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CHAPTER 15

Memory Mapping
and DMA

This chapter delves into the area of Linux memory management, with an emphasis
on techniques that are useful to the device driver writer. Many types of driver pro-
gramming require some understanding of how the virtual memory subsystem works;
the material we cover in this chapter comes in handy more than once as we get into
some of the more complex and performance-critical subsystems. The virtual mem-
ory subsystem is also a highly interesting part of the core Linux kernel and, there-
fore, it merits a look.

The material in this chapter is divided into three sections:

* The first covers the implementation of the mmap system call, which allows the
mapping of device memory directly into a user process’s address space. Not all
devices require mmap support, but, for some, mapping device memory can yield
significant performance improvements.

* We then look at crossing the boundary from the other direction with a discus-
sion of direct access to user-space pages. Relatively few drivers need this capabil-
ity; in many cases, the kernel performs this sort of mapping without the driver
even being aware of it. But an awareness of how to map user-space memory into
the kernel (with get_user_pages) can be useful.

* The final section covers direct memory access (DMA) I/O operations, which pro-
vide peripherals with direct access to system memory.

Of course, all of these techniques require an understanding of how Linux memory
management works, so we start with an overview of that subsystem.

Memory Management in Linux

Rather than describing the theory of memory management in operating systems, this
section tries to pinpoint the main features of the Linux implementation. Although
you do not need to be a Linux virtual memory guru to implement mmap, a basic
overview of how things work is useful. What follows is a fairly lengthy description of
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the data structures used by the kernel to manage memory. Once the necessary back-
ground has been covered, we can get into working with these structures.

Address Types

Linux is, of course, a virtual memory system, meaning that the addresses seen by
user programs do not directly correspond to the physical addresses used by the hard-
ware. Virtual memory introduces a layer of indirection that allows a number of nice
things. With virtual memory, programs running on the system can allocate far more
memory than is physically available; indeed, even a single process can have a virtual
address space larger than the system’s physical memory. Virtual memory also allows
the program to play a number of tricks with the process’s address space, including
mapping the program’s memory to device memory.

Thus far, we have talked about virtual and physical addresses, but a number of the
details have been glossed over. The Linux system deals with several types of
addresses, each with its own semantics. Unfortunately, the kernel code is not always
very clear on exactly which type of address is being used in each situation, so the
programmer must be careful.

The following is a list of address types used in Linux. Figure 15-1 shows how these
address types relate to physical memory.

User virtual addresses
These are the regular addresses seen by user-space programs. User addresses are
either 32 or 64 bits in length, depending on the underlying hardware architec-
ture, and each process has its own virtual address space.

Physical addresses
The addresses used between the processor and the system’s memory. Physical
addresses are 32- or 64-bit quantities; even 32-bit systems can use larger physi-
cal addresses in some situations.

Bus addresses

The addresses used between peripheral buses and memory. Often, they are the
same as the physical addresses used by the processor, but that is not necessarily
the case. Some architectures can provide an I/O memory management unit
(IOMMU) that remaps addresses between a bus and main memory. An IOMMU
can make life easier in a number of ways (making a buffer scattered in memory
appear contiguous to the device, for example), but programming the IOMMU is
an extra step that must be performed when setting up DMA operations. Bus
addresses are highly architecture dependent, of course.

Kernel logical addresses
These make up the normal address space of the kernel. These addresses map
some portion (perhaps all) of main memory and are often treated as if they were
physical addresses. On most architectures, logical addresses and their associated
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physical addresses differ only by a constant offset. Logical addresses use the
hardware’s native pointer size and, therefore, may be unable to address all of
physical memory on heavily equipped 32-bit systems. Logical addresses are usu-
ally stored in variables of type unsigned long or void *. Memory returned from
kmalloc has a kernel logical address.

Kernel virtual addresses

Kernel virtual addresses are similar to logical addresses in that they are a map-
ping from a kernel-space address to a physical address. Kernel virtual addresses
do not necessarily have the linear, one-to-one mapping to physical addresses that
characterize the logical address space, however. All logical addresses are kernel
virtual addresses, but many kernel virtual addresses are not logical addresses.
For example, memory allocated by vmalloc has a virtual address (but no direct
physical mapping). The kmap function (described later in this chapter) also
returns virtual addresses. Virtual addresses are usually stored in pointer variables.

<—I_ kernel virtual
( addresses
-
[ > high memory
user process L low memory
[— e
_I—>
1
user process ] — kernel logical
addresses
—
physical memory address space —» page mapping

Figure 15-1. Address types used in Linux

If you have a logical address, the macro __pa() (defined in <asm/page.h>) returns its
associated physical address. Physical addresses can be mapped back to logical
addresses with __va(), but only for low-memory pages.
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Different kernel functions require different types of addresses. It would be nice if
there were different C types defined, so that the required address types were explicit,
but we have no such luck. In this chapter, we try to be clear on which types of
addresses are used where.

Physical Addresses and Pages

Physical memory is divided into discrete units called pages. Much of the system’s
internal handling of memory is done on a per-page basis. Page size varies from one
architecture to the next, although most systems currently use 4096-byte pages. The
constant PAGE_SIZE (defined in <asm/page.h>) gives the page size on any given
architecture.

If you look at a memory address—uvirtual or physical—it is divisible into a page num-
ber and an offset within the page. If 4096-byte pages are being used, for example, the
12 least-significant bits are the offset, and the remaining, higher bits indicate the
page number. If you discard the offset and shift the rest of an offset to the right, the
result is called a page frame number (PFN). Shifting bits to convert between page
frame numbers and addresses is a fairly common operation; the macro PAGE_SHIFT
tells how many bits must be shifted to make this conversion.

High and Low Memory

The difference between logical and kernel virtual addresses is highlighted on 32-bit
systems that are equipped with large amounts of memory. With 32 bits, it is possible
to address 4 GB of memory. Linux on 32-bit systems has, until recently, been lim-
ited to substantially less memory than that, however, because of the way it sets up
the virtual address space.

The kernel (on the x86 architecture, in the default configuration) splits the 4-GB vir-
tual address space between user-space and the kernel; the same set of mappings is
used in both contexts. A typical split dedicates 3 GB to user space, and 1 GB for ker-
nel space.” The kernel’s code and data structures must fit into that space, but the big-
gest consumer of kernel address space is virtual mappings for physical memory. The
kernel cannot directly manipulate memory that is not mapped into the kernel’s
address space. The kernel, in other words, needs its own virtual address for any
memory it must touch directly. Thus, for many years, the maximum amount of phys-
ical memory that could be handled by the kernel was the amount that could be
mapped into the kernel’s portion of the virtual address space, minus the space

* Many non-x86 architectures are able to efficiently do without the kernel/user-space split described here, so
they can work with up to a 4-GB kernel address space on 32-bit systems. The constraints described in this
section still apply to such systems when more than 4 GB of memory are installed, however.
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*

needed for the kernel code itself. As a result, x86-based Linux systems could work
with a maximum of a little under 1 GB of physical memory.

In response to commercial pressure to support more memory while not breaking 32-
bit application and the system’s compatibility, the processor manufacturers have
added “address extension” features to their products. The result is that, in many
cases, even 32-bit processors can address more than 4 GB of physical memory. The
limitation on how much memory can be directly mapped with logical addresses
remains, however. Only the lowest portion of memory (up to 1 or 2 GB, depending
on the hardware and the kernel configuration) has logical addresses;” the rest (high
memory) does not. Before accessing a specific high-memory page, the kernel must set
up an explicit virtual mapping to make that page available in the kernel’s address
space. Thus, many kernel data structures must be placed in low memory; high mem-
ory tends to be reserved for user-space process pages.

The term “high memory” can be confusing to some, especially since it has other
meanings in the PC world. So, to make things clear, we’ll define the terms here:

Low memory
Memory for which logical addresses exist in kernel space. On almost every sys-
tem you will likely encounter, all memory is low memory.

High memory
Memory for which logical addresses do not exist, because it is beyond the
address range set aside for kernel virtual addresses.

On 1386 systems, the boundary between low and high memory is usually set at just
under 1 GB, although that boundary can be changed at kernel configuration time.
This boundary is not related in any way to the old 640 KB limit found on the origi-
nal PC, and its placement is not dictated by the hardware. It is, instead, a limit set by
the kernel itself as it splits the 32-bit address space between kernel and user space.

We will point out limitations on the use of high memory as we come to them in this
chapter.

The Memory Map and Struct Page

Historically, the kernel has used logical addresses to refer to pages of physical mem-
ory. The addition of high-memory support, however, has exposed an obvious prob-
lem with that approach—Ilogical addresses are not available for high memory.
Therefore, kernel functions that deal with memory are increasingly using pointers to
struct page (defined in <linux/mm.h>) instead. This data structure is used to keep
track of just about everything the kernel needs to know about physical memory;

* The 2.6 kernel (with an added patch) can support a “4G/4G” mode on x86 hardware, which enables larger
kernel and user virtual address spaces at a mild performance cost.
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there is one struct page for each physical page on the system. Some of the fields of
this structure include the following;:

atomic_t count;
The number of references there are to this page. When the count drops to 0, the
page is returned to the free list.

void *virtual;
The kernel virtual address of the page, if it is mapped; NULL, otherwise. Low-
memory pages are always mapped; high-memory pages usually are not. This
field does not appear on all architectures; it generally is compiled only where the
kernel virtual address of a page cannot be easily calculated. If you want to look
at this field, the proper method is to use the page_address macro, described
below.

unsigned long flags;
A set of bit flags describing the status of the page. These include PG locked,
which indicates that the page has been locked in memory, and PG reserved,
which prevents the memory management system from working with the page at
all.

There is much more information within struct page, but it is part of the deeper
black magic of memory management and is not of concern to driver writers.

The kernel maintains one or more arrays of struct page entries that track all of the
physical memory on the system. On some systems, there is a single array called mem_map.
On some systems, however, the situation is more complicated. Nonuniform memory
access (NUMA) systems and those with widely discontiguous physical memory may
have more than one memory map array, so code that is meant to be portable should
avoid direct access to the array whenever possible. Fortunately, it is usually quite easy to
just work with struct page pointers without worrying about where they come from.

Some functions and macros are defined for translating between struct page pointers
and virtual addresses:

struct page *virt to page(void *kaddr);
This macro, defined in <asm/page.h>, takes a kernel logical address and returns
its associated struct page pointer. Since it requires a logical address, it does not
work with memory from vmalloc or high memory.

struct page *pfn_to page(int pfn);
Returns the struct page pointer for the given page frame number. If necessary,
it checks a page frame number for validity with pfn_valid before passing it to
pfn_to_page.

void *page address(struct page *page);
Returns the kernel virtual address of this page, if such an address exists. For high
memory, that address exists only if the page has been mapped. This function is

Memory ManagementinLinux | 417

- ad




é ,ch15.13676 Page 418 Friday, January 21, 2005 11:04 AM

*

defined in <linux/mm.h>. In most situations, you want to use a version of kmap
rather than page_address.

#include <linux/highmem.h>

void *kmap(struct page *page);

void kunmap(struct page *page);
kmap returns a kernel virtual address for any page in the system. For low-mem-
ory pages, it just returns the logical address of the page; for high-memory pages,
kmap creates a special mapping in a dedicated part of the kernel address space.
Mappings created with kmap should always be freed with kunmap; a limited
number of such mappings is available, so it is better not to hold on to them for
too long. kmap calls maintain a counter, so if two or more functions both call
kmap on the same page, the right thing happens. Note also that kmap can sleep
if no mappings are available.

#include <linux/highmem.h>

#include <asm/kmap_types.h>

void *kmap atomic(struct page *page, enum km type type);

void kunmap atomic(void *addr, enum km_type type);
kmap_atomic is a high-performance form of kmap. Each architecture maintains a
small list of slots (dedicated page table entries) for atomic kmaps; a caller of
kmap_atomic must tell the system which of those slots to use in the type argu-
ment. The only slots that make sense for drivers are KM_USERO and KM_USER1 (for
code running directly from a call from user space), and KM_IRQ0 and KM_IRQ1 (for
interrupt handlers). Note that atomic kmaps must be handled atomically; your
code cannot sleep while holding one. Note also that nothing in the kernel keeps
two functions from trying to use the same slot and interfering with each other
(although there is a unique set of slots for each CPU). In practice, contention for
atomic kmap slots seems to not be a problem.

We see some uses of these functions when we get into the example code, later in this
chapter and in subsequent chapters.

Page Tables

On any modern system, the processor must have a mechanism for translating virtual
addresses into its corresponding physical addresses. This mechanism is called a page
table; it is essentially a multilevel tree-structured array containing virtual-to-physical
mappings and a few associated flags. The Linux kernel maintains a set of page tables
even on architectures that do not use such tables directly.

