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CHAPTER 14
The Linux Device Model

One of the stated goals for the 2.5 development cycle was the creation of a unified
device model for the kernel. Previous kernels had no single data structure to which
they could turn to obtain information about how the system is put together. Despite
this lack of information, things worked well for some time. The demands of newer
systems, with their more complicated topologies and need to support features such
as power management, made it clear, however, that a general abstraction describing
the structure of the system was needed.

The 2.6 device model provides that abstraction. It is now used within the kernel to
support a wide variety of tasks, including:

Power management and system shutdown
These require an understanding of the system’s structure. For example, a USB
host adaptor cannot be shut down before dealing with all of the devices con-
nected to that adaptor. The device model enables a traversal of the system’s
hardware in the right order.

Communications with user space
The implementation of the sysfs virtual filesystem is tightly tied into the device
model and exposes the structure represented by it. The provision of information
about the system to user space and knobs for changing operating parameters is
increasingly done through sysfs and, therefore, through the device model.

Hotpluggable devices
Computer hardware is increasingly dynamic; peripherals can come and go at the
whim of the user. The hotplug mechanism used within the kernel to handle and
(especially) communicate with user space about the plugging and unplugging of
devices is managed through the device model.

Device classes
Many parts of the system have little interest in how devices are connected, but
they need to know what kinds of devices are available. The device model
includes a mechanism for assigning devices to classes, which describe those
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devices at a higher, functional level and allow them to be discovered from user
space.

Object lifecycles
Many of the functions described above, including hotplug support and sysfs,
complicate the creation and manipulation of objects created within the kernel.
The implementation of the device model required the creation of a set of mecha-
nisms for dealing with object lifecycles, their relationships to each other, and
their representation in user space.

The Linux device model is a complex data structure. For example, consider
Figure 14-1, which shows (in simplified form) a tiny piece of the device model struc-
ture associated with a USB mouse. Down the center of the diagram, we see the part
of the core “devices” tree that shows how the mouse is connected to the system. The
“bus” tree tracks what is connected to each bus, while the subtree under “classes”
concerns itself with the functions provided by the devices, regardless of how they are
connected. The device model tree on even a simple system contains hundreds of
nodes like those shown in the diagram; it is a difficult data structure to visualize as a
whole.

Buses Devices (lasses

v v v
ush () Input devs
| | i i

drivers devices dev 0:10 Mouse 1
usb%hid > ust 2
poft 1
L dev fﬂ—o -—

Figure 14-1. A small piece of the device model

For the most part, the Linux device model code takes care of all these considerations
without imposing itself upon driver authors. It sits mostly in the background; direct
interaction with the device model is generally handled by bus-level logic and various
other kernel subsystems. As a result, many driver authors can ignore the device
model entirely, and trust it to take care of itself.

There are times, however, when an understanding of the device model is a good
thing to have. There are times when the device model “leaks out” from behind the
other layers; for example, the generic DMA code (which we encounter in
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Chapter 15) works with struct device. You may want to use some of the capabili-
ties provided by the device model, such as the reference counting and related fea-
tures provided by kobjects. Communication with user space via sysfs is also a device
model function; this chapter explains how that communication works.

We start, however, with a bottom-up presentation of the device model. The com-
plexity of the device model makes it hard to understand by starting with a high-level
view. Our hope is that, by showing how the low-level device components work, we
can prepare you for the challenge of grasping how those components are used to
build the larger structure.

For many readers, this chapter can be treated as advanced material that need not be
read the first time through. Those who are interested in how the Linux device model
works are encouraged to press ahead, however, as we get into the low-level details.

Kobjects, Ksets, and Subsystems

The kobject is the fundamental structure that holds the device model together. It was
initially conceived as a simple reference counter, but its responsibilities have grown
over time, and so have its fields. The tasks handled by struct kobject and its sup-
porting code now include:

Reference counting of objects
Often, when a kernel object is created, there is no way to know just how long it
will exist. One way of tracking the lifecycle of such objects is through reference
counting. When no code in the kernel holds a reference to a given object, that
object has finished its useful life and can be deleted.

Sysfs representation
Every object that shows up in sysfs has, underneath it, a kobject that interacts
with the kernel to create its visible representation.

Data structure glue
The device model is, in its entirety, a fiendishly complicated data structure made
up of multiple hierarchies with numerous links between them. The kobject
implements this structure and holds it together.

Hotplug event handling
The kobject subsystem handles the generation of events that notify user space
about the comings and goings of hardware on the system.

One might conclude from the preceding list that the kobject is a complicated struc-
ture. One would be right. By looking at one piece at a time, however, it is possible to
understand this structure and how it works.
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Kobject Basics

A kobject has the type struct kobject; it is defined in <linux/kobject.h>. That file
also includes declarations for a number of other structures related to kobjects and, of
course, a long list of functions for manipulating them.

Embedding kobjects

Before we get into the details, it is worth taking a moment to understand how kob-
jects are used. If you look back at the list of functions handled by kobjects, you see
that they are all services performed on behalf of other objects. A kobject, in other
words, is of little interest on its own; it exists only to tie a higher-level object into the
device model.

Thus, it is rare (even unknown) for kernel code to create a standalone kobject;
instead, kobjects are used to control access to a larger, domain-specific object. To
this end, kobjects are found embedded in other structures. If you are used to think-
ing of things in object-oriented terms, kobjects can be seen as a top-level, abstract
class from which other classes are derived. A kobject implements a set of capabilities
that are not particularly useful by themselves but that are nice to have in other
objects. The C language does not allow for the direct expression of inheritance, so
other techniques—such as embedding one structure in another—must be used.

As an example, let’s look back at struct cdev, which we encountered in Chapter 3.
That structure, as found in the 2.6.10 kernel, looks like this:
struct cdev {
struct kobject kobj;
struct module *owner;
struct file_operations *ops;
struct list head list;
dev_t dev;
unsigned int count;
¥
As we can see, the cdev structure has a kobject embedded within it. If you have one
of these structures, finding its embedded kobject is just a matter of using the kobj
field. Code that works with kobjects often has the opposite problem, however: given
a struct kobject pointer, what is the pointer to the containing structure? You should
avoid tricks (such as assuming that the kobject is at the beginning of the structure),
and, instead, use the container_of macro (introduced in the section “The open
Method” in Chapter 3). So the way to convert a pointer to a struct kobject called kp
embedded within a struct cdev would be:

struct cdev *device = container of(kp, struct cdev, kobj);

Programmers often define a simple macro for “back-casting” kobject pointers to the
containing type.
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Kobject initialization

This book has presented a number of types with simple mechanisms for initializa-
tion at compile or runtime. The initialization of a kobject is a bit more complicated,
especially when all of its functions are used. Regardless of how a kobject is used,
however, a few steps must be performed.

The first of those is to simply set the entire kobject to 0, usually with a call to mem-
set. Often this initialization happens as part of the zeroing of the structure into which
the kobject is embedded. Failure to zero out a kobject often leads to very strange
crashes further down the line; it is not a step you want to skip.

The next step is to set up some of the internal fields with a call to kobject_init():
void kobject_init(struct kobject *kobj);

Among other things, kobject_init sets the kobject’s reference count to one. Calling
kobject_init is not sufficient, however. Kobject users must, at a minimum, set the
name of the kobject; this is the name that is used in sysfs entries. If you dig through
the kernel source, you can find the code that copies a string directly into the kob-
ject’s name field, but that approach should be avoided. Instead, use:

int kobject set_name(struct kobject *kobj, const char *format, ...);

This function takes a printk-style variable argument list. Believe it or not, it is actu-
ally possible for this operation to fail (it may try to allocate memory); conscientious
code should check the return value and react accordingly.

The other kobject fields that should be set, directly or indirectly, by the creator are
ktype, kset, and parent. We will get to these later in this chapter.

Reference count manipulation

One of the key functions of a kobject is to serve as a reference counter for the object
in which it is embedded. As long as references to the object exist, the object (and the
code that supports it) must continue to exist. The low-level functions for manipulat-
ing a kobject’s reference counts are:

struct kobject *kobject get(struct kobject *kobj);

void kobject put(struct kobject *kobj);
A successful call to kobject_get increments the kobject’s reference counter and
returns a pointer to the kobject. If, however, the kobject is already in the process of
being destroyed, the operation fails, and kobject_get returns NULL. This return value
must always be tested, or no end of unpleasant race conditions could result.

When a reference is released, the call to kobject_put decrements the reference count
and, possibly, frees the object. Remember that kobject_init sets the reference count to
one; so when you create a kobject, you should make sure that the corresponding
kobject_put call is made when that initial reference is no longer needed.
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Note that, in many cases, the reference count in the kobject itself may not be suffi-
cient to prevent race conditions. The existence of a kobject (and its containing struc-
ture) may well, for example, require the continued existence of the module that
created that kobject. It would not do to unload that module while the kobject is still
being passed around. That is why the cdev structure we saw above contains a struct
module pointer. Reference counting for struct cdev is implemented as follows:

struct kobject *cdev_get(struct cdev *p)
{

struct module *owner = p->owner;
struct kobject *kobj;

if (owner &% !try module get(owner))
return NULL;
kobj = kobject_get(8p->kobj);
if (Ikobj)
module_put(owner);
return kobj;
}
Creating a reference to a cdev structure requires creating a reference also to the mod-
ule that owns it. So cdev_get uses try_module_get to attempt to increment that mod-
ule’s usage count. If that operation succeeds, kobject_get is used to increment the
kobject’s reference count as well. That operation could fail, of course, so the code
checks the return value from kobject_get and releases its reference to the module if
things don’t work out.

Release functions and kobject types

One important thing still missing from the discussion is what happens to a kobject
when its reference count reaches 0. The code that created the kobject generally does
not know when that will happen; if it did, there would be little point in using a refer-
ence count in the first place. Even predictable object life cycles become more compli-
cated when sysfs is brought in; user-space programs can keep a reference to a kobject
(by keeping one of its associated sysfs files open) for an arbitrary period of time.

The end result is that a structure protected by a kobject cannot be freed at any sin-
gle, predictable point in the driver’s lifecycle, but in code that must be prepared to
run at whatever moment the kobject’s reference count goes to 0. The reference count
is not under the direct control of the code that created the kobject. So that code must
be notified asynchronously whenever the last reference to one of its kobjects goes
away.

This notification is done through a kobject’s release method. Usually, this method
has a form such as:

void my object release(struct kobject *kobj)

struct my object *mine = container of(kobj, struct my object, kobj);
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/* Perform any additional cleanup on this object, then... */
kfree(mine);
}

One important point cannot be overstated: every kobject must have a release
method, and the kobject must persist (in a consistent state) until that method is
called. If these constraints are not met, the code is flawed. It risks freeing the object
when it is still in use, or it fails to release the object after the last reference is
returned.

Interestingly, the release method is not stored in the kobject itself; instead, it is asso-
ciated with the type of the structure that contains the kobject. This type is tracked
with a structure of type struct kobj_type, often simply called a “ktype.” This struc-
ture looks like the following:
struct kobj_type {
void (*release)(struct kobject *);
struct sysfs ops *sysfs ops;
struct attribute **default attrs;
};
The release field in struct kobj type is, of course, a pointer to the release method
for this type of kobject. We will come back to the other two fields (sysfs_ops and
default_attrs) later in this chapter.

