.

int end_that_request_first(struct request *req, int success, int count);
void end_that_request_last(struct request *req);

Use end_that_request_first to indicate completion of a portion of a block I/O
request. When that function returns 0, the request is complete and should be
passed to end_that_request_last.

rq_for_each_bio(bio, request)
Another macro-implemented control structure; it steps through each bio that
makes up a request.

int blk_rq_map_sg(request_queue_t *queue, struct request *req, struct
 scatterlist *list);

Fills the given scatterlist with the information needed to map the buffers in the
given request for a DMA transfer.

typedef int (make_request_fn) (request_queue_t *q, struct bio *bio);
The prototype for the make_request function.

void bio_endio(struct bio *bio, unsigned int bytes, int error);
Signal completion for a given bio. This function should be used only if your
driver obtained the bio directly from the block layer via the make_request function.

request_queue_t *blk_alloc_queue(int flags);
void blk_queue_make_request(request_queue_t *queue, make_request_fn *func);

Use blk_alloc_queue to allocate a request queue that is used with a custom
make_request function. That function should be set with blk_queue_make_
request.

typedef int (prep_rq_fn) (request_queue_t *queue, struct request *req);
void blk_queue_prep_rq(request_queue_t *queue, prep_rq_fn *func);

The prototype and setup functions for a command preparation function, which
can be used to prepare the necessary hardware command before the request is
passed to your request function.

int blk_queue_init_tags(request_queue_t *queue, int depth, struct
 blk_queue_tag *tags);
int blk_queue_resize_tags(request_queue_t *queue, int new_depth);
int blk_queue_start_tag(request_queue_t *queue, struct request *req);
void blk_queue_end_tag(request_queue_t *queue, struct request *req);
struct request *blk_queue_find_tag(request_queue_t *qeue, int tag);
void blk_queue_invalidate_tags(request_queue_t *queue);

Support functions for drivers using tagged command queueing.

,ch16.28124 Page 496 Friday, January 21, 2005 9:09 AM