A number of operations commonly performed by device drivers can involve manipu-
lating page tables. Fortunately for the driver author, the 2.6 kernel has eliminated
any need to work with page tables directly. As a result, we do not describe them in
any detail; curious readers may want to have a look at Understanding The Linux Ker-
nel by Daniel P. Bovet and Marco Cesati (O’Reilly) for the full story.
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Virtual Memory Areas

The virtual memory area (VMA) is the kernel data structure used to manage distinct
regions of a process’s address space. A VMA represents a homogeneous region in the
virtual memory of a process: a contiguous range of virtual addresses that have the
same permission flags and are backed up by the same object (a file, say, or swap
space). It corresponds loosely to the concept of a “segment,” although it is better
described as “a memory object with its own properties.” The memory map of a pro-
cess is made up of (at least) the following areas:

* An area for the program’s executable code (often called text)

* Multiple areas for data, including initialized data (that which has an explicitly
assigned value at the beginning of execution), uninitialized data (BSS),” and the
program stack

* One area for each active memory mapping
The memory areas of a process can be seen by looking in /proc/<pid/maps> (in which
pid, of course, is replaced by a process ID). /proc/self is a special case of /proc/pid,

because it always refers to the current process. As an example, here are a couple of
memory maps (to which we have added short comments in italics):

# cat /proc/1/maps  look at init

08048000-0804€000 r-xp 00000000 03:01 64652 /sbin/init text
0804€000-08041000 TW-p 00006000 03:01 64652 /sbin/init data
08041000-08053000 rwxp 00000000 00:00 O zero-mapped BSS
40000000-40015000 r-xp 00000000 03:01 96278 /1ib/1d-2.3.2.50 text
40015000-40016000 rw-p 00014000 03:01 96278 /1ib/1d-2.3.2.s0 data
40016000-40017000 rw-p 00000000 00:00 O BSS for ld.so
42000000-4212€000 r-xp 00000000 03:01 80290 /1ib/tls/1ibc-2.3.2.50 text
4212e000-42131000 rw-p 0012€000 03:01 80290 /1ib/tls/1ibc-2.3.2.50 data
42131000-42133000 rw-p 00000000 00:00 O BSS for libc
bffff000-c0000000 rwxp 00000000 00:00 O Stack segment
ffffeo00-fffff000 ---p 00000000 00:00 O vsyscall page

# rsh wolf cat /proc/self/maps #iHH#t x86-64 (trimmed)
00400000-00405000 r-xp 00000000 03:01 1596291 /bin/cat text
00504000-00505000 rw-p 00004000 03:01 1596291 /bin/cat data
00505000-00526000 rwxp 00505000 00:00 O bss
3252200000-3252214000 r-xp 00000000 03:01 1237890 /1ib64/1d-2.3.3.s0
3252300000-3252301000 r--p 00100000 03:01 1237890 /1ib64/1d-2.3.3.s0
3252301000-3252302000 rw-p 00101000 03:01 1237890 /1ib64/1d-2.3.3.s0
7fbfffe000-7fc0000000 rw-p 7fbfffe000 00:00 0 stack
fHffHFff600000-ffffffffffe00000 ---p 00000000 00:00 O vsyscall

The fields in each line are:

start-end perm offset major:minor inode image

* The name BSS is a historical relic from an old assembly operator meaning “block started by symbol.” The
BSS segment of executable files isn’t stored on disk, and the kernel maps the zero page to the BSS address
range.
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*

.

Each field in /proc/*/maps (except the image name) corresponds to a field in struct
vm_area_struct:

start
end
The beginning and ending virtual addresses for this memory area.

perm
A bit mask with the memory area’s read, write, and execute permissions. This
field describes what the process is allowed to do with pages belonging to the
area. The last character in the field is either p for “private” or s for “shared.”

offset
Where the memory area begins in the file that it is mapped to. An offset of 0

means that the beginning of the memory area corresponds to the beginning of
the file.

major

minor
The major and minor numbers of the device holding the file that has been
mapped. Confusingly, for device mappings, the major and minor numbers refer
to the disk partition holding the device special file that was opened by the user,
and not the device itself.

inode
The inode number of the mapped file.
image
The name of the file (usually an executable image) that has been mapped.

The vm_area_struct structure

When a user-space process calls mmap to map device memory into its address space,
the system responds by creating a new VMA to represent that mapping. A driver that
supports mmap (and, thus, that implements the mmap method) needs to help that
process by completing the initialization of that VMA. The driver writer should, there-
fore, have at least a minimal understanding of VMAs in order to support mmap.

Let’s look at the most important fields in struct vm_area_struct (defined in <linux/
mm.h>). These fields may be used by device drivers in their mmap implementation.
Note that the kernel maintains lists and trees of VMAs to optimize area lookup, and
several fields of vm_area_struct are used to maintain this organization. Therefore,
VMAs can’t be created at will by a driver, or the structures break. The main fields of
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VMAs are as follows (note the similarity between these fields and the /proc output we
just saw):

unsigned long vm_start;

unsigned long vm_end;
The virtual address range covered by this VMA. These fields are the first two
fields shown in /proc/*/maps.

struct file *vm_file;
A pointer to the struct file structure associated with this area (if any).

unsigned long vm_pgoff;
The offset of the area in the file, in pages. When a file or device is mapped, this is
the file position of the first page mapped in this area.

unsigned long vm flags;
A set of flags describing this area. The flags of the most interest to device driver
writers are VM_I0 and VM RESERVED. VM_I0 marks a VMA as being a memory-
mapped /O region. Among other things, the VM_IO flag prevents the region from
being included in process core dumps. VM _RESERVED tells the memory manage-
ment system not to attempt to swap out this VMA; it should be set in most
device mappings.

struct vm_operations struct *vm ops;
A set of functions that the kernel may invoke to operate on this memory area. Its
presence indicates that the memory area is a kernel “object,” like the struct file
we have been using throughout the book.

void *vm private data;
A field that may be used by the driver to store its own information.

Like struct vm_area_struct, the vm operations_struct is defined in <linux/mm.h>; it
includes the operations listed below. These operations are the only ones needed to
handle the process’s memory needs, and they are listed in the order they are
declared. Later in this chapter, some of these functions are implemented.

void (*open)(struct vm area struct *vma);
The open method is called by the kernel to allow the subsystem implementing
the VMA to initialize the area. This method is invoked any time a new reference
to the VMA is made (when a process forks, for example). The one exception
happens when the VMA is first created by mmap; in this case, the driver’s mmap
method is called instead.

void (*close)(struct vm area struct *vma);
When an area is destroyed, the kernel calls its close operation. Note that there’s
no usage count associated with VMAs; the area is opened and closed exactly
once by each process that uses it.
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struct page *(*nopage)(struct vm_area struct *vma, unsigned long address, int
*type);
When a process tries to access a page that belongs to a valid VMA, but that is
currently not in memory, the nopage method is called (if it is defined) for the
related area. The method returns the struct page pointer for the physical page
after, perhaps, having read it in from secondary storage. If the nopage method
isn’t defined for the area, an empty page is allocated by the kernel.

int (*populate)(struct vm area struct *vm, unsigned long address, unsigned
long len, pgprot t prot, unsigned long pgoff, int nonblock);
This method allows the kernel to “prefault” pages into memory before they are
accessed by user space. There is generally no need for drivers to implement the
populate method.

The Process Memory Map

The final piece of the memory management puzzle is the process memory map struc-
ture, which holds all of the other data structures together. Each process in the sys-
tem (with the exception of a few kernel-space helper threads) has a struct mm_struct
(defined in <linux/sched.h>) that contains the process’s list of virtual memory areas,
page tables, and various other bits of memory management housekeeping informa-
tion, along with a semaphore (mmap_sem) and a spinlock (page table lock). The
pointer to this structure is found in the task structure; in the rare cases where a driver
needs to access it, the usual way is to use current->mm. Note that the memory man-
agement structure can be shared between processes; the Linux implementation of
threads works in this way, for example.

That concludes our overview of Linux memory management data structures. With
that out of the way, we can now proceed to the implementation of the mmap system
call.

The mmap Device Operation

Memory mapping is one of the most interesting features of modern Unix systems. As
far as drivers are concerned, memory mapping can be implemented to provide user
programs with direct access to device memory.

A definitive example of mmap usage can be seen by looking at a subset of the virtual
memory areas for the X Window System server:

cat /proc/731/maps

000a0000-000c0000 rwxs 00020000 03:01 282652 /dev/mem
000f0000-00100000 T-Xs 000f0000 03:01 282652 /dev/mem
00400000-005c0000 r-xp 00000000 03:01 1366927 /uSI/X11R6/bin/XoIg
006bf000-00617000 Tw-p 001bf000 03:01 1366927 /usr/X11R6/bin/Xorg

2295828000-2a958a8000 rw-s fccO0000 03:01 282652 /dev/mem
22958a8000-2a9d83a8000 rw-s e8000000 03:01 282652 /dev/mem
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The full list of the X server’s VMAs is lengthy, but most of the entries are not of inter-
est here. We do see, however, four separate mappings of /dev/mem, which give some
insight into how the X server works with the video card. The first mapping is at
a0000, which is the standard location for video RAM in the 640-KB ISA hole. Further
down, we see a large mapping at e8000000, an address which is above the highest
RAM address on the system. This is a direct mapping of the video memory on the
adapter.

These regions can also be seen in /proc/iomem:

000a0000-000bffff : Video RAM area
000c0000-000ccfff : Video ROM
000d1000-000d1fff : Adapter ROM
000f0000-000FFfff : System ROM
d7f00000-f7efffff : PCI Bus #01
€8000000-efffffff : 0000:01:00.0
fc700000-fccfffff : PCI Bus #01
fcc00000-fccoffff : 0000:01:00.0

Mapping a device means associating a range of user-space addresses to device mem-
ory. Whenever the program reads or writes in the assigned address range, it is actu-
ally accessing the device. In the X server example, using mmap allows quick and easy
access to the video card’s memory. For a performance-critical application like this,
direct access makes a large difference.

As you might suspect, not every device lends itself to the mmap abstraction; it makes
no sense, for instance, for serial ports and other stream-oriented devices. Another
limitation of mmap is that mapping is PAGE_SIZE grained. The kernel can manage vir-
tual addresses only at the level of page tables; therefore, the mapped area must be a
multiple of PAGE_SIZE and must live in physical memory starting at an address that is
a multiple of PAGE_SIZE. The kernel forces size granularity by making a region slightly
bigger if its size isn’t a multiple of the page size.

These limits are not a big constraint for drivers, because the program accessing the
device is device dependent anyway. Since the program must know about how the
device works, the programmer is not unduly bothered by the need to see to details
like page alignment. A bigger constraint exists when ISA devices are used on some
non-x86 platforms, because their hardware view of ISA may not be contiguous. For
example, some Alpha computers see ISA memory as a scattered set of 8-bit, 16-bit,
or 32-bit items, with no direct mapping. In such cases, you can’t use mmap at all.
The inability to perform direct mapping of ISA addresses to Alpha addresses is due
to the incompatible data transfer specifications of the two systems. Whereas early
Alpha processors could issue only 32-bit and 64-bit memory accesses, ISA can do
only 8-bit and 16-bit transfers, and there’s no way to transparently map one proto-
col onto the other.

There are sound advantages to using mmap when it’s feasible to do so. For instance,
we have already looked at the X server, which transfers a lot of data to and from
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video memory; mapping the graphic display to user space dramatically improves the
throughput, as opposed to an Iseek/write implementation. Another typical example
is a program controlling a PCI device. Most PCI peripherals map their control regis-
ters to a memory address, and a high-performance application might prefer to have
direct access to the registers instead of repeatedly having to call ioctl to get its work
done.

The mmap method is part of the file operations structure and is invoked when the
mmap system call is issued. With mmap, the kernel performs a good deal of work
before the actual method is invoked, and, therefore, the prototype of the method is
quite different from that of the system call. This is unlike calls such as ioctl and poll,
where the kernel does not do much before calling the method.

The system call is declared as follows (as described in the mmap(2) manual page):
mmap (caddr_t addr, size t len, int prot, int flags, int fd, off t offset)

On the other hand, the file operation is declared as:
int (*mmap) (struct file *filp, struct vm area struct *vma);

The filp argument in the method is the same as that introduced in Chapter 3, while
vma contains the information about the virtual address range that is used to access
the device. Therefore, much of the work has been done by the kernel; to implement
mmap, the driver only has to build suitable page tables for the address range and, if
necessary, replace vma->vm_ops with a new set of operations.

There are two ways of building the page tables: doing it all at once with a function
called remap_pfn_range or doing it a page at a time via the nopage VMA method.
Each method has its advantages and limitations. We start with the “all at once”
approach, which is simpler. From there, we add the complications needed for a real-
world implementation.