Every kobject needs to have an associated kobj type structure. Confusingly, the
pointer to this structure can be found in two different places. The kobject structure
itself contains a field (called ktype) that can contain this pointer. If, however, this
kobject is a member of a kset, the kobj_type pointer is provided by that kset instead.
(We will look at ksets in the next section.) Meanwhile, the macro:

struct kobj type *get ktype(struct kobject *kobj);
finds the kobj_type pointer for a given kobject.

Kobject Hierarchies, Ksets, and Subsystems

The kobject structure is often used to link together objects into a hierarchical struc-
ture that matches the structure of the subsystem being modeled. There are two sepa-
rate mechanisms for this linking: the parent pointer and ksets.

The parent field in struct kobject is a pointer to another kobject—the one repre-
senting the next level up in the hierarchy. If, for example, a kobject represents a USB
device, its parent pointer may indicate the object representing the hub into which the
device is plugged.

The main use for the parent pointer is to position the object in the sysfs hierarchy.
We'll see how this works in the section “Low-Level Sysfs Operations.”
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Ksets

In many ways, a kset looks like an extension of the kobj type structure; a kset is a
collection of kobjects embedded within structures of the same type. However, while
struct kobj_type concerns itself with the type of an object, struct kset is concerned
with aggregation and collection. The two concepts have been separated so that
objects of identical type can appear in distinct sets.

Therefore, the main function of a kset is containment; it can be thought of as the
top-level container class for kobjects. In fact, each kset contains its own kobject
internally, and it can, in many ways, be treated the same way as a kobject. It is worth
noting that ksets are always represented in sysfs; once a kset has been set up and
added to the system, there will be a sysfs directory for it. Kobjects do not necessarily
show up in sysfs, but every kobject that is a member of a kset is represented there.

Adding a kobject to a kset is usually done when the object is created; it is a two-step
process. The kobject’s kset field must be pointed at the kset of interest; then the
kobject should be passed to:

int kobject add(struct kobject *kobj);

As always, programmers should be aware that this function can fail (in which case it
returns a negative error code) and respond accordingly. There is a convenience func-
tion provided by the kernel:

extern int kobject_register(struct kobject *kobj);
This function is simply a combination of kobject_init and kobject_add.

When a kobject is passed to kobject_add, its reference count is incremented. Con-
tainment within the kset is, after all, a reference to the object. At some point, the
kobject will probably have to be removed from the kset to clear that reference; that is
done with:

void kobject del(struct kobject *kobj);

There is also a kobject_unregister function, which is a combination of kobject_del and
kobject_put.

A kset keeps its children in a standard kernel linked list. In almost all cases, the con-
tained kobjects also have pointers to the kset (or, strictly, its embedded kobject) in
their parent’s fields. So, typically, a kset and its kobjects look something like what
you see in Figure 14-2. Bear in mind that:

* All of the contained kobjects in the diagram are actually embedded within some
other type, possibly even other ksets.

* It is not required that a kobject’s parent be the containing kset (although any
other organization would be strange and rare).
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Figure 14-2. A simple kset hierarchy

Operations on ksets

For initialization and setup, ksets have an interface very similar to that of kobjects.
The following functions exist:

void kset init(struct kset *kset);

int kset add(struct kset *kset);

int kset register(struct kset *kset);
void kset unregister(struct kset *kset);

For the most part, these functions just call the analogous kobject_ function on the
kset’s embedded kobject.

To manage the reference counts of ksets, the situation is about the same:

struct kset *kset get(struct kset *kset);

void kset put(struct kset *kset);
A kset also has a name, which is stored in the embedded kobject. So, if you have a
kset called my_set, you would set its name with:

kobject_set name(&my_set->kobj, "The name");

Ksets also have a pointer (in the ktype field) to the kobj_type structure describing the
kobjects it contains. This type is used in preference to the ktype field in a kobject
itself. As a result, in typical usage, the ktype field in struct kobject is left NULL,
because the same field within the kset is the one actually used.

Finally, a kset contains a subsystem pointer (called subsys). So it’s time to talk about
subsystems.

Subsystems

A subsystem is a representation for a high-level portion of the kernel as a whole. Sub-
systems usually (but not always) show up at the top of the sysfs hierarchy. Some
example subsystems in the kernel include block subsys (/sys/block, for block
devices), devices_subsys (/sys/devices, the core device hierarchy), and a specific sub-
system for every bus type known to the kernel. A driver author almost never needs to
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create a new subsystem; if you feel tempted to do so, think again. What you proba-
bly want, in the end, is to add a new class, as discussed in the section “Classes.”

A subsystem is represented by a simple structure:

struct subsystem {
struct kset kset;
struct rw_semaphore rwsem;

};
A subsystem, thus, is really just a wrapper around a kset, with a semaphore thrown in.

Every kset must belong to a subsystem. The subsystem membership helps establish
the kset’s position in the hierarchy, but, more importantly, the subsystem’s rwsem
semaphore is used to serialize access to a kset’s internal-linked list. This member-
ship is represented by the subsys pointer in struct kset. Thus, one can find each
kset’s containing subsystem from the kset’s structure, but one cannot find the multi-
ple ksets contained in a subsystem directly from the subsystem structure.

Subsystems are often declared with a special macro:

decl_subsys(name, struct kobj_type *type,
struct kset_hotplug ops *hotplug ops);
This macro creates a struct subsystem with a name formed by taking the name given
to the macro and appending _subsys to it. The macro also initializes the internal kset
with the given type and hotplug_ops. (We discuss hotplug operations later in this
chapter.)

Subsystems have the usual list of setup and teardown functions:

void subsystem init(struct subsystem *subsys);

int subsystem register(struct subsystem *subsys);
void subsystem unregister(struct subsystem *subsys);
struct subsystem *subsys get(struct subsystem *subsys)
void subsys put(struct subsystem *subsys);

Most of these operations just act upon the subsystem’s kset.

Low-Level Sysfs Operations

Kobjects are the mechanism behind the sysfs virtual filesystem. For every directory
found in sysfs, there is a kobject lurking somewhere within the kernel. Every kobject
of interest also exports one or more attributes, which appear in that kobject’s sysfs
directory as files containing kernel-generated information. This section examines
how kobjects and sysfs interact at a low level.

Code that works with sysfs should include <linux/sysfs.h>.

Getting a kobject to show up in sysfs is simply a matter of calling kobject_add. We
have already seen that function as the way to add a kobject to a kset; creating entries
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in sysfs is also part of its job. There are a couple of things worth knowing about how
the sysfs entry is created:

* Sysfs entries for kobjects are always directories, so a call to kobject_add results in
the creation of a directory in sysfs. Usually that directory contains one or more
attributes; we see how attributes are specified shortly.

* The name assigned to the kobject (with kobject_set_name) is the name used for
the sysfs directory. Thus, kobjects that appear in the same part of the sysfs hier-
archy must have unique names. Names assigned to kobjects should also be rea-
sonable file names: they cannot contain the slash character, and the use of white
space is strongly discouraged.

* The sysfs entry is located in the directory corresponding to the kobject’s parent
pointer. If parent is NULL when kobject_add is called, it is set to the kobject
embedded in the new kobject’s kset; thus, the sysfs hierarchy usually matches
the internal hierarchy created with ksets. If both parent and kset are NULL, the
sysfs directory is created at the top level, which is almost certainly not what you
want.

Using the mechanisms we have described so far, we can use a kobject to create an
empty directory in sysfs. Usually, you want to do something a little more interesting
than that, so it is time to look at the implementation of attributes.

Default Attributes

When created, every kobject is given a set of default attributes. These attributes are
specified by way of the kobj type structure. That structure, remember, looks like
this:
struct kobj type {
void (*release)(struct kobject *);
struct sysfs ops *sysfs ops;
struct attribute **default attrs;
1
The default_attrs field lists the attributes to be created for every kobject of this
type, and sysfs_ops provides the methods to implement those attributes. We start
with default_attrs, which points to an array of pointers to attribute structures:
struct attribute {
char *name;
struct module *owner;
mode_t mode;
b
In this structure, name is the name of the attribute (as it appears within the kobject’s
sysfs directory), owner is a pointer to the module (if any) that is responsible for the
implementation of this attribute, and mode is the protection bits that are to be applied
to this attribute. The mode is usually S_IRUGO for read-only attributes; if the attribute
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is writable, you can toss in S_IWUSR to give write access to root only (the macros for
modes are defined in <linux/stat.h>). The last entry in the default_attrs list must be
zero-filled.

The default_attrs array says what the attributes are but does not tell sysfs how to
actually implement those attributes. That task falls to the kobj_type->sysfs_ops field,
which points to a structure defined as:
struct sysfs ops {
ssize t (*show)(struct kobject *kobj, struct attribute *attr,
char *buffer);
ssize t (*store)(struct kobject *kobj, struct attribute *attr,
const char *buffer, size t size);
1
Whenever an attribute is read from user space, the show method is called with a
pointer to the kobject and the appropriate attribute structure. That method should
encode the value of the given attribute into buffer, being sure not to overrun it (it is
PAGE_SIZE bytes), and return the actual length of the returned data. The conventions
for sysfs state that each attribute should contain a single, human-readable value; if
you have a lot of information to return, you may want to consider splitting it into
multiple attributes.

The same show method is used for all attributes associated with a given kobject. The
attr pointer passed into the function can be used to determine which attribute is
being requested. Some show methods include a series of tests on the attribute name.
Other implementations embed the attribute structure within another structure that
contains the information needed to return the attribute’s value; in this case,
container_of may be used within the show method to obtain a pointer to the embed-
ding structure.

The store method is similar; it should decode the data stored in buffer (size con-
tains the length of that data, which does not exceed PAGE_SIZE), store and respond to
the new value in whatever way makes sense, and return the number of bytes actually
decoded. The store method can be called only if the attribute’s permissions allow
writes. When writing a store method, never forget that you are receiving arbitrary
information from user space; you should validate it very carefully before taking any
action in response. If the incoming data does not match expectations, return a nega-
tive error value rather than possibly doing something unwanted and unrecoverable.
If your device exports a self destruct attribute, you should require that a specific
string be written there to invoke that functionality; an accidental, random write
should yield only an error.

Nondefault Attributes

In many cases, the kobject type’s default_attrs field describes all the attributes that
kobject will ever have. But that’s not a restriction in the design; attributes can be
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added and removed to kobjects at will. If you wish to add a new attribute to a kob-
ject’s sysfs directory, simply fill in an attribute structure and pass it to:

int sysfs_create file(struct kobject *kobj, struct attribute *attr);

If all goes well, the file is created with the name given in the attribute structure, and
the return value is 0; otherwise, the usual negative error code is returned.

Note that the same show() and store() functions are called to implement operations
on the new attribute. Before you add a new, nondefault attribute to a kobject, you
should take whatever steps are necessary to ensure that those functions know how to
implement that attribute.

To remove an attribute, call:
int sysfs remove file(struct kobject *kobj, struct attribute *attr);

After the call, the attribute no longer appears in the kobject’s sysfs entry. Do be
aware, however, that a user-space process could have an open file descriptor for that
attribute and that show and store calls are still possible after the attribute has been
removed.

Binary Attributes

The sysfs conventions call for all attributes to contain a single value in a human-read-
able text format. That said, there is an occasional, rare need for the creation of
attributes that can handle larger chunks of binary data. That need really only comes
about when data must be passed, untouched, between user space and the device. For
example, uploading firmware to devices requires this feature. When such a device is
encountered in the system, a user-space program can be started (via the hotplug
mechanism); that program then passes the firmware code to the kernel via a binary
sysfs attribute, as is shown in the section “The Kernel Firmware Interface.”

Binary attributes are described with a bin_attribute structure:

struct bin attribute {
struct attribute attr;
size t size;
ssize t (*read)(struct kobject *kobj, char *buffer,
loff_t pos, size t size);
ssize t (*write)(struct kobject *kobj, char *buffer,
loff t pos, size t size);
b
Here, attr is an attribute structure giving the name, owner, and permissions for the
binary attribute, and size is the maximum size of the binary attribute (or 0 if there is
no maximum). The read and write methods work similarly to the normal char driver
equivalents; they can be called multiple times for a single load with a maximum of
one page worth of data in each call. There is no way for sysfs to signal the last of a set
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of write operations, so code implementing a binary attribute must be able to deter-
mine the end of the data some other way.

Binary attributes must be created explicitly; they cannot be set up as default
attributes. To create a binary attribute, call:

int sysfs_create bin file(struct kobject *kobj,
struct bin attribute *attr);

Binary attributes can be removed with:

int sysfs_remove_bin_file(struct kobject *kobj,
struct bin attribute *attr);

Symbolic Links

The sysfs filesystem has the usual tree structure, reflecting the hierarchical organiza-
tion of the kobjects it represents. The relationships between objects in the kernel are
often more complicated than that, however. For example, one sysfs subtree (/sys/
devices) represents all of the devices known to the system, while other subtrees
(under /sys/bus) represent the device drivers. These trees do not, however, represent
the relationships between the drivers and the devices they manage. Showing these
additional relationships requires extra pointers which, in sysfs, are implemented
through symbolic links.

Creating a symbolic link within sysfs is easy:

int sysfs_create link(struct kobject *kobj, struct kobject *target,
char *name);
This function creates a link (called name) pointing to target’s sysfs entry as an
attribute of kobj. It is a relative link, so it works regardless of where sysfs is mounted
on any particular system.

The link persists even if target is removed from the system. If you are creating sym-
bolic links to other kobjects, you should probably have a way of knowing about
changes to those kobjects, or some sort of assurance that the target kobjects will not
disappear. The consequences (dead symbolic links within sysfs) are not particularly
grave, but they are not representative of the best programming style and can cause
confusion in user space.

Symbolic links can be removed with:

void sysfs remove link(struct kobject *kobj, char *name);

Hotplug Event Generation

A hotplug event is a notification to user space from the kernel that something has
changed in the system’s configuration. They are generated whenever a kobject is cre-
ated or destroyed. Such events are generated, for example, when a digital camera is
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plugged in with a USB cable, when a user switches console modes, or when a disk is
repartitioned. Hotplug events turn into an invocation of /sbin/hotplug, which can
respond to each event by loading drivers, creating device nodes, mounting parti-
tions, or taking any other action that is appropriate.

The last major kobject function we look at is the generation of these events. The
actual event generation takes place when a kobject is passed to kobject_add or
kobject_del. Before the event is handed to user space, code associated with the kob-
ject (or, more specifically, the kset to which it belongs) has the opportunity to add
information for user space or to disable event generation entirely.

Hotplug Operations

Actual control of hotplug events is exercised by way of a set of methods stored in the
kset_hotplug ops structure:
struct kset_hotplug ops {
int (*filter)(struct kset *kset, struct kobject *kobj);
char *(*name) (struct kset *kset, struct kobject *kobj);
int (*hotplug)(struct kset *kset, struct kobject *kobj,
char **envp, int num_envp, char *buffer,
int buffer size);
1
A pointer to this structure is found in the hotplug ops field of the kset structure. If a
given kobject is not contained within a kset, the kernel searchs up through the hier-
archy (via the parent pointer) until it finds a kobject that does have a kset; that kset’s
hotplug operations are then used.

The filter hotplug operation is called whenever the kernel is considering generating
an event for a given kobject. If filter returns 0, the event is not created. This method,
therefore, gives the kset code an opportunity to decide which events should be
passed on to user space and which should not.

As an example of how this method might be used, consider the block subsystem.
There are at least three types of kobjects used there, representing disks, partitions,
and request queues. User space may want to react to the addition of a disk or a parti-
tion, but it does not normally care about request queues. So the filter method allows
event generation only for kobjects representing disks and partitions. It looks like this:

static int block hotplug filter(struct kset *kset, struct kobject *kobj)

{
struct kobj_type *ktype = get ktype(kobj);

return ((ktype == 8ktype block) || (ktype == 8&ktype part));
}

Here, a quick test on the type of kobject is sufficient to decide whether the event
should be generated or not.
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When the user-space hotplug program is invoked, it is passed to the name of the rel-
evant subsystem as its one and only parameter. The name hotplug method is charged
with providing that name. It should return a simple string suitable for passing to user
space.

Everything else that the hotplug script might want to know is passed in the environ-
ment. The final hotplug method (hotplug) gives an opportunity to add useful envi-
ronment variables prior to the invocation of that script. Again, this method’s
prototype is:
int (*hotplug)(struct kset *kset, struct kobject *kobj,

char **envp, int num_envp, char *buffer,

int buffer size);
As usual, kset and kobject describe the object for which the event is being gener-
ated. The envp array is a place to store additional environment variable definitions (in
the usual NAME=value format); it has num_envp entries available. The variables them-
selves should be encoded into buffer, which is buffer size bytes long. If you add
any variables to envp, be sure to add a NULL entry after your last addition so that the
kernel knows where the end is. The return value should normally be 0; any nonzero
return aborts the generation of the hotplug event.

The generation of hotplug events (like much of the work in the device model) is usu-
ally handled by logic at the bus driver level.

Buses, Devices, and Drivers

So far, we have seen a great deal of low-level infrastructures and a relative shortage of
examples. We try to make up for that in the rest of this chapter as we get into the
higher levels of the Linux device model. To that end, we introduce a new virtual bus,
which we call lddbus,” and modify the scullp driver to “connect” to that bus.

Once again, much of the material covered here will never be needed by many driver
authors. Details at this level are generally handled at the bus level, and few authors
need to add a new bus type. This information is useful, however, for anybody won-
dering what is happening inside the PCI, USB, etc. layers or who needs to make
changes at that level.

Buses

A bus is a channel between the processor and one or more devices. For the purposes
of the device model, all devices are connected via a bus, even if it is an internal, vir-
tual, “platform” bus. Buses can plug into each other—a USB controller is usually a

* The logical name for this bus, of course, would have been “sbus,” but that name was already taken by a real,
physical bus.
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PCI device, for example. The device model represents the actual connections
between buses and the devices they control.

In the Linux device model, a bus is represented by the bus_type structure, defined in
<linux/device.h>. This structure looks like:
struct bus_type {
char *name;
struct subsystem subsys;
struct kset drivers;
struct kset devices;
int (*match)(struct device *dev, struct device driver *drv);
struct device *(*add)(struct device * parent, char * bus id);
int (*hotplug) (struct device *dev, char **envp,
int num_envp, char *buffer, int buffer size);
/* Some fields omitted */
};
The name field is the name of the bus, something such as pci. You can see from the
structure that each bus is its own subsystem; these subsystems do not live at the top
level in sysfs, however. Instead, they are found underneath the bus subsystem. A bus
contains two ksets, representing the known drivers for that bus and all devices
plugged into the bus. Then, there is a set of methods that we will get to shortly.

Bus registration

As we mentioned, the example source includes a virtual bus implementation called
Iddbus. This bus sets up its bus_type structure as follows:
struct bus_type ldd bus type = {
.name = "1dd",
.match = ldd_match,
.hotplug = 1dd_hotplug,
b
Note that very few of the bus_type fields require initialization; most of that is han-
dled by the device model core. We do have to specify the name of the bus, however,
and any methods that go along with it.

Inevitably, a new bus must be registered with the system via a call to bus_register.
The lddbus code does so in this way:

ret = bus_register(&ldd_bus_type);

if (ret)

return ret;

This call can fail, of course, so the return value must always be checked. If it suc-
ceeds, the new bus subsystem has been added to the system; it is visible in sysfs
under /sys/bus, and it is possible to start adding devices.

Should it be necessary to remove a bus from the system (when the associated mod-
ule is removed, for example), bus_unregister should be called:

void bus_unregister(struct bus_type *bus);
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Bus methods

There are several methods defined for the bus_type structure; they allow the bus code
to serve as an intermediary between the device core and individual drivers. The
methods defined in the 2.6.10 kernel are:

int (*match)(struct device *device, struct device driver *driver);
This method is called, perhaps multiple times, whenever a new device or driver
is added for this bus. It should return a nonzero value if the given device can be
handled by the given driver. (We get to the details of the device and device_
driver structures shortly). This function must be handled at the bus level,
because that is where the proper logic exists; the core kernel cannot know how
to match devices and drivers for every possible bus type.

int (*hotplug) (struct device *device, char **envp, int num_envp, char

*puffer, int buffer size);

This method allows the bus to add variables to the environment prior to the gener-
ation of a hotplug event in user space. The parameters are the same as for the kset
hotplug method (described in the earlier section “Hotplug Event Generation”).

The Iddbus driver has a very simple match function, which simply compares the
driver and device names:

static int 1dd _match(struct device *dev, struct device driver *driver)

{

}

When real hardware is involved, the match function usually makes some sort of com-
parison between the hardware ID provided by the device itself and the IDs sup-
ported by the driver.

The lddbus hotplug method looks like this:

static int ldd hotplug(struct device *dev, char **envp, int num_envp,
char *buffer, int buffer size)

return !strncmp(dev->bus id, driver->name, strlen(driver->name));

{
envp[0] = buffer;
if (snprintf(buffer, buffer size, "LDDBUS VERSION=%s",
Version) >= buffer_size)
return -ENOMEM;
envp[1] = NULL;
return 0;
}

Here, we add in the current revision number of the lddbus source, just in case any-
body is curious.

Iterating over devices and drivers

If you are writing bus-level code, you may find yourself having to perform some
operation on all devices or drivers that have been registered with your bus. It may be
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tempting to dig directly into the structures in the bus_type structure, but it is better
to use the helper functions that have been provided.

To operate on every device known to the bus, use:

int bus_for each dev(struct bus type *bus, struct device *start,
void *data, int (*fn)(struct device *, void *));
This function iterates over every device on bus, passing the associated device struc-
ture to fn, along with the value passed in as data. If start is NULL, the iteration begins
with the first device on the bus; otherwise iteration starts with the first device after
start. If fn returns a nonzero value, iteration stops and that value is returned from
bus_for_each_dev.