Using remap_pfn_range

The job of building new page tables to map a range of physical addresses is handled
by remap_pfn_range and io_remap_page_range, which have the following prototypes:

int remap_pfn_range(struct vm_area_struct *vma,
unsigned long virt addr, unsigned long pfn,
unsigned long size, pgprot t prot);
int io_remap_page range(struct vm_area_struct *vma,
unsigned long virt addr, unsigned long phys addr,
unsigned long size, pgprot t prot);
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The value returned by the function is the usual 0 or a negative error code. Let’s look
at the exact meaning of the function’s arguments:

vma
The virtual memory area into which the page range is being mapped.

virt_addr
The user virtual address where remapping should begin. The function builds
page tables for the virtual address range between virt_addr and virt_addr+size.

pfn
The page frame number corresponding to the physical address to which the vir-
tual address should be mapped. The page frame number is simply the physical
address right-shifted by PAGE_SHIFT bits. For most uses, the vm_pgoff field of the
VMA structure contains exactly the value you need. The function affects physi-
cal addresses from (pfn<<PAGE_SHIFT) to (pfn<<PAGE_SHIFT)+size.

size
The dimension, in bytes, of the area being remapped.

prot
The “protection” requested for the new VMA. The driver can (and should) use
the value found in vma->vm_page prot.

The arguments to remap_pfn_range are fairly straightforward, and most of them are
already provided to you in the VMA when your mmap method is called. You may be
wondering why there are two functions, however. The first (remap_pfn_range) is
intended for situations where pfn refers to actual system RAM, while io_remap_
page_range should be used when phys_addr points to I/O memory. In practice, the
two functions are identical on every architecture except the SPARC, and you see
remap_pfn_range used in most situations. In the interest of writing portable drivers,
however, you should use the variant of remap_pfn_range that is suited to your partic-
ular situation.

One other complication has to do with caching: usually, references to device mem-
ory should not be cached by the processor. Often the system BIOS sets things up
properly, but it is also possible to disable caching of specific VMAs via the protec-
tion field. Unfortunately, disabling caching at this level is highly processor depen-
dent. The curious reader may wish to look at the pgprot_noncached function from
drivers/char/mem.c to see what’s involved. We won’t discuss the topic further here.

A Simple Implementation

If your driver needs to do a simple, linear mapping of device memory into a user address
space, remap_pfn_range is almost all you really need to do the job. The following code is
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derived from drivers/char/mem.c and shows how this task is performed in a typical mod-
ule called simple (Simple Implementation Mapping Pages with Little Enthusiasm):

static int simple remap mmap(struct file *filp, struct vm area struct *vma)

{
if (remap_pfn_range(vma, vma->vm_start, vm->vm_pgoff,
vma->vm_end - vma->vm_start,
vma->vm_page prot))
return -EAGAIN;

vma->vm_ops = &simple remap vm_ops;
simple_vma_open(vma);
return 0;
}
As you can see, remapping memory just a matter of calling remap_pfn_range to cre-
ate the necessary page tables.

Adding VMA Operations

As we have seen, the vm_area_struct structure contains a set of operations that may
be applied to the VMA. Now we look at providing those operations in a simple way.
In particular, we provide open and close operations for our VMA. These operations
are called whenever a process opens or closes the VMA; in particular, the open
method is invoked anytime a process forks and creates a new reference to the VMA.
The open and close VMA methods are called in addition to the processing performed
by the kernel, so they need not reimplement any of the work done there. They exist
as a way for drivers to do any additional processing that they may require.

As it turns out, a simple driver such as simple need not do any extra processing in
particular. So we have created open and close methods, which print a message to the
system log informing the world that they have been called. Not particularly useful,
but it does allow us to show how these methods can be provided, and see when they
are invoked.

To this end, we override the default vma->vm_ops with operations that call printk:

void simple vma_open(struct vm area struct *vma)

{
printk(KERN_NOTICE "Simple VMA open, virt %1x, phys %1x\n",
vma->vm_start, vma->vm_pgoff << PAGE_SHIFT);
}
void simple vma close(struct vm area struct *vma)
{
printk(KERN_NOTICE "Simple VMA close.\n");
}

static struct vm operations struct simple remap vm ops = {
.open = simple vma_open,
.close = simple vma_close,

};
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To make these operations active for a specific mapping, it is necessary to store a
pointer to simple remap vm_ops in the vm ops field of the relevant VMA. This is usu-
ally done in the mmap method. If you turn back to the simple_remap_mmap exam-
ple, you see these lines of code:

vma->vm_ops = &simple_remap_vm_ops;

simple vma_open(vma);
Note the explicit call to simple_vma_open. Since the open method is not invoked on
the initial mmap, we must call it explicitly if we want it to run.

Mapping Memory with nopage

Although remap_pfn_range works well for many, if not most, driver mmap imple-
mentations, sometimes it is necessary to be a little more flexible. In such situations,
an implementation using the nopage VMA method may be called for.

One situation in which the nopage approach is useful can be brought about by the
mremap system call, which is used by applications to change the bounding addresses
of a mapped region. As it happens, the kernel does not notify drivers directly when a
mapped VMA is changed by mremap. If the VMA is reduced in size, the kernel can
quietly flush out the unwanted pages without telling the driver. If, instead, the VMA
is expanded, the driver eventually finds out by way of calls to nopage when map-
pings must be set up for the new pages, so there is no need to perform a separate
notification. The nopage method, therefore, must be implemented if you want to
support the mremap system call. Here, we show a simple implementation of nopage
for the simple device.

The nopage method, remember, has the following prototype:

struct page *(*nopage)(struct vm_area_struct *vma,

unsigned long address, int *type);
When a user process attempts to access a page in a VMA that is not present in mem-
ory, the associated nopage function is called. The address parameter contains the vir-
tual address that caused the fault, rounded down to the beginning of the page. The
nopage function must locate and return the struct page pointer that refers to the
page the user wanted. This function must also take care to increment the usage
count for the page it returns by calling the get_page macro:

get page(struct page *pageptr);

This step is necessary to keep the reference counts correct on the mapped pages. The
kernel maintains this count for every page; when the count goes to 0, the kernel
knows that the page may be placed on the free list. When a VMA is unmapped, the
kernel decrements the usage count for every page in the area. If your driver does not
increment the count when adding a page to the area, the usage count becomes 0 pre-
maturely, and the integrity of the system is compromised.
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The nopage method should also store the type of fault in the location pointed to by
the type argument—but only if that argument is not NULL. In device drivers, the
proper value for type will invariably be vM_FAULT MINOR.

If you are using nopage, there is usually very little work to be done when mmap is
called; our version looks like this:

static int simple_nopage mmap(struct file *filp, struct vm_area_struct *vma)

{
unsigned long offset = vma->vm pgoff << PAGE_SHIFT;

if (offset >= _ pa(high memory) || (filp->f flags & 0_SYNC))
vma->vm_flags |= VM_IO;
vma->vm_flags |= VM_RESERVED;

vma->vm_ops = &simple nopage vm ops;
simple_vma_open(vma);
return 0;

}

The main thing mmap has to do is to replace the default (NULL) vm_ops pointer with
our own operations. The nopage method then takes care of “remapping” one page at
a time and returning the address of its struct page structure. Because we are just
implementing a window onto physical memory here, the remapping step is simple:
we only need to locate and return a pointer to the struct page for the desired
address. Our nopage method looks like the following:
struct page *simple_vma_nopage(struct vm_area_struct *vma,
unsigned long address, int *type)

{
struct page *pageptr;
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
unsigned long physaddr = address - vma->vm _start + offset;
unsigned long pageframe = physaddr >> PAGE_SHIFT;

if (!pfn_valid(pageframe))
return NOPAGE_SIGBUS;
pageptr = pfn_to_page(pageframe);
get_page(pageptr);
if (type)
*type = VM_FAULT_MINOR;
return pageptr;
}
Since, once again, we are simply mapping main memory here, the nopage function
need only find the correct struct page for the faulting address and increment its refer-
ence count. Therefore, the required sequence of events is to calculate the desired physi-
cal address, and turn it into a page frame number by right-shifting it PAGE_SHIFT bits.
Since user space can give us any address it likes, we must ensure that we have a valid
page frame; the pfn_valid function does that for us. If the address is out of range, we
return NOPAGE_SIGBUS, which causes a bus signal to be delivered to the calling process.
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Otherwise, pfn_to_page gets the necessary struct page pointer; we can increment its
reference count (with a call to get_page) and return it.

The nopage method normally returns a pointer to a struct page. If, for some reason,
a normal page cannot be returned (e.g., the requested address is beyond the device’s
memory region), NOPAGE_SIGBUS can be returned to signal the error; that is what the
simple code above does. nopage can also return NOPAGE_OOM to indicate failures caused
by resource limitations.

Note that this implementation works for ISA memory regions but not for those on
the PCI bus. PCI memory is mapped above the highest system memory, and there are
no entries in the system memory map for those addresses. Because there is no struct
page to return a pointer to, nopage cannot be used in these situations; you must use
remap_pfn_range instead.

If the nopage method is left NULL, kernel code that handles page faults maps the zero
page to the faulting virtual address. The zero page is a copy-on-write page that reads
as 0 and that is used, for example, to map the BSS segment. Any process referencing
the zero page sees exactly that: a page filled with zeroes. If the process writes to the
page, it ends up modifying a private copy. Therefore, if a process extends a mapped
region by calling mremap, and the driver hasn’t implemented nopage, the process
ends up with zero-filled memory instead of a segmentation fault.

Remapping Specific I/0 Regions

All the examples we’ve seen so far are reimplementations of /dev/mem; they remap
physical addresses into user space. The typical driver, however, wants to map only
the small address range that applies to its peripheral device, not all memory. In order
to map to user space only a subset of the whole memory range, the driver needs only
to play with the offsets. The following does the trick for a driver mapping a region of
simple_region size bytes, beginning at physical address simple region_start (which
should be page-aligned):

unsigned long off = vma->vm_pgoff << PAGE_SHIFT;

unsigned long physical = simple_region_start + off;

unsigned long vsize = vma->vm end - vma->vm_start;

unsigned long psize = simple_region_size - off;

if (vsize > psize)
return -EINVAL; /* spans too high */

remap_pfn _range(vma, vma_>vm start, physical, vsize, vma->vm page prot);
In addition to calculating the offsets, this code introduces a check that reports an
error when the program tries to map more memory than is available in the I/O region
of the target device. In this code, psize is the physical I/O size that is left after the off-
set has been specified, and vsize is the requested size of virtual memory; the func-
tion refuses to map addresses that extend beyond the allowed memory range.
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Note that the user process can always use mremap to extend its mapping, possibly
past the end of the physical device area. If your driver fails to define a nopage
method, it is never notified of this extension, and the additional area maps to the
zero page. As a driver writer, you may well want to prevent this sort of behavior;
mapping the zero page onto the end of your region is not an explicitly bad thing to
do, but it is highly unlikely that the programmer wanted that to happen.

The simplest way to prevent extension of the mapping is to implement a simple
nopage method that always causes a bus signal to be sent to the faulting process.
Such a method would look like this:

struct page *simple_nopage(struct vm area_struct *vma,

unsigned long address, int *type);

{ return NOPAGE_SIGBUS; /* send a SIGBUS */}
As we have seen, the nopage method is called only when the process dereferences an
address that is within a known VMA but for which there is currently no valid page
table entry. If we have used remap_pfn_range to map the entire device region, the
nopage method shown here is called only for references outside of that region. Thus,
it can safely return NOPAGE_SIGBUS to signal an error. Of course, a more thorough
implementation of nopage could check to see whether the faulting address is within
the device area, and perform the remapping if that is the case. Once again, however,
nopage does not work with PCI memory areas, so extension of PCI mappings is not
possible.

Remapping RAM

An interesting limitation of remap_pfn_range is that it gives access only to reserved
pages and physical addresses above the top of physical memory. In Linux, a page of
physical addresses is marked as “reserved” in the memory map to indicate that it is
not available for memory management. On the PC, for example, the range between
640 KB and 1 MB is marked as reserved, as are the pages that host the kernel code
itself. Reserved pages are locked in memory and are the only ones that can be safely
mapped to user space; this limitation is a basic requirement for system stability.

Therefore, remap_pfn_range won’t allow you to remap conventional addresses,
which include the ones you obtain by calling get_free_page. Instead, it maps in the
zero page. Everything appears to work, with the exception that the process sees pri-
vate, zero-filled pages rather than the remapped RAM that it was hoping for. None-
theless, the function does everything that most hardware drivers need it to do,
because it can remap high PCI buffers and ISA memory.

The limitations of remap_pfn_range can be seen by running mapper, one of the sam-
ple programs in misc-progs in the files provided on O’Reilly’s FTP site. mapper is a
simple tool that can be used to quickly test the mmap system call; it maps read-only
parts of a file specified by command-line options and dumps the mapped region to
standard output. The following session, for instance, shows that /dev/mem doesn’t
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map the physical page located at address 64 KB—instead, we see a page full of zeros
(the host computer in this example is a PC, but the result would be the same on
other platforms):

morgana.root# ./mapper /dev/mem 0x10000 0x1000 | od -Ax -t x1

mapped "/dev/mem" from 65536 to 69632

000000 00 00 00 00 00 00 OO0 OO OO 00 00 00 00 00 00 00
*

001000

The inability of remap_pfn_range to deal with RAM suggests that memory-based
devices like scull can’t easily implement mmap, because its device memory is conven-
tional RAM, not I/O memory. Fortunately, a relatively easy workaround is available
to any driver that needs to map RAM into user space; it uses the nopage method that
we have seen earlier.