There is a similar function for iterating over drivers:

int bus_for each_drv(struct bus_type *bus, struct device driver *start,
void *data, int (*fn)(struct device driver *, void *));
This function works just like bus_for_each_dev, except, of course, that it works with
drivers instead.

It should be noted that both of these functions hold the bus subsystem’s reader/writer
semaphore for the duration of the work. So an attempt to use the two of them
together will deadlock—each will be trying to obtain the same semaphore. Opera-
tions that modify the bus (such as unregistering devices) will also lock up. So, use the
bus_for_each functions with some care.

Bus attributes

Almost every layer in the Linux device model provides an interface for the addition
of attributes, and the bus layer is no exception. The bus_attribute type is defined in
<linux/device.h> as follows:
struct bus_attribute {
struct attribute attr;
ssize t (*show)(struct bus_type *bus, char *buf);
ssize t (*store)(struct bus type *bus, const char *buf,
size t count);
};
We have already seen struct attribute in the section “Default Attributes.” The
bus_attribute type also includes two methods for displaying and setting the value
of the attribute. Most device model layers above the kobject level work this way.

A convenience macro has been provided for the compile-time creation and initializa-
tion of bus_attribute structures:

BUS_ATTR(name, mode, show, store);

This macro declares a structure, generating its name by prepending the string bus_attr
to the given name.
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Any attributes belonging to a bus should be created explicitly with bus_create_file:
int bus_create file(struct bus type *bus, struct bus attribute *attr);

Attributes can also be removed with:
void bus_remove file(struct bus type *bus, struct bus attribute *attr);

The Ilddbus driver creates a simple attribute file containing, once again, the source
version number. The show method and bus_attribute structure are set up as follows:

static ssize t show bus version(struct bus_type *bus, char *buf)

{
}

static BUS_ATTR(version, S IRUGO, show bus version, NULL);

return snprintf(buf, PAGE_SIZE, "%s\n", Version);

Creating the attribute file is done at module load time:

if (bus_create file(8ldd bus type, &bus attr version))
printk (KERN_NOTICE "Unable to create version attribute\n");

This call creates an attribute file (/sys/bus/ldd/version) containing the revision num-
ber for the Iddbus code.

Devices

At the lowest level, every device in a Linux system is represented by an instance of
struct device:
struct device {
struct device *parent;
struct kobject kobj;
char bus_id[BUS ID SIZE];
struct bus_type *bus;
struct device driver *driver;
void *driver data;
void (*release)(struct device *dev);
/* Several fields omitted */
1
There are many other struct device fields that are of interest only to the device core
code. These fields, however, are worth knowing about:

struct device *parent
The device’s “parent” device—the device to which it is attached. In most cases, a
parent device is some sort of bus or host controller. If parent is NULL, the device
is a top-level device, which is not usually what you want.

struct kobject kobj;
The kobject that represents this device and links it into the hierarchy. Note that,
as a general rule, device->kobj->parent is equal to 8device->parent->kobj.
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char bus_id[BUS ID SIZE];
A string that uniquely identifies this device on the bus. PCI devices, for exam-
ple, use the standard PCI ID format containing the domain, bus, device, and
function numbers.

struct bus_type *bus;
Identifies which kind of bus the device sits on.

struct device driver *driver;
The driver that manages this device; we examine struct device driver in the
next section.

void *driver data;
A private data field that may be used by the device driver.

void (*release)(struct device *dev);
The method is called when the last reference to the device is removed; it is called
from the embedded kobject’s release method. All device structures registered with
the core must have a release method, or the kernel prints out scary complaints.

At a minimum, the parent, bus_id, bus, and release fields must be set before the
device structure can be registered.

Device registration
The usual set of registration and unregistration functions exists:

int device register(struct device *dev);
void device_unregister(struct device *dev);

We have seen how the lddbus code registers its bus type. However, an actual bus is a
device and must be registered separately. For simplicity, the lddbus module supports
only a single virtual bus, so the driver sets up its device at compile time:

static void 1ldd bus release(struct device *dev)

{
printk (KERN_DEBUG "lddbus release\n");
}
struct device ldd bus = {
.bus_id = "lddo",
.release = ldd_bus_release
};

This is a top-level bus, so the parent and bus fields are left NULL. We have a simple,
no-op release method, and, as the first (and only) bus, its name is 1ddo. This bus
device is registered with:

ret = device register(81ldd bus);

if (ret)

printk(KERN_NOTICE "Unable to register lddo\n");

Once that call is complete, the new bus can be seen under /sys/devices in sysfs. Any
devices added to this bus then shows up under /sys/devices/ldd0/.
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Device attributes
Device entries in sysfs can have attributes. The relevant structure is:

struct device attribute {
struct attribute attr;
ssize t (*show)(struct device *dev, char *buf);
ssize t (*store)(struct device *dev, const char *buf,
size t count);

1
These attribute structures can be set up at compile time with this macro:
DEVICE_ATTR(name, mode, show, store);

The resulting structure is named by prepending dev_attr to the given name. The
actual management of attribute files is handled with the usual pair of functions:
int device create file(struct device *device,
struct device attribute *entry);
void device_remove_file(struct device *dev,
struct device attribute *attr);
The dev_attrs field of struct bus_type points to a list of default attributes created for
every device added to that bus.

Device structure embedding

The device structure contains the information that the device model core needs to
model the system. Most subsystems, however, track additional information about
the devices they host. As a result, it is rare for devices to be represented by bare
device structures; instead, that structure, like kobject structures, is usually embed-
ded within a higher-level representation of the device. If you look at the definitions of
struct pci_dev or struct usb device, you will find a struct device buried inside.
Usually, low-level drivers are not even aware of that struct device, but there can be
exceptions.

The Iddbus driver creates its own device type (struct 1dd device) and expects indi-
vidual device drivers to register their devices using that type. It is a simple structure:
struct ldd device {
char *name;
struct ldd driver *driver;
struct device dev;

1
#tdefine to 1dd device(dev) container of(dev, struct ldd device, dev);

This structure allows the driver to provide an actual name for the device (which can be
distinct from its bus ID, stored in the device structure) and a pointer to driver informa-
tion. Structures for real devices usually also contain information about the vendor,
device model, device configuration, resources used, and so on. Good examples can be
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found in struct pci_dev (<linux/pci.h>) or struct usb_device (<linux/usb.h>). A conve-
nience macro (to_ldd_device) is also defined for struct 1dd device to make it easy to
turn pointers to the embedded device structure into 1dd_device pointers.

The registration interface exported by Iddbus looks like this:

int register ldd device(struct 1ldd_device *1dddev)

{
ldddev->dev.bus = &ldd bus type;
ldddev->dev.parent = 81dd_bus;
ldddev->dev.release = 1ldd dev_release;
strncpy(ldddev->dev.bus_id, ldddev->name, BUS ID SIZE);
return device register(8ldddev->dev);

}

EXPORT_SYMBOL(register 1ldd device);

Here, we simply fill in some of the embedded device structure fields (which individ-
ual drivers should not need to know about), and register the device with the driver
core. If we wanted to add bus-specific attributes to the device, we could do so here.

To show how this interface is used, let us introduce another sample driver, which we
have called sculld. Tt is yet another variant on the scullp driver first introduced in
Chapter 8. It implements the usual memory area device, but sculld also works with
the Linux device model by way of the Iddbus interface.

The sculld driver adds an attribute of its own to its device entry; this attribute, called
dev, simply contains the associated device number. This attribute could be used by a
module loading the script or the hotplug subsystem to automatically create device
nodes when the device is added to the system. The setup for this attribute follows the
usual patterns:

static ssize t sculld show dev(struct device *ddev, char *buf)

{

struct sculld dev *dev = ddev->driver data;

return print_dev_t(buf, dev->cdev.dev);

}

static DEVICE _ATTR(dev, S _IRUGO, sculld show dev, NULL);

Then, at initialization time, the device is registered, and the dev attribute is created
through the following function:

static void sculld register dev(struct sculld dev *dev, int index)
{

sprintf(dev->devname, "sculld%d", index);

dev->ldev.name = dev->devname;

dev->ldev.driver = &sculld driver;

dev->ldev.dev.driver_data = dev;

register 1dd device(8dev->1ldev);

device create file(&dev->ldev.dev, 8dev_attr dev);
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Note that we make use of the driver_data field to store the pointer to our own, inter-
nal device structure.

Device Drivers

The device model tracks all of the drivers known to the system. The main reason for
this tracking is to enable the driver core to match up drivers with new devices. Once
drivers are known objects within the system, however, a number of other things
become possible. Device drivers can export information and configuration variables
that are independent of any specific device, for example.

Drivers are defined by the following structure:

struct device_driver {
char *name;
struct bus_type *bus;
struct kobject kobj;
struct list head devices;
int (*probe)(struct device *dev);
int (*remove)(struct device *dev);
void (*shutdown) (struct device *dev);
};
Once again, several of the structure’s fields have been omitted (see <linux/device.h>
for the full story). Here, name is the name of the driver (it shows up in sysfs), bus is
the type of bus this driver works with, kobj is the inevitable kobject, devices is a list
of all devices currently bound to this driver, probe is a function called to query the
existence of a specific device (and whether this driver can work with it), remove is
called when the device is removed from the system, and shutdown is called at shut-
down time to quiesce the device.

The form of the functions for working with device driver structures should be look-
ing familiar by now (so we cover them very quickly). The registration functions are:

int driver register(struct device driver *drv);
void driver unregister(struct device driver *drv);

The usual attribute structure exists:

struct driver attribute {
struct attribute attr;
ssize t (*show)(struct device driver *drv, char *buf);
ssize t (*store)(struct device driver *drv, const char *buf,
size t count);
};
DRIVER_ATTR(name, mode, show, store);

And attribute files are created in the usual way:

int driver create_file(struct device_driver *drv,
struct driver attribute *attr);

void driver remove file(struct device driver *drv,
struct driver attribute *attr);
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The bus_type structure contains a field (drv_attrs) that points to a set of default
attributes, which are created for all drivers associated with that bus.

Driver structure embedding

As is the case with most driver core structures, the device_driver structure is usually
found embedded within a higher-level, bus-specific structure. The lddbus subsystem
would never go against such a trend, so it has defined its own 1dd_driver structure:

struct 1dd_driver {
char *version;
struct module *module;
struct device driver driver;
struct driver attribute version attr;

1
#tdefine to ldd driver(drv) container of(drv, struct ldd driver, driver);

Here, we require each driver to provide its current software version, and lddbus
exports that version string for every driver it knows about. The bus-specific driver
registration function is:

int register 1dd driver(struct 1ldd driver *driver)

{

int ret;

driver->driver.bus = &ldd_bus type;
ret = driver register(&driver->driver);
if (ret)
return ret;
driver->version_attr.attr.name = "version";
driver->version attr.attr.owner = driver->module;
driver->version attr.attr.mode = S_IRUGO;
driver->version_attr.show = show_version;
driver->version attr.store = NULL;
return driver create file(8driver->driver, &driver->version_attr);

}
The first half of the function simply registers the low-level device driver structure
with the core; the rest sets up the version attribute. Since this attribute is created at
runtime, we can’t use the DRIVER_ATTR macro; instead, the driver attribute struc-
ture must be filled in by hand. Note that we set the owner of the attribute to the
driver module, rather than the Iddbus module; the reason for this can be seen in the
implementation of the show function for this attribute:

static ssize t show version(struct device driver *driver, char *buf)

{
struct 1dd driver *ldriver = to ldd driver(driver);
sprintf(buf, "%s\n", ldriver->version);
return strlen(buf);

}
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One might think that the attribute owner should be the lddbus module, since the
function that implements the attribute is defined there. This function, however, is
working with the 1dd_driver structure created (and owned) by the driver itself. If
that structure were to go away while a user-space process tried to read the version
number, things could get messy. Designating the driver module as the owner of the
attribute prevents the module from being unloaded, while user-space holds the
attribute file open. Since each driver module creates a reference to the lddbus mod-
ule, we can be sure that Iddbus will not be unloaded at an inopportune time.