Remapping RAM with the nopage method

The way to map real RAM to user space is to use vm_ops->nopage to deal with page
faults one at a time. A sample implementation is part of the scullp module, intro-
duced in Chapter 8.

scullp is a page-oriented char device. Because it is page oriented, it can implement
mmap on its memory. The code implementing memory mapping uses some of the
concepts introduced in the section “Memory Management in Linux.”

Before examining the code, let’s look at the design choices that affect the mmap
implementation in scullp:

* scullp doesn’t release device memory as long as the device is mapped. This is a
matter of policy rather than a requirement, and it is different from the behavior
of scull and similar devices, which are truncated to a length of 0 when opened for
writing. Refusing to free a mapped scullp device allows a process to overwrite
regions actively mapped by another process, so you can test and see how pro-
cesses and device memory interact. To avoid releasing a mapped device, the
driver must keep a count of active mappings; the vmas field in the device struc-
ture is used for this purpose.

* Memory mapping is performed only when the scullp order parameter (set at mod-
ule load time) is 0. The parameter controls how __get_free_pages is invoked (see
the section “get_free_page and Friends” in Chapter 8). The zero-order limitation
(which forces pages to be allocated one at a time, rather than in larger groups) is
dictated by the internals of __get free_pages, the allocation function used by
scullp. To maximize allocation performance, the Linux kernel maintains a list of
free pages for each allocation order, and only the reference count of the first page
in a cluster is incremented by get_free_pages and decremented by free_pages. The
mmap method is disabled for a scullp device if the allocation order is greater than
zero, because nopage deals with single pages rather than clusters of pages. scullp
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simply does not know how to properly manage reference counts for pages that
are part of higher-order allocations. (Return to the section “A scull Using Whole
Pages: scullp” in Chapter 8 if you need a refresher on scullp and the memory allo-
cation order value.)

The zero-order limitation is mostly intended to keep the code simple. It is possible to
correctly implement mmap for multipage allocations by playing with the usage count
of the pages, but it would only add to the complexity of the example without intro-
ducing any interesting information.

Code that is intended to map RAM according to the rules just outlined needs to
implement the open, close, and nopage VMA methods; it also needs to access the
memory map to adjust the page usage counts.

This implementation of scullp_mmap is very short, because it relies on the nopage
function to do all the interesting work:

int scullp mmap(struct file *filp, struct vm_area struct *vma)

{

struct inode *inode = filp->f dentry->d_inode;

/* refuse to map if order is not 0 */
if (scullp devices[iminor(inode)].order)
return -ENODEV,

/* don't do anything here: "nopage" will fill the holes */

vma->vm_ops = &scullp vm ops;

vma->vm_flags |= VM_RESERVED;

vma->vm_private data = filp->private data;

scullp vma_open(vma);

return 0;

}

The purpose of the if statement is to avoid mapping devices whose allocation order
is not 0. scullp’s operations are stored in the vm_ops field, and a pointer to the device
structure is stashed in the vm _private data field. At the end, vm_ops->open is called to
update the count of active mappings for the device.

open and close simply keep track of the mapping count and are defined as follows:

void scullp_vma_open(struct vm_area_struct *vma)

{ struct scullp dev *dev = vma->vm private data;
dev->vmas++;

}

void scullp vma close(struct vm area struct *vma)

{ struct scullp dev *dev = vma->vm private data;
dev->vmas--;

}
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Most of the work is then performed by nopage. In the scullp implementation, the
address parameter to nopage is used to calculate an offset into the device; the offset is
then used to look up the correct page in the scullp memory tree:

struct page *scullp_vma_nopage(struct vm_area_struct *vma,
unsigned long address, int *type)

{
unsigned long offset;
struct scullp dev *ptr, *dev = vma->vm private data;
struct page *page = NOPAGE SIGBUS;
void *pageptr = NULL; /* default to "missing" */
down(8dev->sem);
offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
if (offset >= dev->size) goto out; /* out of range */
/*
* Now retrieve the scullp device from the list,then the page.
* If the device has holes, the process receives a SIGBUS when
* accessing the hole.
*/
offset >>= PAGE_SHIFT; /* offset is a number of pages */
for (ptr = dev; ptr 8% offset >= dev->gset;) {
ptr = ptr->next;
offset -= dev->gset;
if (ptr 8& ptr->data) pageptr = ptr->data[offset];
if (!pageptr) goto out; /* hole or end-of-file */
page = virt_to_page(pageptr);
/* got it, now increment the count */
get_page(page);
if (type)
*type = VM_FAULT MINOR;
out:
up(8&dev->sem);
return page;
}

scullp uses memory obtained with get_free_pages. That memory is addressed using
logical addresses, so all scullp_nopage has to do to get a struct page pointer is to call
virt_to_page.

The scullp device now works as expected, as you can see in this sample output from
the mapper utility. Here, we send a directory listing of /dev (which is long) to the
scullp device and then use the mapper utility to look at pieces of that listing with
mmap:

morgana% ls -1 /dev > /dev/scullp

morgana’ ./mapper /dev/scullp 0 140

mapped "/dev/scullp" from 0 (0x00000000) to 140 (0x0000008c)

total 232
CIW------- 1 root root 10, 10 Sep 15 07:40 adbmouse
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CIW-T--T-- 1 root root 10, 175 Sep 15 07:40 agpgart
morgana’% ./mapper /dev/scullp 8192 200
mapped "/dev/scullp" from 8192 (0x00002000) to 8392 (0x000020c8)

doh1494

brw-rw---- 1 root floppy 2, 92 Sep 15 07:40 fdoh1660
brw-rw---- 1 root floppy 2, 20 Sep 15 07:40 fdoh360
brw-rw---- 1 root floppy 2, 12 Sep 15 07:40 fdOH360

Remapping Kernel Virtual Addresses

Although it’s rarely necessary, it’s interesting to see how a driver can map a kernel
virtual address to user space using mmap. A true kernel virtual address, remember, is
an address returned by a function such as vmalloc—that is, a virtual address mapped
in the kernel page tables. The code in this section is taken from scullv, which is the
module that works like scullp but allocates its storage through vmalloc.

Most of the scullv implementation is like the one we’ve just seen for scullp, except
that there is no need to check the order parameter that controls memory allocation.
The reason for this is that vmalloc allocates its pages one at a time, because single-
page allocations are far more likely to succeed than multipage allocations. There-
fore, the allocation order problem doesn’t apply to vmalloced space.

Beyond that, there is only one difference between the nopage implementations used by
scullp and scullv. Remember that scullp, once it found the page of interest, would obtain
the corresponding struct page pointer with virt_to_page. That function does not work
with kernel virtual addresses, however. Instead, you must use vmalloc_to_page. So the
final part of the scullv version of nopage looks like:

/*

* After scullv lookup, "page" is now the address of the page

* needed by the current process. Since it's a vmalloc address,

* turn it into a struct page.

*/

page = vmalloc_to page(pageptr);

/* got it, now increment the count */
get_page(page);
if (type)
*type = VM_FAULT MINOR;
out:
up(8dev->sem);
return page;

Based on this discussion, you might also want to map addresses returned by ioremap
to user space. That would be a mistake, however; addresses from ioremap are special
and cannot be treated like normal kernel virtual addresses. Instead, you should use
remap_pfn_range to remap I/O memory areas into user space.
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Performing Direct 1/0

Most I/O operations are buffered through the kernel. The use of a kernel-space
buffer allows a degree of separation between user space and the actual device; this
separation can make programming easier and can also yield performance benefits in
many situations. There are cases, however, where it can be beneficial to perform I/O
directly to or from a user-space buffer. If the amount of data being transferred is
large, transferring data directly without an extra copy through kernel space can
speed things up.

One example of direct I/O use in the 2.6 kernel is the SCSI tape driver. Streaming
tapes can pass a lot of data through the system, and tape transfers are usually record-
oriented, so there is little benefit to buffering data in the kernel. So, when the condi-
tions are right (the user-space buffer is page-aligned, for example), the SCSI tape
driver performs its I/O without copying the data.

That said, it is important to recognize that direct /O does not always provide the
performance boost that one might expect. The overhead of setting up direct I/0O
(which involves faulting in and pinning down the relevant user pages) can be signifi-
cant, and the benefits of buffered I/O are lost. For example, the use of direct I/O
requires that the write system call operate synchronously; otherwise the application
does not know when it can reuse its I/O buffer. Stopping the application until each
write completes can slow things down, which is why applications that use direct I/O
often use asynchronous I/O operations as well.

The real moral of the story, in any case, is that implementing direct I/O in a char
driver is usually unnecessary and can be hurtful. You should take that step only if
you are sure that the overhead of buffered I/O is truly slowing things down. Note
also that block and network drivers need not worry about implementing direct I/O at
all; in both cases, higher-level code in the kernel sets up and makes use of direct I/O
when it is indicated, and driver-level code need not even know that direct 1/O is
being performed.

The key to implementing direct I/O in the 2.6 kernel is a function called get_user_pages,
which is declared in <linux/mm.h> with the following prototype:

int get user pages(struct task_struct *tsk,
struct mm_struct *mm,
unsigned long start,
int len,
int write,
int force,
struct page **pages,
struct vm_area struct **vmas);
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This function has several arguments:

tsk
A pointer to the task performing the I/O; its main purpose is to tell the kernel
who should be charged for any page faults incurred while setting up the buffer.
This argument is almost always passed as current.

mm A pointer to the memory management structure describing the address space to
be mapped. The mm_struct structure is the piece that ties together all of the parts
(VMAs) of a process’s virtual address space. For driver use, this argument should
always be current->mm.

start

len
start is the (page-aligned) address of the user-space buffer, and len is the length
of the buffer in pages.

write

force
If write is nonzero, the pages are mapped for write access (implying, of course,
that user space is performing a read operation). The force flag tells get_user_pages
to override the protections on the given pages to provide the requested access;
drivers should always pass 0 here.

pages

vmas
Output parameters. Upon successful completion, pages contain a list of pointers
to the struct page structures describing the user-space buffer, and vmas contains
pointers to the associated VMAs. The parameters should, obviously, point to
arrays capable of holding at least len pointers. Either parameter can be NULL, but
you need, at least, the struct page pointers to actually operate on the buffer.

get_user_pages is a low-level memory management function, with a suitably complex
interface. It also requires that the mmap reader/writer semaphore for the address
space be obtained in read mode before the call. As a result, calls to get_user_pages
usually look something like:

down_read(&current->mm->mmap_sem);

result = get user pages(current, current->mm, ...);

up_read(&current->mm->mmap_sem);
The return value is the number of pages actually mapped, which could be fewer than
the number requested (but greater than zero).

Upon successful completion, the caller has a pages array pointing to the user-space
buffer, which is locked into memory. To operate on the buffer directly, the kernel-
space code must turn each struct page pointer into a kernel virtual address with
kmap or kmap_atomic. Usually, however, devices for which direct I/O is justified are
using DMA operations, so your driver will probably want to create a scatter/gather
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list from the array of struct page pointers. We discuss how to do this in the section,
“Scatter/gather mappings.”

Once your direct I/O operation is complete, you must release the user pages. Before
doing so, however, you must inform the kernel if you changed the contents of those
pages. Otherwise, the kernel may think that the pages are “clean,” meaning that they
match a copy found on the swap device, and free them without writing them out to
backing store. So, if you have changed the pages (in response to a user-space read
request), you must mark each affected page dirty with a call to:

void SetPageDirty(struct page *page);

(This macro is defined in <linux/page-flags.h>). Most code that performs this opera-
tion checks first to ensure that the page is not in the reserved part of the memory
map, which is never swapped out. Therefore, the code usually looks like:
if (! PageReserved(page))
SetPageDirty(page);

Since user-space memory is not normally marked reserved, this check should not
strictly be necessary, but when you are getting your hands dirty deep within the
memory management subsystem, it is best to be thorough and careful.

Regardless of whether the pages have been changed, they must be freed from the
page cache, or they stay there forever. The call to use is:

void page cache release(struct page *page);

This call should, of course, be made after the page has been marked dirty, if need be.

Asynchronous 1/0

One of the new features added to the 2.6 kernel was the asynchronous I/O capabil-
ity. Asynchronous I/O allows user space to initiate operations without waiting for
their completion; thus, an application can do other processing while its I/O is in
flight. A complex, high-performance application can also use asynchronous I/O to
have multiple operations going at the same time.