For completeness, sculld creates its 1dd_driver structure as follows:

static struct 1ldd driver sculld driver = {
.version = "$Revision: 1.1 $",
.module = THIS MODULE,
Jdriver = {
.name = "sculld",
b
};

A simple call to register_ldd_driver adds it to the system. Once initialization is com-
plete, the driver information can be seen in sysfs:

$ tree /sys/bus/ldd/drivers

/sys/bus/1ldd/drivers

T-- sculld
|-- sculldo -> ../../../../devices/1ddo/sculldo
|-- sculldl -> ../../../../devices/1ddo/sculldl
|-- sculld2 -> ../../../../devices/1dd0/sculld2
|-- sculld3 -> ../../../../devices/1ddo/sculld3
“-- version

Classes

The final device model concept we examine in this chapter is the class. A class is a
higher-level view of a device that abstracts out low-level implementation details.
Drivers may see a SCSI disk or an ATA disk, but, at the class level, they are all sim-
ply disks. Classes allow user space to work with devices based on what they do,
rather than how they are connected or how they work.

Almost all classes show up in sysfs under /sys/class. Thus, for example, all network
interfaces can be found under /sys/class/net, regardless of the type of interface. Input
devices can be found in /sys/class/input, and serial devices are in /sys/class/tty. The
one exception is block devices, which can be found under /sys/block for historical
reasons.

Class membership is usually handled by high-level code without the need for explicit
support from drivers. When the sbull driver (see Chapter 16) creates a virtual disk
device, it automatically appears in /sys/block. The snull network driver (see
Chapter 17) does not have to do anything special for its interfaces to be represented
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in /sys/class/net. There will be times, however, when drivers end up dealing with
classes directly.

In many cases, the class subsystem is the best way of exporting information to user
space. When a subsystem creates a class, it owns the class entirely, so there is no
need to worry about which module owns the attributes found there. It also takes very lit-
tle time wandering around in the more hardware-oriented parts of sysfs to realize that it
can be an unfriendly place for direct browsing. Users more happily find information in
/sys/class/some-widget than under, say, /sys/devices/pci0000:00/0000:00:10.0/usb2/2-0:1.0.

The driver core exports two distinct interfaces for managing classes. The class_simple
routines are designed to make it as easy as possible to add new classes to the system;
their main purpose, usually, is to expose attributes containing device numbers to
enable the automatic creation of device nodes. The regular class interface is more
complex but offers more features as well. We start with the simple version.

The class_simple Interface

The class_simple interface was intended to be so easy to use that nobody would have
any excuse for not exporting, at a minimum, an attribute containing a device’s
assigned number. Using this interface is simply a matter of a couple of function calls,
with little of the usual boilerplate associated with the Linux device model.

The first step is to create the class itself. That is accomplished with a call to class_
simple_create:

struct class_simple *class simple create(struct module *owner, char *name);

This function creates a class with the given name. The operation can fail, of course, so
the return value should always be checked (using IS_ERR, described in the section
“Pointers and Error Values” in Chapter 1) before continuing.

A simple class can be destroyed with:
void class_simple destroy(struct class simple *cs);

The real purpose of creating a simple class is to add devices to it; that task is
achieved with:
struct class_device *class simple device add(struct class simple *cs,

dev_t devnum,

struct device *device,

const char *fmt, ...);
Here, cs is the previously created simple class, devnum is the assigned device number,
device is the struct device representing this device, and the remaining parameters
are a printk-style format string and arguments to create the device name. This call
adds an entry to the class containing one attribute, dev, which holds the device num-
ber. If the device parameter is not NULL, a symbolic link (called device) points to the
device’s entry under /sys/devices.
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It is possible to add other attributes to a device entry. It is just a matter of using
class_device_create_file, which we discuss in the next section with the rest of the full
class subsystem.

Classes generate hotplug events when devices come and go. If your driver needs to
add variables to the environment for the user-space event handler, it can set up a hot-
plug callback with:
int class_simple set hotplug(struct class simple *cs,
int (*hotplug)(struct class_device *dev,

char **envp, int num_envp,
char *buffer, int buffer size));

When your device goes away, the class entry should be removed with:
void class_simple device remove(dev t dev);

Note that the class device structure returned by class_simple_device_add is not
needed here; the device number (which should certainly be unique) is sufficient.

The Full Class Interface

The class_simple interface suffices for many needs, but sometimes more flexibility is
required. The following discussion describes how to use the full class mechanism,
upon which class_simple is based. It is brief: the class functions and structures fol-
low the same patterns as the rest of the device model, so there is little that is truly
new here.

Managing classes
A class is defined by an instance of struct class:

struct class {
char *name;
struct class_attribute *class attrs;
struct class device attribute *class dev attrs;
int (*hotplug)(struct class device *dev, char **envp,
int num_envp, char *buffer, int buffer size);
void (*release)(struct class device *dev);
void (*class_release)(struct class *class);
/* Some fields omitted */

};

Each class needs a unique name, which is how this class appears under /sys/class.
When the class is registered, all of the attributes listed in the (NULL-terminated) array
pointed to by class_attrs is created. There is also a set of default attributes for every
device added to the class; class_dev_attrs points to those. There is the usual hot-
plug function for adding variables to the environment when events are generated.
There are also two release methods: release is called whenever a device is removed
from the class, while class_release is called when the class itself is released.
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The registration functions are:

int class_register(struct class *cls);
void class_unregister(struct class *cls);

The interface for working with attributes should not surprise anybody at this point:

struct class_attribute {
struct attribute attr;
ssize t (*show)(struct class *cls, char *buf);
ssize t (*store)(struct class *cls, const char *buf, size t count);

s
CLASS_ATTR(name, mode, show, store);

int class create file(struct class *cls,

const struct class attribute *attr);
void class_remove file(struct class *cls,

const struct class_attribute *attr);

Class devices

The real purpose of a class is to serve as a container for the devices that are members
of that class. A member is represented by struct class_device:
struct class device {
struct kobject kobj;
struct class *class;
struct device *dev;
void *class_data;
char class_id[BUS ID SIZE];
};
The class_id field holds the name of this device as it appears in sysfs. The class
pointer should point to the class holding this device, and dev should point to the
associated device structure. Setting dev is optional; if it is non-NULL, it is used to cre-
ate a symbolic link from the class entry to the corresponding entry under /sys/devices,
making it easy to find the device entry in user space. The class can use class_data to
hold a private pointer.

The usual registration functions have been provided:

int class_device register(struct class device *cd);
void class device unregister(struct class device *cd);

The class device interface also allows the renaming of an already registered entry:
int class_device rename(struct class device *cd, char *new_name);
Class device entries have attributes:

struct class_device attribute {
struct attribute attr;
ssize t (*show)(struct class device *cls, char *buf);
ssize t (*store)(struct class device *cls, const char *buf,
size t count);

};
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CLASS DEVICE ATTR(name, mode, show, store);

int class_device create file(struct class device *cls,
const struct class device attribute *attr);
void class_device remove file(struct class device *cls,
const struct class device attribute *attr);
A default set of attributes, in the class’s class_dev_attrs field, is created when the
class device is registered; class_device_create_file may be used to create additional
attributes. Attributes may also be added to class devices created with the class_simple
interface.

(Class interfaces

The class subsystem has an additional concept not found in other parts of the Linux
device model. This mechanism is called an interface, but it is, perhaps, best thought
of as a sort of trigger mechanism that can be used to get notification when devices
enter or leave the class.

An interface is represented by:

struct class_interface {
struct class *class;
int (*add) (struct class_device *cd);
void (*remove) (struct class device *cd);

};
Interfaces can be registered and unregistered with:

int class_interface register(struct class_interface *intf);

void class_interface_unregister(struct class_interface *intf);
The functioning of an interface is straightforward. Whenever a class device is added
to the class specified in the class_interface structure, the interface’s add function is
called. That function can perform any additional setup required for that device; this
setup often takes the form of adding more attributes, but other applications are pos-
sible. When the device is removed from the class, the remove method is called to per-
form any required cleanup.

Multiple interfaces can be registered for a class.

Putting It All Together

To better understand what the driver model does, let us walk through the steps of a
device’s lifecycle within the kernel. We describe how the PCI subsystem interacts
with the driver model, the basic concepts of how a driver is added and removed, and
how a device is added and removed from the system. These details, while describing
the PCI kernel code specifically, apply to all other subsystems that use the driver core
to manage their drivers and devices.
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The interaction between the PCI core, driver core, and the individual PCI drivers is
quite complex, as Figure 14-3 shows.
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Figure 14-3. Device-creation process

Add a Device

The PCI subsystem declares a single struct bus_type called pci bus_type, which is
initialized with the following values:

struct bus_type pci bus type = {

.name = "pci",

.match = pci_bus_match,
.hotplug = pci hotplug,
.suspend = pci device suspend,
.resume = pci_device_resume,

.dev_attrs = pci dev_attrs,
b
This pci_bus_type variable is registered with the driver core when the PCI subsystem
is loaded in the kernel with a call to bus_register. When that happens, the driver core
creates a sysfs directory in /sys/bus/pci that consists of two directories: devices and
drivers.

All PCI drivers must define a struct pci driver variable that defines the different
functions that this PCI driver can do (for more information about the PCI subsystem
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and how to write a PCI driver, see Chapter 12). That structure contains a struct
device driver that is then initialized by the PCI core when the PCI driver is registered:

/* initialize common driver fields */

drv->driver.name = drv->name;

drv->driver.bus = &pci bus type;

drv->driver.probe = pci_device_probe;

drv->driver.remove = pci device remove;

drv->driver.kobj.ktype = 8pci driver kobj type;
This code sets up the bus for the driver to point to the pci_bus_type and points the
probe and remove functions to point to functions within the PCI core. The ktype for
the driver’s kobject is set to the variable pci_driver kobj type, in order for the PCI
driver’s attribute files to work properly. Then the PCI core registers the PCI driver
with the driver core:

/* register with core */
error = driver register(&drv->driver);

The driver is now ready to be bound to any PCI devices it supports.