The implementation of asynchronous I/O is optional, and very few driver authors
bother; most devices do not benefit from this capability. As we will see in the com-
ing chapters, block and network drivers are fully asynchronous at all times, so only
char drivers are candidates for explicit asynchronous I/O support. A char device can
benefit from this support if there are good reasons for having more than one I/O
operation outstanding at any given time. One good example is streaming tape drives,
where the drive can stall and slow down significantly if I/O operations do not arrive
quickly enough. An application trying to get the best performance out of a streaming
drive could use asynchronous I/O to have multiple operations ready to go at any
given time.
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For the rare driver author who needs to implement asynchronous I/O, we present a
quick overview of how it works. We cover asynchronous I/O in this chapter, because
its implementation almost always involves direct I/O operations as well (if you are
buffering data in the kernel, you can usually implement asynchronous behavior with-
out imposing the added complexity on user space).

Drivers supporting asynchronous I/O should include <linux/aio.h>. There are three
file_operations methods for the implementation of asynchronous I/O:
ssize_t (*aio_read) (struct kiocb *iocb, char *buffer,
size t count, loff t offset);
ssize t (*aio write) (struct kiocb *iocb, const char *buffer,
size t count, loff t offset);
int (*aio_fsync) (struct kiocb *iocb, int datasync);
The aio_fsync operation is only of interest to filesystem code, so we do not discuss it
further here. The other two, aio_read and aio_write, look very much like the regular
read and write methods but with a couple of exceptions. One is that the offset
parameter is passed by value; asynchronous operations never change the file posi-
tion, so there is no reason to pass a pointer to it. These methods also take the iocb
(“I/O control block”) parameter, which we get to in a moment.

The purpose of the aio_read and aio_write methods is to initiate a read or write oper-
ation that may or may not be complete by the time they return. If it is possible to
complete the operation immediately, the method should do so and return the usual
status: the number of bytes transferred or a negative error code. Thus, if your driver
has a read method called my_read, the following aio_read method is entirely correct
(though rather pointless):

static ssize_t my aio_read(struct kiocb *iocb, char *buffer,

ssize t count, loff t offset)
{

}
Note that the struct file pointer is found in the ki_filp field of the kiocb structure.

return my_read(iocb->ki_filp, buffer, count, &offset);

If you support asynchronous I/O, you must be aware of the fact that the kernel can,
on occasion, create “synchronous IOCBs.” These are, essentially, asynchronous
operations that must actually be executed synchronously. One may well wonder why
things are done this way, but it’s best to just do what the kernel asks. Synchronous
operations are marked in the IOCB; your driver should query that status with:

int is_sync_kiocb(struct kiocb *iocb);

If this function returns a nonzero value, your driver must execute the operation
synchronously.

In the end, however, the point of all this structure is to enable asynchronous opera-
tions. If your driver is able to initiate the operation (or, simply, to queue it until some
future time when it can be executed), it must do two things: remember everything it
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needs to know about the operation, and return -EIOCBQUEUED to the caller. Remem-
bering the operation information includes arranging access to the user-space bulffer;
once you return, you will not again have the opportunity to access that buffer while
running in the context of the calling process. In general, that means you will likely
have to set up a direct kernel mapping (with get_user_pages) or a DMA mapping.
The -EIOCBQUEUED error code indicates that the operation is not yet complete, and its
final status will be posted later.

When “later” comes, your driver must inform the kernel that the operation has com-
pleted. That is done with a call to aio_complete:

int aio_complete(struct kiocb *iocb, long res, long res2);

Here, iocb is the same IOCB that was initially passed to you, and res is the usual
result status for the operation. res2 is a second result code that will be returned to
user space; most asynchronous I/O implementations pass res2 as 0. Once you call
aio_complete, you should not touch the IOCB or user buffer again.

An asynchronous I/0 example

The page-oriented scullp driver in the example source implements asynchronous 1/0.
The implementation is simple, but it is enough to show how asynchronous opera-
tions should be structured.

The aio_read and aio_write methods don’t actually do much:

static ssize t scullp aio read(struct kiocb *iocb, char *buf, size t count,
loff t pos)
{

}

return scullp defer op(0, iocb, buf, count, pos);

static ssize t scullp aio write(struct kiocb *iocb, const char *buf,
size t count, loff t pos)
{

}

These methods simply call a common function:

return scullp defer op(1, iocb, (char *) buf, count, pos);

struct async_work {
struct kiocb *iocb;
int result;
struct work struct work;

};

static int scullp defer op(int write, struct kiocb *iocb, char *buf,
size t count, loff t pos)
{
struct async_work *stuff;
int result;
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/* Copy now while we can access the buffer */
if (write)

result = scullp write(iocb->ki filp, buf, count, 8pos);
else

result = scullp read(iocb->ki filp, buf, count, &pos);

/* If this is a synchronous IOCB, we return our status now. */
if (is_sync_kiocb(iocb))
return result;

/* Otherwise defer the completion for a few milliseconds. */
stuff = kmalloc (sizeof (*stuff), GFP_KERNEL);
if (stuff == NULL)
return result; /* No memory, just complete now */
stuff->iocb = iocb;
stuff->result = result;
INIT WORK(&stuff->work, scullp do deferred op, stuff);
schedule delayed work(&stuff->work, HZ/100);
return -EIOCBQUEUED;
}

A more complete implementation would use get_user_pages to map the user buffer
into kernel space. We chose to keep life simple by just copying over the data at the
outset. Then a call is made to is_sync_kioch to see if this operation must be com-
pleted synchronously; if so, the result status is returned, and we are done. Otherwise
we remember the relevant information in a little structure, arrange for “completion”
via a workqueue, and return -EIOCBQUEUED. At this point, control returns to user
space.

Later on, the workqueue executes our completion function:

static void scullp do deferred op(void *p)

{
struct async_work *stuff = (struct async_work *) p;
aio_complete(stuff->iocb, stuff->result, 0);
kfree(stuff);

}

Here, it is simply a matter of calling aio_complete with our saved information. A real
driver’s asynchronous I/O implementation is somewhat more complicated, of
course, but it follows this sort of structure.

Direct Memory Access

Direct memory access, or DMA, is the advanced topic that completes our overview
of memory issues. DMA is the hardware mechanism that allows peripheral compo-
nents to transfer their I/O data directly to and from main memory without the need
to involve the system processor. Use of this mechanism can greatly increase through-
put to and from a device, because a great deal of computational overhead is eliminated.
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Overview of a DMA Data Transfer

Before introducing the programming details, let’s review how a DMA transfer takes
place, considering only input transfers to simplify the discussion.

Data transfer can be triggered in two ways: either the software asks for data (via a
function such as read) or the hardware asynchronously pushes data to the system.

In the first case, the steps involved can be summarized as follows:

1. When a process calls read, the driver method allocates a DMA buffer and
instructs the hardware to transfer its data into that buffer. The process is put to
sleep.

2. The hardware writes data to the DMA buffer and raises an interrupt when it’s
done.

3. The interrupt handler gets the input data, acknowledges the interrupt, and
awakens the process, which is now able to read data.

The second case comes about when DMA is used asynchronously. This happens, for
example, with data acquisition devices that go on pushing data even if nobody is
reading them. In this case, the driver should maintain a buffer so that a subsequent
read call will return all the accumulated data to user space. The steps involved in this
kind of transfer are slightly different:

1. The hardware raises an interrupt to announce that new data has arrived.

2. The interrupt handler allocates a buffer and tells the hardware where to transfer
its data.

3. The peripheral device writes the data to the buffer and raises another interrupt
when it’s done.

4. The handler dispatches the new data, wakes any relevant process, and takes care
of housekeeping.

A variant of the asynchronous approach is often seen with network cards. These
cards often expect to see a circular buffer (often called a DMA ring buffer) estab-
lished in memory shared with the processor; each incoming packet is placed in the
next available buffer in the ring, and an interrupt is signaled. The driver then passes
the network packets to the rest of the kernel and places a new DMA buffer in the
ring.

The processing steps in all of these cases emphasize that efficient DMA handling
relies on interrupt reporting. While it is possible to implement DMA with a polling
driver, it wouldn’t make sense, because a polling driver would waste the perfor-
mance benefits that DMA offers over the easier processor-driven I/0."

* There are, of course, exceptions to everything; see the section “Receive Interrupt Mitigation” in Chapter 17
for a demonstration of how high-performance network drivers are best implemented using polling.
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Another relevant item introduced here is the DMA buffer. DMA requires device driv-
ers to allocate one or more special buffers suited to DMA. Note that many drivers
allocate their buffers at initialization time and use them until shutdown—the word
allocate in the previous lists, therefore, means “get hold of a previously allocated

buffer.”

Allocating the DMA Buffer

This section covers the allocation of DMA buffers at a low level; we introduce a
higher-level interface shortly, but it is still a good idea to understand the material
presented here.

The main issue that arrises with DMA bulffers is that, when they are bigger than one
page, they must occupy contiguous pages in physical memory because the device
transfers data using the ISA or PCI system bus, both of which carry physical
addresses. It’s interesting to note that this constraint doesn’t apply to the SBus (see
the section “SBus” in Chapter 12), which uses virtual addresses on the peripheral
bus. Some architectures can also use virtual addresses on the PCI bus, but a portable
driver cannot count on that capability.

Although DMA buffers can be allocated either at system boot or at runtime, mod-
ules can allocate their buffers only at runtime. (Chapter 8 introduced these tech-
niques; the section “Obtaining Large Buffers” covered allocation at system boot,
while “The Real Story of kmalloc” and “get_free_page and Friends” described alloca-
tion at runtime.) Driver writers must take care to allocate the right kind of memory
when it is used for DMA operations; not all memory zones are suitable. In particu-
lar, high memory may not work for DMA on some systems and with some devices—
the peripherals simply cannot work with addresses that high.

Most devices on modern buses can handle 32-bit addresses, meaning that normal
memory allocations work just fine for them. Some PCI devices, however, fail to
implement the full PCI standard and cannot work with 32-bit addresses. And ISA
devices, of course, are limited to 24-bit addresses only.

For devices with this kind of limitation, memory should be allocated from the DMA
zone by adding the GFP_DMA flag to the kmalloc or get_free_pages call. When this flag
is present, only memory that can be addressed with 24 bits is allocated. Alterna-
tively, you can use the generic DMA layer (which we discuss shortly) to allocate buff-
ers that work around your device’s limitations.

Do-it-yourself allocation

We have seen how get_free_pages can allocate up to a few megabytes (as order can
range up to MAX_ORDER, currently 11), but high-order requests are prone to fail even
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when the requested bulffer is far less than 128 KB, because system memory becomes
fragmented over time."

When the kernel cannot return the requested amount of memory or when you need
more than 128 KB (a common requirement for PCI frame grabbers, for example), an
alternative to returning -ENOMEM is to allocate memory at boot time or reserve the top
of physical RAM for your buffer. We described allocation at boot time in the section
“Obrtaining Large Buffers” in Chapter 8, but it is not available to modules. Reserving
the top of RAM is accomplished by passing a mem= argument to the kernel at boot
time. For example, if you have 256 MB, the argument mem=255M keeps the kernel from
using the top megabyte. Your module could later use the following code to gain
access to such memory:

dmabuf = ioremap (OxFFO0000 /* 255M */, 0x100000 /* 1M */);

The allocator, part of the sample code accompanying the book, offers a simple API to
probe and manage such reserved RAM and has been used successfully on several
architectures. However, this trick doesn’t work when you have an high-memory sys-
tem (i.e., one with more physical memory than could fit in the CPU address space).

Another option, of course, is to allocate your buffer with the GFP_NOFAIL allocation
flag. This approach does, however, severely stress the memory management sub-
system, and it runs the risk of locking up the system altogether; it is best avoided
unless there is truly no other way.

If you are going to such lengths to allocate a large DMA bulffer, however, it is worth
putting some thought into alternatives. If your device can do scatter/gather 1/0, you
can allocate your buffer in smaller pieces and let the device do the rest. Scatter/gather
I/O can also be used when performing direct I/O into user space, which may well be
the best solution when a truly huge bulffer is required.

Bus Addresses

A device driver using DMA has to talk to hardware connected to the interface bus,
which uses physical addresses, whereas program code uses virtual addresses.

As a matter of fact, the situation is slightly more complicated than that. DMA-based
hardware uses bus, rather than physical, addresses. Although ISA and PCI bus
addresses are simply physical addresses on the PC, this is not true for every plat-
form. Sometimes the interface bus is connected through bridge circuitry that maps I/O
addresses to different physical addresses. Some systems even have a page-mapping
scheme that can make arbitrary pages appear contiguous to the peripheral bus.