The PCI core, with help from the architecture-specific code that actually talks to the
PCI bus, starts probing the PCI address space, looking for all PCI devices. When
a PCI device is found, the PCI core creates a new variable in memory of type struct
pci_dev. A portion of the struct pci_dev structure looks like the following:

struct pci_dev {
VARV
unsigned int  devfn;
unsigned short vendor;
unsigned short device;
unsigned short subsystem vendor;
unsigned short subsystem device;
unsigned int  class;
VA
struct pci_driver *driver;
VARV
struct device dev;
/¥ oo ¥/
1
The bus-specific fields of this PCI device are initialized by the PCI core (the devfn,
vendor, device, and other fields), and the struct device variable’s parent variable is
set to the PCI bus device that this PCI device lives on. The bus variable is set to point
at the pci_bus_type structure. Then the name and bus_id variables are set, depending
on the name and ID that is read from the PCI device.

After the PCI device structure is initialized, the device is registered with the driver
core with a call to:

device register(&dev->dev);
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Within the device_register function, the driver core initializes a number of the
device’s fields, registers the device’s kobject with the kobject core (which causes a
hotplug event to be generated, but we discuss that later in this chapter), and then
adds the device to the list of devices that are held by the device’s parent. This is done
so that all devices can be walked in the proper order, always knowing where in the
hierarchy of devices each one lives.

The device is then added to the bus-specific list of all devices, in this example, the
pci_bus_type list. Then the list of all drivers that are registered with the bus is walked,
and the match function of the bus is called for every driver, specifying this device. For
the pci_bus_type bus, the match function was set to point to the pci_bus_match func-
tion by the PCI core before the device was submitted to the driver core.

The pci_bus_match function casts the struct device that was passed to it by the
driver core, back into a struct pci_dev. It also casts the struct device driver back
into a struct pci_driver and then looks at the PCI device-specific information of the
device and driver to see if the driver states that it can support this kind of device. If
the match is not successful, the function returns 0 back to the driver core, and the
driver core moves on to the next driver in its list.

If the match is successful, the function returns 1 back to the driver core. This causes
the driver core to set the driver pointer in the struct device to point to this driver,
and then it calls the probe function that is specified in the struct device driver.

Earlier, before the PCI driver was registered with the driver core, the probe variable
was set to point at the pci_device_probe function. This function casts (yet again) the
struct device back into a struct pci dev and the struct driver that is set in the
device back into a struct pci_driver. It again verifies that this driver states that it can
support this device (which seems to be a redundant extra check for some unknown
reason), increments the reference count of the device, and then calls the PCI driver’s
probe function with a pointer to the struct pci_dev structure it should bind to.

If the PCI driver’s probe function determines that it can not handle this device for
some reason, it returns a negative error value, which is propagated back to the driver
core and causes it to continue looking through the list of drivers to match one up
with this device. If the probe function can claim the device, it does all the initializa-
tion that it needs to do to handle the device properly, and then it returns 0 back up
to the driver core. This causes the driver core to add the device to the list of all
devices currently bound by this specific driver and creates a symlink within the
driver’s directory in sysfs to the device that it is now controlling. This symlink allows
users to see exactly which devices are bound to which devices. This can be seen as:

$ tree /sys/bus/pci

/sys/bus/pci/

|-- devices

|-- 0000:00:00.0 -> ../../../devices/pci0000:00/0000:00:00.0

|
| |-- 0000:00:00.1 -> ../../../devices/pci0000:00/0000:00:00.1
| |-- 0000:00:00.2 -> ../../../devices/pci0000:00/0000:00:00.2
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| ]-- 0000:00:02.0 -> ../../../devices/pci0000:00/0000:00:02.0
| |-- 0000:00:04.0 -> ../../../devices/pci0000:00/0000:00:04.0
| |-- 0000:00:06.0 -> ../../../devices/pci0000:00/0000:00:06.0
| ]-- 0000:00:07.0 -> ../../../devices/pci0000:00/0000:00:07.0
| |-- 0000:00:09.0 -> ../../../devices/pci0000:00/0000:00:09.0
| |-- 0000:00:09.1 -> ../../../devices/pci0000:00/0000:00:09.1
| ]-- 0000:00:09.2 -> ../../../devices/pci0000:00/0000:00:09.2
| |-- 0000:00:0c.0 -> ../../../devices/pci0000:00/0000:00:0c.0
| |-- 0000:00:0f.0 -> ../../../devices/pci0000:00/0000:00:0f.0
| ]-- 0000:00:10.0 -> ../../../devices/pci0000:00/0000:00:10.0
| |-- 0000:00:12.0 -> ../../../devices/pci0000:00/0000:00:12.0
| -- 0000:00:13.0 -> ../../../devices/pci0000:00/0000:00:13.0
| “-- 0000:00:14.0 -> ../../../devices/pci0000:00/0000:00:14.0
“-- drivers

|-- ALI15x3_IDE
"-- 0000:00:0f.0 -> ../../../../devices/pci0000:00/0000:00:0f.0
-- ehci_hcd

"-- 0000:00:09.2 -> ../../../../devices/pci0000:00/0000:00:09.2
-- ohci_hcd

|-- 0000:00:02.0 -> ../../../../devices/pci0000:00/0000:00:02.0

|-- 0000:00:09.0 -> ../../../../devices/pci0000:00/0000:00:09.0

"-- 0000:00:09.1 -> ../../../../devices/pci0000:00/0000:00:09.1
-- orinoco_pci

*-- 0000:00:12.0 -> ../../../../devices/pci0000:00/0000:00:12.0
-- radeonfb

*-- 0000:00:14.0 -> ../../../../devices/pci0000:00/0000:00:14.0
-- serial
T-- trident

*-- 0000:00:04.0 -> ../../../../devices/pci0000:00/0000:00:04.0

Remove a Device

A PCI device can be removed from a system in a number of different ways. All Card-
Bus devices are really PCI devices in a different physical form factor, and the kernel
PCI core does not differenciate between them. Systems that allow the removal or
addition of PCI devices while the machine is still running are becoming more popu-
lar, and Linux supports them. There is also a fake PCI Hotplug driver that allows
developers to test to see if their PCI driver properly handles the removal of a device
while the system is running. This module is called fakephp and causes the kernel to
think the PCI device is gone, but it does not allow users to physically remove a PCI
device from a system that does not have the proper hardware to do so. See the docu-
mentation with this driver for more information on how to use it to test your PCI
drivers.

The PCI core exerts a lot less effort to remove a device than it does to add it. When a
PCI device is to be removed, the pci_remove_bus_device function is called. This function
does some PCl-specific cleanups and housekeeping, and then calls the device_unregister
function with a pointer to the struct pci_dev’s struct device member.
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In the device_unregister function, the driver core merely unlinks the sysfs files from
the driver bound to the device (if there was one), removes the device from its inter-
nal list of devices, and calls kobject_del with a pointer to the struct kobject that is
contained in the struct device structure. That function makes a hotplug call to user
space stating that the kobject is now removed from the system, and then it deletes all
sysfs files associated with the kobject and the sysfs directory itself that the kobject
had originally created.

The kobject_del function also removes the kobject reference of the device itself. If
that reference was the last one (meaning no user-space files were open for the sysfs
entry of the device), then the release function for the PCI device itself, pci_release_dev,
is called. That function merely frees up the memory that the struct pci_dev took up.

After this, all sysfs entries associated with the device are removed, and the memory
associated with the device is released. The PCI device is now totally removed from
the system.

Add a Driver

A PCI driver is added to the PCI core when it calls the pci_register_driver function.
This function merely initializes the struct device driver structure that is contained
within the struct pci driver structure, as previously mentioned in the section
about adding a device. Then the PCI core calls the driver_register function in the
driver core with a pointer to the structdevice_driver structure contained in the
struct pci_driver structure.

The driver_register function initializes a few locks in the struct device_driver struc-
ture, and then calls the bus_add_driver function. This function does the following
steps:

* Looks up the bus that the driver is to be associated with. If this bus is not found,
the function instantly returns.

* The driver’s sysfs directory is created based on the name of the driver and the
bus that it is associated with.

* The bus’s internal lock is grabbed, and then all devices that have been registered
with the bus are walked, and the match function is called for them, just like
when a new device is added. If that match function succeeds, then the rest of the
binding process occurs, as described in the previous section.

Remove a Driver

Removing a driver is a very simple action. For a PCI driver, the driver calls the
pci_unregister_driver function. This function merely calls the driver core function
driver_unregister, with a pointer to the struct device driver portion of the struct
pci_driver structure passed to it.
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The driver_unregister function handles some basic housekeeping by cleaning up
some sysfs attributes that were attached to the driver’s entry in the sysfs tree. It then
iterates over all devices that were attached to this driver and calls the release func-
tion for it. This happens exactly like the previously mentioned release function for
when a device is removed from the system.

After all devices are unbound from the driver, the driver code does this unique bit of
logic:

down (&drv->unload_sem);

up(8drv->unload_sem);
This is done right before returning to the caller of the function. This lock is grabbed
because the code needs to wait for all reference counts on this driver to be dropped
to 0 before it is safe to return. This is needed because the driver_unregister function is
most commonly called as the exit path of a module that is being unloaded. The mod-
ule needs to remain in memory for as long as the driver is being referenced by devices
and by waiting for this lock to be freed, this allows the kernel to know when it is safe
to remove the driver from memory.

Hotplug

There are two different ways to view hotplugging. The kernel views hotplugging as
an interaction between the hardware, the kernel, and the kernel driver. Users view
hotplugging as the interaction between the kernel and user space through the pro-
gram called /sbin/hotplug. This program is called by the kernel when it wants to
notify user space that some type of hotplug event has just happened within the kernel.

Dynamic Devices

The most commonly used meaning of the term “hotplug” happens when discussing
the fact that most all computer systems can now handle devices appearing or disap-
pearing while the system is powered on. This is very different from the computer sys-
tems of only a few years ago, where the programmers knew that they needed to scan
for all devices only at boot time, and they never had to worry about their devices dis-
appearing until the power was turned off to the whole machine. Now, with the
advent of USB, CardBus, PCMCIA, IEEE1394, and PCI Hotplug controllers, the
Linux kernel needs to be able to reliably run no matter what hardware is added or
removed from the system. This places an added burden on the device driver author,
as they must now always handle a device being suddenly ripped out from under-
neath them without any notice.

Each different bus type handles the loss of a device in a different way. For example,
when a PCI, CardBus, or PCMCIA device is removed from the system, it is usually a
while before the driver is notified of this action through its remove function. Before
that happens, all reads from the PCI bus return all bits set. This means that drivers
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.

need to always check the value of the data they read from the PCI bus and properly
be able to handle a oxff value.

An example of this can be seen in the drivers/usb/host/ehci-hcd.c driver, which is a
PCI driver for a USB 2.0 (high-speed) controller card. It has the following code in its
main handshake loop to detect if the controller card has been removed from the system:

result = readl(ptr);

if (result == ~(u32)0) /* card removed */

return -ENODEV;

For USB drivers, when the device that a USB driver is bound to is removed from the
system, any pending urbs that were submitted to the device start failing with the
error -ENODEV. The driver needs to recognize this error and properly clean up any
pending I/O if it occurs.

Hotpluggable devices are not limited only to traditional devices such as mice, key-
boards, and network cards. There are numerous systems that now support removal
and addition of entire CPUs and memory sticks. Fortunately the Linux kernel prop-
erly handles the addition and removal of such core “system” devices so that individ-
ual device drivers do not need to pay attention to these things.