* The word fragmentation is usually applied to disks to express the idea that files are not stored consecutively
on the magnetic medium. The same concept applies to memory, where each virtual address space gets scat-
tered throughout physical RAM, and it becomes difficult to retrieve consecutive free pages when a DMA
buffer is requested.
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At the lowest level (again, we’ll look at a higher-level solution shortly), the Linux ker-
nel provides a portable solution by exporting the following functions, defined in
<asmfio.h>. The use of these functions is strongly discouraged, because they work
properly only on systems with a very simple I/O architecture; nonetheless, you may
encounter them when working with kernel code.

unsigned long virt_to_bus(volatile void *address);

void *bus_to virt(unsigned long address);
These functions perform a simple conversion between kernel logical addresses and
bus addresses. They do not work in any situation where an I/O memory manage-
ment unit must be programmed or where bounce buffers must be used. The right
way of performing this conversion is with the generic DMA layer, so we now move
on to that topic.

The Generic DMA Layer

DMA operations, in the end, come down to allocating a buffer and passing bus
addresses to your device. However, the task of writing portable drivers that perform
DMA safely and correctly on all architectures is harder than one might think. Differ-
ent systems have different ideas of how cache coherency should work; if you do not
handle this issue correctly, your driver may corrupt memory. Some systems have
complicated bus hardware that can make the DMA task easie—or harder. And not
all systems can perform DMA out of all parts of memory. Fortunately, the kernel
provides a bus- and architecture-independent DMA layer that hides most of these
issues from the driver author. We strongly encourage you to use this layer for DMA
operations in any driver you write.

Many of the functions below require a pointer to a struct device. This structure is
the low-level representation of a device within the Linux device model. It is not
something that drivers often have to work with directly, but you do need it when
using the generic DMA layer. Usually, you can find this structure buried inside the
bus specific that describes your device. For example, it can be found as the dev field
in struct pci_device or struct usb_device. The device structure is covered in detail
in Chapter 14.

Drivers that use the following functions should include <linux/dma-mapping.h>.

Dealing with difficult hardware

The first question that must be answered before attempting DMA is whether the
given device is capable of such an operation on the current host. Many devices are
limited in the range of memory they can address, for a number of reasons. By default,
the kernel assumes that your device can perform DMA to any 32-bit address. If this is
not the case, you should inform the kernel of that fact with a call to:

int dma_set mask(struct device *dev, u64 mask);
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The mask should show the bits that your device can address; if it is limited to 24 bits,
for example, you would pass mask as 0xOFFFFFF. The return value is nonzero if DMA
is possible with the given mask; if dma_set_mask returns 0, you are not able to use
DMA operations with this device. Thus, the initialization code in a driver for a device
limited to 24-bit DMA operations might look like:

if (dma_set mask (dev, oxffffff))

card->use_dma = 1;
else {

card->use dma = 0;  /* We'll have to live without DMA */
printk (KERN_WARN, "mydev: DMA not supported\n");

Again, if your device supports normal, 32-bit DMA operations, there is no need to
call dma_set_mask.

DMA mappings

A DMA mapping is a combination of allocating a DMA buffer and generating an
address for that buffer that is accessible by the device. It is tempting to get that
address with a simple call to virt_to_bus, but there are strong reasons for avoiding
that approach. The first of those is that reasonable hardware comes with an IOMMU
that provides a set of mapping registers for the bus. The IOMMU can arrange for any
physical memory to appear within the address range accessible by the device, and it
can cause physically scattered buffers to look contiguous to the device. Making use
of the IOMMU requires using the generic DMA layer; virt_to_bus is not up to the
task.

Note that not all architectures have an IOMMU; in particular, the popular x86 plat-
form has no IOMMU support. A properly written driver need not be aware of the I/O
support hardware it is running over, however.

Setting up a useful address for the device may also, in some cases, require the estab-
lishment of a bounce buffer. Bounce buffers are created when a driver attempts to
perform DMA on an address that is not reachable by the peripheral device—a high-
memory address, for example. Data is then copied to and from the bounce buffer as
needed. Needless to say, use of bounce buffers can slow things down, but some-
times there is no alternative.

DMA mappings must also address the issue of cache coherency. Remember that mod-
ern processors keep copies of recently accessed memory areas in a fast, local cache;
without this cache, reasonable performance is not possible. If your device changes an
area of main memory, it is imperative that any processor caches covering that area be
invalidated; otherwise the processor may work with an incorrect image of main mem-
ory, and data corruption results. Similarly, when your device uses DMA to read data
from main memory, any changes to that memory residing in processor caches must be
flushed out first. These cache coherency issues can create no end of obscure and diffi-
cult-to-find bugs if the programmer is not careful. Some architectures manage cache
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coherency in the hardware, but others require software support. The generic DMA
layer goes to great lengths to ensure that things work correctly on all architectures,
but, as we will see, proper behavior requires adherence to a small set of rules.

The DMA mapping sets up a new type, dma_addr_t, to represent bus addresses. Vari-
ables of type dma_addr_t should be treated as opaque by the driver; the only allow-
able operations are to pass them to the DMA support routines and to the device
itself. As a bus address, dma_addr_t may lead to unexpected problems if used directly
by the CPU.

The PCI code distinguishes between two types of DMA mappings, depending on
how long the DMA buffer is expected to stay around:

Coherent DMA mappings
These mappings usually exist for the life of the driver. A coherent buffer must be
simultaneously available to both the CPU and the peripheral (other types of
mappings, as we will see later, can be available only to one or the other at any
given time). As a result, coherent mappings must live in cache-coherent mem-
ory. Coherent mappings can be expensive to set up and use.

Streaming DMA mappings

Streaming mappings are usually set up for a single operation. Some architec-
tures allow for significant optimizations when streaming mappings are used, as
we see, but these mappings also are subject to a stricter set of rules in how they
may be accessed. The kernel developers recommend the use of streaming map-
pings over coherent mappings whenever possible. There are two reasons for this
recommendation. The first is that, on systems that support mapping registers,
each DMA mapping uses one or more of them on the bus. Coherent mappings,
which have a long lifetime, can monopolize these registers for a long time, even
when they are not being used. The other reason is that, on some hardware,
streaming mappings can be optimized in ways that are not available to coherent
mappings.

The two mapping types must be manipulated in different ways; it’s time to look at
the details.

Setting up coherent DMA mappings
A driver can set up a coherent mapping with a call to dma_alloc_coherent:

void *dma_alloc_coherent(struct device *dev, size t size,
dma_addr_t *dma_handle, int flag);
This function handles both the allocation and the mapping of the buffer. The first two
arguments are the device structure and the size of the buffer needed. The function
returns the result of the DMA mapping in two places. The return value from the func-
tion is a kernel virtual address for the buffer, which may be used by the driver; the
associated bus address, meanwhile, is returned in dma_handle. Allocation is handled in
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this function so that the buffer is placed in a location that works with DMA; usually
the memory is just allocated with get_free_pages (but note that the size is in bytes,
rather than an order value). The flag argument is the usual GFP_ value describing how
the memory is to be allocated; it should usually be GFP_KERNEL (usually) or GFP_ATOMIC
(when running in atomic context).

When the buffer is no longer needed (usually at module unload time), it should be
returned to the system with dma_free_coherent:
void dma_free coherent(struct device *dev, size t size,
void *vaddr, dma_addr t dma_handle);
Note that this function, like many of the generic DMA functions, requires that all of
the size, CPU address, and bus address arguments be provided.

DMA pools

A DMA pool is an allocation mechanism for small, coherent DMA mappings. Map-
pings obtained from dma_alloc_coherent may have a minimum size of one page. If
your device needs smaller DMA areas than that, you should probably be using a
DMA pool. DMA pools are also useful in situations where you may be tempted to
perform DMA to small areas embedded within a larger structure. Some very obscure
driver bugs have been traced down to cache coherency problems with structure fields
adjacent to small DMA areas. To avoid this problem, you should always allocate
areas for DMA operations explicitly, away from other, non-DMA data structures.

The DMA pool functions are defined in <linux/dmapool.h>.

A DMA pool must be created before use with a call to:

struct dma_pool *dma_pool create(const char *name, struct device *dev,
size t size, size t align,
size t allocation);

Here, name is a name for the pool, dev is your device structure, size is the size of the
buffers to be allocated from this pool, align is the required hardware alignment for
allocations from the pool (expressed in bytes), and allocation is, if nonzero, a mem-
ory boundary that allocations should not exceed. If allocation is passed as 4096, for
example, the buffers allocated from this pool do not cross 4-KB boundaries.

When you are done with a pool, it can be freed with:

void dma_pool destroy(struct dma_pool *pool);
You should return all allocations to the pool before destroying it.
Allocations are handled with dma_pool_alloc:

void *dma_pool alloc(struct dma_pool *pool, int mem flags,
dma_addr t *handle);

For this call, mem_flags is the usual set of GFP_ allocation flags. If all goes well, a
region of memory (of the size specified when the pool was created) is allocated and
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returned. As with dma_alloc_coherent, the address of the resulting DMA buffer is
returned as a kernel virtual address and stored in handle as a bus address.

Unneeded buffers should be returned to the pool with:

void dma_pool free(struct dma_pool *pool, void *vaddr, dma_addr t addr);

Setting up streaming DMA mappings

Streaming mappings have a more complicated interface than the coherent variety, for
a number of reasons. These mappings expect to work with a buffer that has already
been allocated by the driver and, therefore, have to deal with addresses that they did
not choose. On some architectures, streaming mappings can also have multiple, dis-
contiguous pages and multipart “scatter/gather” buffers. For all of these reasons,
streaming mappings have their own set of mapping functions.

When setting up a streaming mapping, you must tell the kernel in which direction
the data is moving. Some symbols (of type enum dma_data direction) have been
defined for this purpose:

DMA_TO_DEVICE
DMA_FROM_DEVICE
These two symbols should be reasonably self-explanatory. If data is being sent to
the device (in response, perhaps, to a write system call), DMA_TO DEVICE should be
used; data going to the CPU, instead, is marked with DMA_FROM DEVICE.
DMA_BIDIRECTIONAL
If data can move in either direction, use DMA_BIDIRECTIONAL.
DMA _NONE
This symbol is provided only as a debugging aid. Attempts to use buffers with
this “direction” cause a kernel panic.

It may be tempting to just pick DMA_BIDIRECTIONAL at all times, but driver authors
should resist that temptation. On some architectures, there is a performance penalty
to pay for that choice.

When you have a single buffer to transfer, map it with dma_map_single:

dma_addr_t dma_map single(struct device *dev, void *buffer, size t size,
enum dma_data direction direction);

The return value is the bus address that you can pass to the device or NULL if some-
thing goes wrong.

Once the transfer is complete, the mapping should be deleted with dma_unmap_single:

void dma_unmap_single(struct device *dev, dma_addr t dma_addr, size t size,
enum dma_data direction direction);

Here, the size and direction arguments must match those used to map the buffer.
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Some important rules apply to streaming DMA mappings:

* The buffer must be used only for a transfer that matches the direction value
given when it was mapped.

* Once a buffer has been mapped, it belongs to the device, not the processor. Until
the buffer has been unmapped, the driver should not touch its contents in any
way. Only after dma_unmap_single has been called is it safe for the driver to
access the contents of the buffer (with one exception that we see shortly).
Among other things, this rule implies that a buffer being written to a device can-
not be mapped until it contains all the data to write.

* The buffer must not be unmapped while DMA is still active, or serious system
instability is guaranteed.

You may be wondering why the driver can no longer work with a buffer once it has
been mapped. There are actually two reasons why this rule makes sense. First, when
a buffer is mapped for DMA, the kernel must ensure that all of the data in that buffer
has actually been written to memory. It is likely that some data is in the processor’s
cache when dma_unmap_single is issued, and must be explicitly flushed. Data writ-
ten to the buffer by the processor after the flush may not be visible to the device.

Second, consider what happens if the buffer to be mapped is in a region of memory
that is not accessible to the device. Some architectures simply fail in this case, but
others create a bounce buffer. The bounce bulffer is just a separate region of memory
that is accessible to the device. If a buffer is mapped with a direction of DMA_TO_
DEVICE, and a bounce buffer is required, the contents of the original buffer are cop-
ied as part of the mapping operation. Clearly, changes to the original buffer after the
copy are not seen by the device. Similarly, DMA_FROM_DEVICE bounce buffers are cop-
ied back to the original buffer by dma_unmap_single; the data from the device is not
present until that copy has been done.

Incidentally, bounce buffers are one reason why it is important to get the direction
right. DMA_BIDIRECTIONAL bounce buffers are copied both before and after the opera-
tion, which is often an unnecessary waste of CPU cycles.

Occasionally a driver needs to access the contents of a streaming DMA buffer with-
out unmapping it. A call has been provided to make this possible:
void dma_sync_single for cpu(struct device *dev, dma_handle t bus addr,
size t size, enum dma_data_direction direction);

This function should be called before the processor accesses a streaming DMA
buffer. Once the call has been made, the CPU “owns” the DMA buffer and can work
with it as needed. Before the device accesses the buffer, however, ownership should
be transferred back to it with:

void dma_sync_single for device(struct device *dev, dma_handle t bus_addr,
size t size, enum dma_data_direction direction);
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The processor, once again, should not access the DMA bulffer after this call has been
made.

Single-page streaming mappings

Occasionally, you may want to set up a mapping on a buffer for which you have a
struct page pointer; this can happen, for example, with user-space buffers mapped
with get_user_pages. To set up and tear down streaming mappings using struct page
pointers, use the following:

dma_addr_t dma_map_page(struct device *dev, struct page *page,

unsigned long offset, size t size,
enum dma_data_direction direction);

void dma_unmap_page(struct device *dev, dma_addr t dma_address,
size t size, enum dma_data_direction direction);
The offset and size arguments can be used to map part of a page. It is recom-
mended, however, that partial-page mappings be avoided unless you are really sure
of what you are doing. Mapping part of a page can lead to cache coherency prob-
lems if the allocation covers only part of a cache line; that, in turn, can lead to mem-
ory corruption and extremely difficult-to-debug bugs.

Scatter/gather mappings

Scatter/gather mappings are a special type of streaming DMA mapping. Suppose you
have several buffers, all of which need to be transferred to or from the device. This
situation can come about in several ways, including from a readv or writev system
call, a clustered disk I/O request, or a list of pages in a mapped kernel I/O buffer.
You could simply map each bulffer, in turn, and perform the required operation, but
there are advantages to mapping the whole list at once.

Many devices can accept a scatterlist of array pointers and lengths, and transfer them
all in one DMA operation; for example, “zero-copy” networking is easier if packets
can be built in multiple pieces. Another reason to map scatterlists as a whole is to
take advantage of systems that have mapping registers in the bus hardware. On such
systems, physically discontiguous pages can be assembled into a single, contiguous
array from the device’s point of view. This technique works only when the entries in
the scatterlist are equal to the page size in length (except the first and last), but when
it does work, it can turn multiple operations into a single DMA, and speed things up
accordingly.

Finally, if a bounce buffer must be used, it makes sense to coalesce the entire list into
a single buffer (since it is being copied anyway).

So now you’re convinced that mapping of scatterlists is worthwhile in some situa-
tions. The first step in mapping a scatterlist is to create and fill in an array of struct
scatterlist describing the buffers to be transferred. This structure is architecture
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dependent, and is described in <asm/scatterlist.h>. However, it always contains three
fields:

struct page *page;
The struct page pointer corresponding to the buffer to be used in the scatter/gather
operation.

unsigned int length;
unsigned int offset;
The length of that buffer and its offset within the page

To map a scatter/gather DMA operation, your driver should set the page, offset, and
length fields in a struct scatterlist entry for each buffer to be transferred. Then
call:
int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction direction)
where nents is the number of scatterlist entries passed in. The return value is the
number of DMA buffers to transfer; it may be less than nents.

For each buffer in the input scatterlist, dma_map_sg determines the proper bus
address to give to the device. As part of that task, it also coalesces buffers that are
adjacent to each other in memory. If the system your driver is running on has an I/O
memory management unit, dma_map_sg also programs that unit’s mapping regis-
ters, with the possible result that, from your device’s point of view, you are able to
transfer a single, contiguous buffer. You will never know what the resulting transfer
will look like, however, until after the call.

Your driver should transfer each buffer returned by pci_map_sg. The bus address and
length of each buffer are stored in the struct scatterlist entries, but their location
in the structure varies from one architecture to the next. Two macros have been
defined to make it possible to write portable code:

dma_addr t sg dma_address(struct scatterlist *sg);
Returns the bus (DMA) address from this scatterlist entry.

unsigned int sg dma len(struct scatterlist *sg);
Returns the length of this buffer.

Again, remember that the address and length of the buffers to transfer may be differ-
ent from what was passed in to dma_map_sg.

Once the transfer is complete, a scatter/gather mapping is unmapped with a call to
dma_unmap_sg:

void dma_unmap_sg(struct device *dev, struct scatterlist *list,
int nents, enum dma_data_direction direction);

Note that nents must be the number of entries that you originally passed to dma_map_sg
and not the number of DMA bulffers the function returned to you.
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Scatter/gather mappings are streaming DMA mappings, and the same access rules
apply to them as to the single variety. If you must access a mapped scatter/gather list,
you must synchronize it first:
void dma_sync_sg_for cpu(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction direction);

void dma_sync_sg for device(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction direction);

PCl double-address cycle mappings

Normally, the DMA support layer works with 32-bit bus addresses, possibly
restricted by a specific device’s DMA mask. The PCI bus, however, also supports a
64-bit addressing mode, the double-address cycle (DAC). The generic DMA layer
does not support this mode for a couple of reasons, the first of which being that it is
a PCl-specific feature. Also, many implementations of DAC are buggy at best, and,
because DAC is slower than a regular, 32-bit DMA, there can be a performance cost.
Even so, there are applications where using DAC can be the right thing to do; if you
have a device that is likely to be working with very large buffers placed in high mem-
ory, you may want to consider implementing DAC support. This support is avail-
able only for the PCI bus, so PCl-specific routines must be used.

To use DAC, your driver must include <linux/pci.h>. You must set a separate DMA
mask:

int pci dac_set dma_mask(struct pci_dev *pdev, ub4 mask);
You can use DAC addressing only if this call returns 0.

A special type (dma64_addr t) is used for DAC mappings. To establish one of these
mappings, call pci_dac_page_to_dma:
dmab4_addr_t pci_dac_page to_dma(struct pci_dev *pdev, struct page *page,
unsigned long offset, int direction);

DAC mappings, you will notice, can be made only from struct page pointers (they
should live in high memory, after all, or there is no point in using them); they
must be created a single page at a time. The direction argument is the PCI equiv-
alent of the enum dma_data_direction used in the generic DMA layer; it should be
PCI_DMA TODEVICE, PCI_DMA FROMDEVICE, or PCI_DMA BIDIRECTIONAL.

DAC mappings require no external resources, so there is no need to explicitly release
them after use. It is necessary, however, to treat DAC mappings like other streaming
mappings, and observe the rules regarding buffer ownership. There is a set of func-
tions for synchronizing DMA bulffers that is analogous to the generic variety:
void pci dac_dma_sync_single for cpu(struct pci dev *pdev,
dma64_addr_t dma_addr,

size t len,
int direction);
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void pci_dac_dma_sync_single for device(struct pci_dev *pdev,
dma64_addr t dma_addr,
size t len,
int direction);

A simple PCI DMA example

As an example of how the DMA mappings might be used, we present a simple exam-
ple of DMA coding for a PCI device. The actual form of DMA operations on the PCI
bus is very dependent on the device being driven. Thus, this example does not apply
to any real device; instead, it is part of a hypothetical driver called dad (DMA Acqui-
sition Device). A driver for this device might define a transfer function like this:

int dad_transfer(struct dad dev *dev, int write, void *buffer,
size t count)

{
dma_addr_t bus_addr;
/* Map the buffer for DMA */
dev->dma_dir = (write ? DMA _TO DEVICE : DMA FROM DEVICE);
dev->dma_size = count;
bus_addr = dma_map_single(&dev->pci_dev->dev, buffer, count,
dev->dma_dir);
dev->dma_addr = bus_addr;
/* Set up the device */
writeb(dev->registers.command, DAD_CMD_DISABLEDMA);
writeb(dev->registers.command, write ? DAD_CMD_WR : DAD_CMD RD);
writel(dev->registers.addr, cpu_to le32(bus_addr));
writel(dev->registers.len, cpu_to le32(count));
/* Start the operation */
writeb(dev->registers.command, DAD CMD_ENABLEDMA);
return 0;
}

This function maps the buffer to be transferred and starts the device operation. The
other half of the job must be done in the interrupt service routine, which looks some-

thing like this:
void dad_interrupt(int irq, void *dev_id, struct pt regs *regs)
{ struct dad_dev *dev = (struct dad dev *) dev_id;
/* Make sure it's really our device interrupting */
/* Unmap the DMA buffer */
dma_unmap_single(dev->pci_dev->dev, dev->dma_addr,
dev->dma_size, dev->dma_dir);
/* Only now is it safe to access the buffer, copy to user, etc. */
}
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Obviously, a great deal of detail has been left out of this example, including what-
ever steps may be required to prevent attempts to start multiple, simultaneous DMA
operations.

DMA for ISA Devices

The ISA bus allows for two kinds of DMA transfers: native DMA and ISA bus mas-
ter DMA. Native DMA uses standard DMA-controller circuitry on the motherboard
to drive the signal lines on the ISA bus. ISA bus master DMA, on the other hand, is
handled entirely by the peripheral device. The latter type of DMA is rarely used and
doesn’t require discussion here, because it is similar to DMA for PCI devices, at least
from the driver’s point of view. An example of an ISA bus master is the 1542 SCSI
controller, whose driver is drivers/scsi/fahal 542.c in the kernel sources.

As far as native DMA is concerned, there are three entities involved in a DMA data
transfer on the ISA bus:

The 8237 DMA controller (DMAC)
The controller holds information about the DMA transfer, such as the direction,
the memory address, and the size of the transfer. It also contains a counter that
tracks the status of ongoing transfers. When the controller receives a DMA
request signal, it gains control of the bus and drives the signal lines so that the
device can read or write its data.

The peripheral device
The device must activate the DMA request signal when it’s ready to transfer
data. The actual transfer is managed by the DMAC; the hardware device sequen-
tially reads or writes data onto the bus when the controller strobes the device.
The device usually raises an interrupt when the transfer is over.

The device driver
The driver has little to do; it provides the DMA controller with the direction, bus
address, and size of the transfer. It also talks to its peripheral to prepare it for
transferring the data and responds to the interrupt when the DMA is over.

The original DMA controller used in the PC could manage four “channels,” each
associated with one set of DMA registers. Four devices could store their DMA infor-
mation in the controller at the same time. Newer PCs contain the equivalent of two
DMAC devices:” the second controller (master) is connected to the system proces-
sor, and the first (slave) is connected to channel 0 of the second controller.t

* These circuits are now part of the motherboard’s chipset, but a few years ago they were two separate 8237
chips.

t The original PCs had only one controller; the second was added in 286-based platforms. However, the sec-
ond controller is connected as the master because it handles 16-bit transfers; the first transfers only eight bits
at a time and is there for backward compatibility.
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The channels are numbered from 0-7: channel 4 is not available to ISA peripherals,
because it is used internally to cascade the slave controller onto the master. The
available channels are, thus, 0-3 on the slave (the 8-bit channels) and 5-7 on the
master (the 16-bit channels). The size of any DMA transfer, as stored in the control-
ler, is a 16-bit number representing the number of bus cycles. The maximum trans-
fer size is, therefore, 64 KB for the slave controller (because it transfers eight bits in
one cycle) and 128 KB for the master (which does 16-bit transfers).

Because the DMA controller is a system-wide resource, the kernel helps deal with it.
It uses a DMA registry to provide a request-and-free mechanism for the DMA chan-
nels and a set of functions to configure channel information in the DMA controller.

Registering DMA usage

You should be used to kernel registries—we’ve already seen them for I/O ports and
interrupt lines. The DMA channel registry is similar to the others. After <asm/dma.h>
has been included, the following functions can be used to obtain and release owner-
ship of a DMA channel:

int request_dma(unsigned int channel, const char *name);

void free dma(unsigned int channel);
The channel argument is a number between 0 and 7 or, more precisely, a positive
number less than MAX_DMA_CHANNELS. On the PC, MAX_DMA CHANNELS is defined as 8 to
match the hardware. The name argument is a string identifying the device. The speci-
fied name appears in the file /proc/dma, which can be read by user programs.

The return value from request_dma is 0 for success and -EINVAL or -EBUSY if there was
an error. The former means that the requested channel is out of range, and the latter
means that another device is holding the channel.

We recommend that you take the same care with DMA channels as with I/O ports
and interrupt lines; requesting the channel at open time is much better than request-
ing it from the module initialization function. Delaying the request allows some shar-
ing between drivers; for example, your sound card and your analog I/O interface can
share the DMA channel as long as they are not used at the same time.

We also suggest that you request the DMA channel after you’ve requested the inter-
rupt line and that you release it before the interrupt. This is the conventional order
for requesting the two resources; following the convention avoids possible dead-
locks. Note that every device using DMA needs an IRQ line as well; otherwise, it
couldn’t signal the completion of data transfer.

In a typical case, the code for open looks like the following, which refers to our hypo-
thetical dad module. The dad device as shown uses a fast interrupt handler without
support for shared IRQ lines.

int dad_open (struct inode *inode, struct file *filp)

struct dad_device *my device;
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VARV
if ( (error = request irq(my device.irq, dad_interrupt,
SA_INTERRUPT, "dad", NULL)) )
return error; /* or implement blocking open */

if ( (error = request _dma(my device.dma, "dad")) ) {
free_irq(my_device.irq, NULL);
return error; /* or implement blocking open */

}
VA
return 0;

}
The close implementation that matches the open just shown looks like this:

void dad close (struct inode *inode, struct file *filp)

{
struct dad_device *my_device;
VA
free_dma(my_device.dma);
free irq(my_device.irg, NULL);
VALY

}

Here’s how the /proc/dma file looks on a system with the sound card installed:

merlino% cat /proc/dma
1: Sound Blaster8
4: cascade
It’s interesting to note that the default sound driver gets the DMA channel at system
boot and never releases it. The cascade entry is a placeholder, indicating that chan-
nel 4 is not available to drivers, as explained earlier.