The /shin/hotplug Utility

As alluded to earlier in this chapter, whenever a device is added or removed from the
system, a “hotplug event” is generated. This means that the kernel calls the user-
space program /sbin/hotplug. This program is typically a very small bash script that
merely passes execution on to a list of other programs that are placed in the /etc/hot-
plug.d/ directory tree. For most Linux distributions, this script looks like the following:
DIR="/etc/hotplug.d"
for I in "${DIR}/$1/"*.hotplug "${DIR}/"default/*.hotplug ; do
if [ -f $I ]; then
test -x $I 88 $I $1 ;
fi
done
exit 1

In other words, the script searches for all programs bearing a .hotplug suffix that
might be interested in this event and invokes them, passing to them a number of dif-
ferent environment variables that have been set by the kernel. More details about
how the /sbin/hotplug script works can be found in the comments in the program and
in the hotplug(8) manpage.
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As mentioned previously, /sbin/hotplug is called whenever a kobject is created or
destroyed. The hotplug program is called with a single command-line argument pro-
viding a name for the event. The core kernel and specific subsystem involved also set
a series of environment variables (described below) with information on what has
just occurred. These variables are used by the hotplug programs to determine what
has just happened in the kernel, and if there is any specific action that should take
place.

The command-line argument passed to /sbin/hotplug is the name associated with this
hotplug event, as determined by the kset assigned to the kobject. This name can be
set by a call to the name function that is part of the kset’s hotplug_ops structure
described earlier in this chapter; if that function is not present or never called, the
name is that of the kset itself.

The default environment variables that are always set for the /sbin/hotplug program
are:

ACTION
The string add or remove, depending on whether the object in question was just
created or destroyed.

DEVPATH
A directory path, within the sysfs filesystem, that points to the kobject that is
being either created or destroyed. Note that the mount point of the sysfs filesys-
tem is not added to this path, so it is up to the user-space program to determine
that.

SEQNUM
The sequence number for this hotplug event. The sequence number is a 64-bit
number that is incremented for every hotplug event that is generated. This
allows user space to sort the hotplug events in the order in which the kernel gen-
erates them, as it is possible for a user-space program to be run out of order.

SUBSYSTEM
The same string passed as the command-line argument as described above.

A number of the different bus subsystems all add their own environment variables to
the /sbin/hotplug call, when devices associated with the bus are added or removed
from the system. They do this in their hotplug callback that is specified in the struct
kset_hotplug ops assigned to their bus (as described in the section “Hotplug Opera-
tions”). This allows user space to be able to automatically load any necessary module
that might be needed to control the device that has been found by the bus. Here is a
list of the different bus types and what environment variables they add to the /sbin/
hotplug call.
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IEEE1394 (FireWire)

Any devices on the IEEE1394 bus, also known as Firewire, have the /sbin/hotplug
parameter name and the SUBSYSTEM environment variable set to the value ieee1394.
The ieee1394 subsystem also always adds the following four environment variables:

VENDOR_ID
The 24-bit vendor ID for the IEEE1394 device

MODEL_ID
The 24-bit model ID for the IEEE1394 device
GUID
The 64-bit GUID for the device
SPECIFIER_ID
The 24-bit value specifying the owner of the protocol spec for this device

VERSION
The value that specifies the version of the protocol spec for this device

Networking

All network devices create a hotplug event when the device is registered or unregis-
tered in the kernel. The /sbin/hotplug call has the parameter name and the SUBSYSTEM
environment variable set to the value net, and just adds the following environment
variable:

INTERFACE
The name of the interface that has been registered or unregistered from the ker-
nel. Examples of this are 1o and etho.

Pd

Any devices on the PCI bus have the parameter name and the SUBSYSTEM environ-
ment variable set to the value pci. The PCI subsystem also always adds the following
four environment variables:

PCI_CLASS
The PCI class number for the device, in hex.

PCI ID
The PCI vendor and device IDs for the device, in hex, combined in the format
vendor:device.

PCI_SUBSYS ID
The PCI subsystem vendor and subsystem device IDs, combined in the format
subsys_vendor:subsys_device.

PCI_SLOT NAME
The PCI slot “name” that is given to the device by the kernel. It is in the format
domain:bus:slot:function. An example might be 0000:00:0d.0.
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Input

For all input devices (mice, keyboards, joysticks, etc.), a hotplug event is generated
when the device is added and removed from the kernel. The /sbin/hotplug parameter
and the SUBSYSTEM environment variable are set to the value input. The input sub-
system also always adds the following environment variable:

PRODUCT
A multivalue string listing values in hex with no leading zeros. It is in the format
bustype:vendor:product:version.

The following environment variables may be present, if the device supports it:

NAME
The name of the input device as given by the device.

PHYS
The device’s physical address that the input subsystem gave to this device. It is
supposed to be stable, depending on the bus position into which the device was
plugged.

EV

KEY

REL

ABS

MSC

LED

SND

FF
These all come from the input device descriptor and are set to the appropriate
values if the specific input device supports it.

UsB

Any devices on the USB bus have the parameter name and the SUBSYSTEM environ-
ment variable set to the value usb. The USB subsystem also always adds the follow-
ing environment variables:

PRODUCT
A string in the format idVendor/idProduct/bcdDevice that specifies those USB
device-specific fields

TYPE
A string in the format bDeviceClass/bDeviceSubClass/bDeviceProtocol that speci-
fies those USB device-specific fields

If the bDeviceClass field is set to 0, the following environment variable is also set:

INTERFACE
A string in the format bInterfaceClass/bInterfaceSubClass/bInterfaceProtocol
that specifies those USB device-specific fields.
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If the kernel build option, CONFIG_USB_DEVICEFS, which selects the usbfs filesystem to
be built in the kernel, is selected, the following environment variable is also set:

DEVICE
A string that shows where in the usbfs filesystem the device is located. This
string is in the format /proc/bus/usb/USB_BUS NUMBER/USB DEVICE NUMBER, in
which USB_BUS_NUMBER is the three-digit number of the USB bus that the device is
on, and USB_DEVICE _NUMBER is the three-digit number that has been assigned by
the kernel to that USB device.

Scsl

All SCSI devices create a hotplug event when the SCSI device is created or removed
from the kernel. The /sbin/hotplug call has the parameter name and the SUBSYSTEM
environment variable set to the value scsi for every SCSI device that is added or
removed from the system. There are no additional environment variables added by
the SCSI system, but it is mentioned here because there is a SCSI-specific user-space
script that can determine what SCSI drivers (disk, tape, generic, etc.) should be
loaded for the specified SCSI device.

Laptop docking stations

If a Plug-and-Play-supported laptop docking station is added or removed from the
running Linux system (by inserting the laptop into the station, or removing it), a hot-
plug event is created. The /sbin/hotplug call has the parameter name and the
SUBSYSTEM environment variable set to the value dock. No other environment vari-
ables are set.

$/390 and zSeries

On the S/390 architecture, the channel bus architecture supports a wide range of
hardware, all of which generate /sbin/hotplug events when they are added or removed
from the Linux virtual system. These devices all have the /sbin/hotplug parameter
name and the SUBSYSTEM environment variable set to the value dasd. No other envi-
ronment variables are set.

Using /sbin/hotplug

Now that the Linux kernel is calling /sbin/hotplug for every device added and
removed from the kernel, a number of very useful tools have been created in user
space that take advantage of this. Two of the most popular tools are the Linux Hot-
plug scripts and udev.
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Linux hotplug scripts

The Linux hotplug scripts started out as the very first user of the /shin/hotplug call.
These scripts look at the different environment variables that the kernel sets to
describe the device that was just discovered and then tries to find a kernel module
that matches up with that device.

As has been described before, when a driver uses the MODULE_DEVICE TABLE macro, the
program, depmod, takes that information and creates the files located in /lib/module/
KERNEL_VERSION/modules.*map. The * is different, depending on the bus type
that the driver supports. Currently, the module map files are generated for drivers
that work for devices that support the PCI, USB, IEEE1394, INPUT, ISAPNP, and
CCW subsystems.

The hotplug scripts use these module map text files to determine what module to try
to load to support the device that was recently discovered by the kernel. They load
all modules and do not stop at the first match, in order to let the kernel work out
what module works best. These scripts do not unload any modules when devices are
removed. If they were to try to do that, they could accidentally shut down devices
that were also controlled by the same driver of the device that was removed.

Note, now that the modprobe program can read the MODULE_DEVICE TABLE information
directly from the modules without the need of the module map files, the hotplug
scripts might be reduced to a small wrapper around the modprobe program.

udev

One of the main reasons for creating the unified driver model in the kernel was to
allow user space to manage the /dev tree in a dynamic fashion. This had previously
been done in user space with the implementation of devfs, but that code base has
slowly rotted away, due to a lack of an active maintainer and some unfixable core
bugs. A number of kernel developers realized that if all device information was
exported to user space, it could perform all the necessary management of the /dev
tree.

devfs has some very fundamental flaws in its design. It requires every device driver to
be modified to support it, and it requires that device driver to specify the name and
location within the /dev tree where it is placed. It also does not properly handle
dynamic major and minor numbers, and it does not allow user space to override the
naming of a device in a simple manner, forcing the device naming policy to reside
within the kernel and not in user space. Linux kernel developers really hate having
policy within the kernel, and since the devfs naming policy does not follow the Linux
Standard Base specification, it really bothers them.

As the Linux kernel started to be installed on huge servers, a lot of users ran into the
problem of how to manage very large numbers of devices. Disk drive arrays of over
10,000 unique devices presented the very difficult task of ensuring that a specific disk
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was always named with the same exact name, no matter where it was placed in the
disk array or when it was discovered by the kernel. This same problem also plagued
desktop users who tried to plug two USB printers into their system and then realized
that they had no way of ensuring that the printer known as /dev/Ipt0 would not
change and be assigned to the other printer if the system was rebooted.

So, udev was created. It relies on all device information being exported to user space
through sysfs and on being notified by /sbin/hotplug that a device was added or
removed. Policy decisions, such as what name to give a device, can be specified in
user space, outside of the kernel. This ensures that the naming policy is removed
from the kernel and allows a large amount of flexibility about the name of each
device.

For more information on how to use udev and how to configure it, please see the
documentation that comes included with the udev package in your distribution.

All that a device driver needs to do, for udev to work properly with it, is ensure that
any major and minor numbers assigned to a device controlled by the driver are
exported to user space through sysfs. For any driver that uses a subsystem to assign it
a major and minor number, this is already done by the subsystem, and the driver
doesn’t have to do any work. Examples of subsystems that do this are the tty, misc,
usb, input, scsi, block, i2¢, network, and frame buffer subsystems. If your driver han-
dles getting a major and minor number on its own, through a call to the cdev_init
function or the older register_chrdev function, the driver needs to be modified in
order for udev to work properly with it.

udev looks for a file called dev in the /class/ tree of sysfs, in order to determine what
major and minor number is assigned to a specific device when it is called by the ker-
nel through the /sbin/hotplug interface. A device driver merely needs to create that file
for every device it controls. The class_simple interface is usually the easiest way to

do this.

As mentioned in the section “The class_simple Interface,” the first step in using
the class_simple interface is to create a struct class simple with a call to the
class_simple_create function:

static struct class simple *foo class;
foo_class = class_simple create(THIS MODULE, "foo");
if (IS_ERR(foo class)) {

printk(KERN_ERR "Error creating foo class.\n");
goto error;

}

This code creates a directory in sysfs in /sys/class/foo.

Whenever a new device is found by your driver, and you assign it a minor number as
described in Chapter 3, the driver should call the class_simple_device_add function:

class_simple device add(foo class, MKDEV(FOO MAJOR, minor), NULL, "foo%d", minor);
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This code causes a subdirectory under /sys/class/foo to be created called fooN, where
N is the minor number for this device. There is one file created in this directory, dev,
which is exactly what udev needs in order to create a device node for your device.

When your driver is unbound from a device, and you give up the minor number that
it was attached to, a call to class_simple_device_remove is needed to remove the sysfs
entries for this device:

class_simple_device_remove(MKDEV(FOO_MAJOR, minor));

Later, when your entire driver is being shut down, a call to class_simple_destroy is
needed to remove the class that you created originally with the call to class_simple_
create:

class_simple destroy(foo class);

The dev file that is created by the call to class_simple_device_add consists of the
major and minor numbers, separated by a : character. If your driver does not want to
use the class_simple interface because you want to provide other files within the
class directory for the subsystem, use the print_dev_t function to properly format the
major and minor number for the specific device.

Dealing with Firmware

As a driver author, you may find yourself confronted with a device that must have
firmware downloaded into it before it functions properly. The competition in many
parts of the hardware market is so intense that even the cost of a bit of EEPROM for
the device’s controlling firmware is more than the manufacturer is willing to spend.
So the firmware is distributed on a CD with the hardware, and the operating system
is charged with conveying the firmware to the device itself.

You may be tempted to solve the firmware problem with a declaration like this:
static char my firmware[ ] = { 0x34, 0x78, Oxa4, ... };

That approach is almost certainly a mistake, however. Coding firmware into a driver
bloats the driver code, makes upgrading the firmware hard, and is very likely to run
into licensing problems. It is highly unlikely that the vendor has released the firm-
ware image under the GPL, so mixing it with GPL-licensed code is usually a mistake.
For this reason, drivers containing wired-in firmware are unlikely to be accepted into
the mainline kernel or included by Linux distributors.

The Kernel Firmware Interface

The proper solution is to obtain the firmware from user space when you need it.
Please resist the temptation to try to open a file containing firmware directly from
kernel space, however; that is an error-prone operation, and it puts policy (in the
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form of a file name) into the kernel. Instead, the correct approach is to use the firm-
ware interface, which was created just for this purpose:

#include <linux/firmware.h>

int request firmware(const struct firmware **fw, char *name,

struct device *device);

A call to request_firmware requests that user space locate and provide a firmware
image to the kernel; we look at the details of how it works in a moment. The name
should identify the firmware that is desired; the normal usage is the name of the
firmware file as provided by the vendor. Something like my_firmware.bin is typical. If
the firmware is successfully loaded, the return value is 0 (otherwise the usual error
code is returned), and the fw argument is pointed to one of these structures:

struct firmware {

size t size;
u8 *data;

1
That structure contains the actual firmware, which can now be downloaded to the
device. Be aware that this firmware is unchecked data from user space; you should
apply any and all tests you can think of to convince yourself that it is a proper firm-
ware image before sending it to the hardware. Device firmware usually contains iden-
tification strings, checksums, and so on; check them all before trusting the data.

After you have sent the firmware to the device, you should release the in-kernel
structure with:

void release firmware(struct firmware *fw);

Since request_firmware asks user space to help, it is guaranteed to sleep before
returning. If your driver is not in a position to sleep when it must ask for firmware,
the asynchronous alternative may be used:
int request firmware nowait(struct module *module,

char *name, struct device *device, void *context,

void (*cont)(const struct firmware *fw, void *context));
The additional arguments here are module (which will almost always be THIS MODULE),
context (a private data pointer that is not used by the firmware subsystem), and cont.
If all goes well, request_firmware_nowait begins the firmware load process and
returns 0. At some future time, cont will be called with the result of the load. If the
firmware load fails for some reason, fw is NULL.
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How It Works

The firmware subsystem works with sysfs and the hotplug mechanism. When a call
is made to request_firmware, a new directory is created under /sys/class/firmware
using your device’s name. That directory contains three attributes:

loading
This attribute should be set to one by the user-space process that is loading the
firmware. When the load process is complete, it should be set to 0. Writing a
value of -1 to loading aborts the firmware loading process.

data
data is a binary attribute that receives the firmware data itself. After setting
loading, the user-space process should write the firmware to this attribute.

device
This attribute is a symbolic link to the associated entry under /sys/devices.

Once the sysfs entries have been created, the kernel generates a hotplug event for
your device. The environment passed to the hotplug handler includes a variable
FIRMWARE, which is set to the name provided to request_firmware. The handler should
locate the firmware file, and copy it into the kernel using the attributes provided. If
the file cannot be found, the handler should set the loading attribute to -1.

If a firmware request is not serviced within 10 seconds, the kernel gives up and
returns a failure status to the driver. That time-out period can be changed via the
sysfs attribute /sys/class/firmware/timeout.

Using the request_firmware interface allows you to distribute the device firmware
with your driver. When properly integrated into the hotplug mechanism, the firm-
ware loading subsystem allows devices to simply work “out of the box.” It is clearly
the best way of handling the problem.

Please indulge us as we pass on one more warning, however: device firmware should
not be distributed without the permission of the manufacturer. Many manufacturers
will agree to license their firmware under reasonable terms when asked politely;
some others can be less cooperative. Either way, copying and distributing their firm-
ware without permission is a violation of copyright law and an invitation for trouble.

Quick Reference

Many functions have been introduced in this chapter; here is a quick summary of
them all.
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Kobjects

#include <linux/kobject.h>
The include file containing definitions for kobjects, related structures, and
functions.

void kobject init(struct kobject *kobj);

int kobject set name(struct kobject *kobj, const char *format, ...);
Functions for kobject initialization.

struct kobject *kobject get(struct kobject *kobj);
void kobject put(struct kobject *kobj);
Functions that manage reference counts for kobjects.

struct kobj type;

struct kobj type *get ktype(struct kobject *kobj);
Represents the type of structure within which a kobject is embedded. Use
get_ktype to get the kobj_type associated with a given kobject.

int kobject add(struct kobject *kobj);

extern int kobject register(struct kobject *kobj);

void kobject del(struct kobject *kobj);

void kobject unregister(struct kobject *kobj);
kobject_add adds a kobject to the system, handling kset membership, sysfs repre-
sentation, and hotplug event generation. kobject_register is a convenience func-
tion that combines kobject_init and kobject_add. Use kobject_del to remove a
kobject or kobject_unregister, which combines kobject_del and kobject_put.

void kset init(struct kset *kset);
int kset add(struct kset *kset);
int kset register(struct kset *kset);
void kset unregister(struct kset *kset);
Initialization and registration functions for ksets.
decl subsys(name, type, hotplug ops);
A macro that makes it easier to declare subsystems.
void subsystem init(struct subsystem *subsys);
int subsystem register(struct subsystem *subsys);
void subsystem unregister(struct subsystem *subsys);
struct subsystem *subsys get(struct subsystem *subsys)
void subsys put(struct subsystem *subsys);
Operations on subsystems.
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Sysfs Operations

#include <linux/sysfs.h>
The include file containing declarations for sysfs.

int sysfs create file(struct kobject *kobj, struct attribute *attr);
int sysfs remove file(struct kobject *kobj, struct attribute *attr);
int sysfs create bin file(struct kobject *kobj, struct bin attribute *attr);
int sysfs remove bin file(struct kobject *kobj, struct bin attribute *attr);
int sysfs create link(struct kobject *kobj, struct kobject *target, char
*name);

void sysfs remove link(struct kobject *kobj, char *name);

Functions for creating and removing attribute files associated with a kobject.

Buses, Devices, and Drivers

int bus_register(struct bus_type *bus);

void bus_unregister(struct bus_type *bus);
Functions that perform registration and unregistration of buses in the device
model.

int bus_for each dev(struct bus type *bus, struct device *start, void *data,
int (*fn)(struct device *, void *));
int bus_for each drv(struct bus_type *bus, struct device driver *start, void
*data, int (*fn)(struct device driver *, void *));
Functions that iterate over each of the devices and drivers, respectively, that are
attached to the given bus.

BUS_ATTR(name, mode, show, store);

int bus_create file(struct bus_type *bus, struct bus attribute *attr);

void bus remove file(struct bus type *bus, struct bus attribute *attr);
The BUS_ATTR macro may be used to declare a bus_attribute structure, which
may then be added and removed with the above two functions.

int device register(struct device *dev);
void device unregister(struct device *dev);
Functions that handle device registration.

DEVICE ATTR(name, mode, show, store);

int device create file(struct device *device, struct device attribute *entry);

void device remove file(struct device *dev, struct device attribute *attr);
Macros and functions that deal with device attributes.
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int driver register(struct device driver *drv);
void driver unregister(struct device driver *drv);
Functions that register and unregister a device driver.

DRIVER _ATTR(name, mode, show, store);
int driver create file(struct device driver *drv, struct driver attribute
*attr);
void driver remove file(struct device driver *drv, struct driver attribute
*attr);
Macros and functions that manage driver attributes.

Classes

struct class_simple *class simple create(struct module *owner, char *name);
void class simple destroy(struct class simple *cs);
struct class _device *class simple device add(struct class simple *cs, dev t
devnum, struct device *device, const char *fmt, ...);
void class simple device remove(dev t dev);
int class_simple set hotplug(struct class simple *cs, int (*hotplug)(struct
class_device *dev, char **envp, int num_envp, char *buffer, int
buffer size));
Functions that implement the class_simple interface; they manage simple class
entries containing a dev attribute and little else.

int class register(struct class *cls);
void class unregister(struct class *cls);
Registration and unregistration of classes.

CLASS ATTR(name, mode, show, store);

int class create file(struct class *cls, const struct class attribute *attr);

void class remove file(struct class *cls, const struct class attribute *attr);
The usual macros and functions for dealing with class attributes.

int class_device register(struct class device *cd);

void class device unregister(struct class device *cd);

int class device rename(struct class device *cd, char *new _name);

CLASS DEVICE ATTR(name, mode, show, store);

int class device create file(struct class device *cls, const struct
class _device attribute *attr);

void class device remove file(struct class device *cls, const struct
class_device attribute *attr);

Functions and macros that implement the class device interface.

int class_interface register(struct class interface *intf);
void class_interface unregister(struct class interface *intf);
Functions that add an interface to a class (or remove it).
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Firmware

#include <linux/firmware.h>
int request firmware(const struct firmware **fw, char *name, struct device
*device);

int request firmware nowait(struct module *module, char *name, struct device
*device, void *context, void (*cont)(const struct firmware *fw, void
*context));

void release firmware(struct firmware *fw);

Functions that implement the kernel firmware-loading interface.
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