Talking to the DMA controller

After registration, the main part of the driver’s job consists of configuring the DMA
controller for proper operation. This task is not trivial, but fortunately, the kernel
exports all the functions needed by the typical driver.

The driver needs to configure the DMA controller either when read or write is called,
or when preparing for asynchronous transfers. This latter task is performed either at
open time or in response to an ioctl command, depending on the driver and the pol-
icy it implements. The code shown here is the code that is typically called by the read
or write device methods.

This subsection provides a quick overview of the internals of the DMA controller so
you understand the code introduced here. If you want to learn more, we’d urge you
to read <asm/dma.h> and some hardware manuals describing the PC architecture. In
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particular, we don’t deal with the issue of 8-bit versus 16-bit data transfers. If you are
writing device drivers for ISA device boards, you should find the relevant informa-
tion in the hardware manuals for the devices.

The DMA controller is a shared resource, and confusion could arise if more than one
processor attempts to program it simultaneously. For that reason, the controller is
protected by a spinlock, called dma_spin lock. Drivers should not manipulate the
lock directly; however, two functions have been provided to do that for you:

unsigned long claim_dma_lock();
Acquires the DMA spinlock. This function also blocks interrupts on the local
processor; therefore, the return value is a set of flags describing the previous
interrupt state; it must be passed to the following function to restore the inter-
rupt state when you are done with the lock.

void release dma lock(unsigned long flags);
Returns the DMA spinlock and restores the previous interrupt status.

The spinlock should be held when using the functions described next. It should not
be held during the actual I/O, however. A driver should never sleep when holding a
spinlock.

The information that must be loaded into the controller consists of three items: the
RAM address, the number of atomic items that must be transferred (in bytes or
words), and the direction of the transfer. To this end, the following functions are
exported by <asm/dma.h>:

void set dma mode(unsigned int channel, char mode);
Indicates whether the channel must read from the device (DMA_MODE READ) or
write to it (DMA_MODE_WRITE). A third mode exists, DMA MODE_CASCADE, which is
used to release control of the bus. Cascading is the way the first controller is con-
nected to the top of the second, but it can also be used by true ISA bus-master
devices. We won’t discuss bus mastering here.

void set dma_addr(unsigned int channel, unsigned int addr);
Assigns the address of the DMA buffer. The function stores the 24 least signifi-
cant bits of addr in the controller. The addr argument must be a bus address (see
the section “Bus Addresses” earlier in this chapter).

void set_dma_count(unsigned int channel, unsigned int count);
Assigns the number of bytes to transfer. The count argument represents bytes for
16-bit channels as well; in this case, the number must be even.
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In addition to these functions, there are a number of housekeeping facilities that
must be used when dealing with DMA devices:

void disable dma(unsigned int channel);
A DMA channel can be disabled within the controller. The channel should be
disabled before the controller is configured to prevent improper operation. (Oth-
erwise, corruption can occur because the controller is programmed via 8-bit data
transfers and, therefore, none of the previous functions is executed atomically).

void enable dma(unsigned int channel);
This function tells the controller that the DMA channel contains valid data.

int get dma_residue(unsigned int channel);
The driver sometimes needs to know whether a DMA transfer has been com-
pleted. This function returns the number of bytes that are still to be transferred.
The return value is 0 after a successful transfer and is unpredictable (but not 0)
while the controller is working. The unpredictability springs from the need to
obtain the 16-bit residue through two 8-bit input operations.

void clear dma_ff(unsigned int channel)
This function clears the DMA flip-flop. The flip-flop is used to control access to
16-bit registers. The registers are accessed by two consecutive 8-bit operations,
and the flip-flop is used to select the least significant byte (when it is clear) or the
most significant byte (when it is set). The flip-flop automatically toggles when
eight bits have been transferred; the programmer must clear the flip-flop (to set
it to a known state) before accessing the DMA registers.

Using these functions, a driver can implement a function like the following to pre-
pare for a DMA transfer:

int dad_dma_prepare(int channel, int mode, unsigned int buf,
unsigned int count)

{
unsigned long flags;
flags = claim_dma_lock();
disable dma(channel);
clear _dma_ff(channel);
set_dma_mode(channel, mode);
set_dma_addr(channel, virt to bus(buf));
set_dma_count(channel, count);
enable _dma(channel);
release_dma_lock(flags);
return 0;
}
Then, a function like the next one is used to check for successful completion of
DMA:
int dad_dma_isdone(int channel)
{
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*

int residue;

unsigned long flags = claim dma lock ();

residue = get dma_residue(channel);

release_dma_lock(flags);

return (residue == 0);

}

The only thing that remains to be done is to configure the device board. This device-
specific task usually consists of reading or writing a few I/O ports. Devices differ in
significant ways. For example, some devices expect the programmer to tell the hard-
ware how big the DMA bulffer is, and sometimes the driver has to read a value that is
hardwired into the device. For configuring the board, the hardware manual is your
only friend.

Quick Reference

This chapter introduced the following symbols related to memory handling.

Introductory Material

#include <linux/mm.h>

#include <asm/page.h>
Most of the functions and structures related to memory management are proto-
typed and defined in these header files.

void * va(unsigned long physaddr);
unsigned long _ pa(void *kaddr);
Macros that convert between kernel logical addresses and physical addresses.

PAGE_SIZE

PAGE_SHIFT
Constants that give the size (in bytes) of a page on the underlying hardware and
the number of bits that a page frame number must be shifted to turn it into a
physical address.

struct page
Structure that represents a hardware page in the system memory map.

struct page *virt to page(void *kaddr);

void *page address(struct page *page);

struct page *pfn_to page(int pfn);
Macros that convert between kernel logical addresses and their associated mem-
ory map entries. page_address works only for low-memory pages or high-memory
pages that have been explicitly mapped. pfn_to_page converts a page frame num-
ber to its associated struct page pointer.
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*

unsigned long kmap(struct page *page);

void kunmap(struct page *page);
kmap returns a kernel virtual address that is mapped to the given page, creating
the mapping if need be. kunmap deletes the mapping for the given page.

#include <linux/highmem.h>

#include <asm/kmap_types.h>

void *kmap atomic(struct page *page, enum km_type type);

void kunmap atomic(void *addr, enum km type type);
The high-performance version of kmap; the resulting mappings can be held only by
atomic code. For drivers, type should be KM_USER0, KM_USER1, KM_IRQO, or KM IRQ1.

struct vm_area_struct;
Structure describing a VMA.

Implementing mmap

int remap pfn_range(struct vm_area struct *vma, unsigned long virt add,
unsigned long pfn, unsigned long size, pgprot t prot);
int io remap page range(struct vm area struct *vma, unsigned long virt add,
unsigned long phys add, unsigned long size, pgprot t prot);
Functions that sit at the heart of mmap. They map size bytes of physical
addresses, starting at the page number indicated by pfn to the virtual address
virt_add. The protection bits associated with the virtual space are specified in
prot. io_remap_page_range should be used when the target address is in I/O
memory space.

struct page *vmalloc to page(void *vmaddr);
Converts a kernel virtual address obtained from vmalloc to its corresponding
struct page pointer.

Implementing Direct 1/0

int get user pages(struct task struct *tsk, struct mm struct *mm, unsigned
long start, int len, int write, int force, struct page **pages, struct
vm_area_struct **vmas);
Function that locks a user-space buffer into memory and returns the correspond-
ing struct page pointers. The caller must hold mm->mmap_sem.
SetPageDirty(struct page *page);
Macro that marks the given page as “dirty” (modified) and in need of writing to
its backing store before it can be freed.
void page cache release(struct page *page);
Frees the given page from the page cache.
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*

int is_sync_kiocb(struct kiocb *iocb);

Macro that returns nonzero if the given IOCB requires synchronous execution.
int aio complete(struct kiocb *iocb, long res, long res2);

Function that indicates completion of an asynchronous I/O operation.

Direct Memory Access

#include <asm/io.h>

unsigned long virt to bus(volatile void * address);

void * bus_to virt(unsigned long address);
Obsolete and deprecated functions that convert between kernel, virtual, and bus
addresses. Bus addresses must be used to talk to peripheral devices.

#include <linux/dma-mapping.h>
Header file required to define the generic DMA functions.

int dma_set mask(struct device *dev, u64 mask);
For peripherals that cannot address the full 32-bit range, this function informs
the kernel of the addressable range and returns nonzero if DMA is possible.

void *dma_alloc_coherent(struct device *dev, size t size, dma_addr t
*bus_addr, int flag)
void dma_free coherent(struct device *dev, size t size, void *cpuaddr,
dma_handle t bus addr);
Allocate and free coherent DMA mappings for a buffer that will last the lifetime
of the driver.

#include <linux/dmapool.h>

struct dma_pool *dma pool create(const char *name, struct device *dev,
size tsize, size t align, size t allocation);

void dma_pool destroy(struct dma_pool *pool);

void *dma_pool alloc(struct dma_pool *pool, int mem flags, dma addr t
*handle);

void dma_pool free(struct dma_pool *pool, void *vaddr, dma_addr t handle);

Functions that create, destroy, and use DMA pools to manage small DMA areas.

enum dma_data_direction;

DMA_TO DEVICE

DMA_FROM DEVICE

DMA BIDIRECTIONAL

DMA _NONE
Symbols used to tell the streaming mapping functions the direction in which
data is moving to or from the buffer.
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dma_addr t dma_map_single(struct device *dev, void *buffer, size t size, enum
dma_data_direction direction);
void dma_unmap single(struct device *dev, dma_addr t bus addr, size t size,
enum dma_data direction direction);
Create and destroy a single-use, streaming DMA mapping.
void dma_sync_single for cpu(struct device *dev, dma_handle t bus addr, size t
size, enum dma_data direction direction);
void dma_sync_single for device(struct device *dev, dma_handle t bus addr,
size t size, enum dma_data_direction direction);
Synchronizes a buffer that has a streaming mapping. These functions must be
used if the processor must access a buffer while the streaming mapping is in
place (i.e., while the device owns the bulffer).

#include <asm/scatterlist.h>

struct scatterlist { /* ... */ };

dma_addr t sg dma_address(struct scatterlist *sg);

unsigned int sg dma len(struct scatterlist *sg);
The scatterlist structure describes an I/O operation that involves more than
one buffer. The macros sg_dma_address and sg_dma_len may be used to extract
bus addresses and buffer lengths to pass to the device when implementing scat-
ter/gather operations.

dma_map_sg(struct device *dev, struct scatterlist *1list, int nents,
enum dma_data direction direction);
dma_unmap_sg(struct device *dev, struct scatterlist *1list, int nents, enum
dma_data_direction direction);
void dma_sync_sg for cpu(struct device *dev, struct scatterlist *sg, int
nents, enum dma_data direction direction);
void dma_sync_sg for device(struct device *dev, struct scatterlist *sg, int
nents, enum dma_data direction direction);
dma_map_sg maps a scatter/gather operation, and dma_unmap_sg undoes
that mapping. If the buffers must be accessed while the mapping is active,
dma_sync_sg_" may be used to synchronize things.

/proc/dma
File that contains a textual snapshot of the allocated channels in the DMA con-
trollers. PCl-based DMA is not shown because each board works indepen-
dently, without the need to allocate a channel in the DMA controller.

#include <asm/dma.h>
Header that defines or prototypes all the functions and macros related to DMA.
It must be included to use any of the following symbols.
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int request dma(unsigned int channel, const char *name);

void free dma(unsigned int channel);
Access the DMA registry. Registration must be performed before using ISA DMA
channels.

unsigned long claim_dma_lock();

void release_dma_lock(unsigned long flags);
Acquire and release the DMA spinlock, which must be held prior to calling the
other ISA DMA functions described later in this list. They also disable and reen-
able interrupts on the local processor.

void set_dma_mode(unsigned int channel, char mode);
void set_dma_addr(unsigned int channel, unsigned int addr);
void set_dma_count(unsigned int channel, unsigned int count);
Program DMA information in the DMA controller. addr is a bus address.

void disable dma(unsigned int channel);

void enable dma(unsigned int channel);
A DMA channel must be disabled during configuration. These functions change
the status of the DMA channel.

int get dma_residue(unsigned int channel);
If the driver needs to know how a DMA transfer is proceeding, it can call this
function, which returns the number of data transfers that are yet to be com-
pleted. After successful completion of DMA, the function returns 0; the value is
unpredictable while data is being transferred.

void clear dma_ff(unsigned int channel)
The DMA flip-flop is used by the controller to transfer 16-bit values by means of
two 8-bit operations. It must be cleared before sending any data to the controller.
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