é ,ch13.28948 Page 327 Friday, January 21, 2005 2:29 PM

CHAPTER 13

USB Drivers

The universal serial bus (USB) is a connection between a host computer and a num-
ber of peripheral devices. It was originally created to replace a wide range of slow
and different buses—the parallel, serial, and keyboard connections—with a single
bus type that all devices could connect to.” USB has grown beyond these slow con-
nections and now supports almost every type of device that can be connected to a
PC. The latest revision of the USB specification added high-speed connections with a
theoretical speed limit of 480 MBps.

Topologically, a USB subsystem is not laid out as a bus; it is rather a tree built out of
several point-to-point links. The links are four-wire cables (ground, power, and two
signal wires) that connect a device and a hub, just like twisted-pair Ethernet. The
USB host controller is in charge of asking every USB device if it has any data to send.
Because of this topology, a USB device can never start sending data without first
being asked to by the host controller. This configuration allows for a very easy plug-
and-play type of system, whereby devices can be automatically configured by the
host computer.

The bus is very simple at the technological level, as it’s a single-master implementa-
tion in which the host computer polls the various peripheral devices. Despite this
intrinsic limitation, the bus has some interesting features, such as the ability for a
device to request a fixed bandwidth for its data transfers in order to reliably support
video and audio I/O. Another important feature of USB is that it acts merely as a
communication channel between the device and the host, without requiring specific
meaning or structure to the data it delivers.t

* Portions of this chapter are based on the in-kernel documentation for the Linux kernel USB code, which were
written by the kernel USB developers and released under the GPL.

T Actually, some structure is there, but it mostly reduces to a requirement for the communication to fit into
one of a few predefined classes: a keyboard won’t allocate bandwidth, for example, while some video cam-
eras will.

327

4~ ~4]e

é ,ch13.28948 Page 328 Friday, January 21, 2005 2:29 PM

*

The USB protocol specifications define a set of standards that any device of a spe-
cific type can follow. If a device follows that standard, then a special driver for that
device is not necessary. These different types are called classes and consist of things
like storage devices, keyboards, mice, joysticks, network devices, and modems.
Other types of devices that do not fit into these classes require a special vendor-spe-
cific driver to be written for that specific device. Video devices and USB-to-serial
devices are a good example where there is no defined standard, and a driver is
needed for every different device from different manufacturers.

These features, together with the inherent hotplug capability of the design, make
USB a handy, low-cost mechanism to connect (and disconnect) several devices to the
computer without the need to shut the system down, open the cover, and swear over
screws and wires.

The Linux kernel supports two main types of USB drivers: drivers on a host system
and drivers on a device. The USB drivers for a host system control the USB devices
that are plugged into it, from the host’s point of view (a common USB host is a desk-
top computer.) The USB drivers in a device, control how that single device looks to
the host computer as a USB device. As the term “USB device drivers” is very confus-
ing, the USB developers have created the term “USB gadget drivers” to describe the
drivers that control a USB device that connects to a computer (remember that Linux
also runs in those tiny embedded devices, too.) This chapter details how the USB sys-
tem that runs on a desktop computer works. USB gadget drivers are outside the
realm of this book at this point in time.

As Figure 13-1 shows, USB drivers live between the different kernel subsytems
(block, net, char, etc.) and the USB hardware controllers. The USB core provides an
interface for USB drivers to use to access and control the USB hardware, without
having to worry about the different types of USB hardware controllers that are
present on the system.

USB Device Basics

A USB device is a very complex thing, as described in the official USB documenta-
tion (available at http://www.usb.org). Fortunately, the Linux kernel provides a sub-
system called the USB core to handle most of the complexity. This chapter describes
the interaction between a driver and the USB core. Figure 13-2 shows how USB
devices consist of configurations, interfaces, and endpoints and how USB drivers
bind to USB interfaces, not the entire USB device.

Endpoints

The most basic form of USB communication is through something called an end-
point. A USB endpoint can carry data in only one direction, either from the host

328 | Chapter13: USB Drivers

%

ﬁ

*@%

é ,ch13.28948 Page 329 Friday, January 21, 2005 2:29 PM

User

VFS block Net Char TTY
layer layer layer layer layer

Kernel

USB Device Drivers

USB Core

USB Host Controllers

Hardware

Figure 13-1. USB driver overview

Device

Interface

Config Endpoint
Endpoint
Endpoint

USB
driver

Interface

Endpoint 3
Endpoint 1

Endpoint

Figure 13-2. USB device overview

computer to the device (called an OUT endpoint) or from the device to the host com-
puter (called an IN endpoint). Endpoints can be thought of as unidirectional pipes.

A USB endpoint can be one of four different types that describe how the data is
transmitted:

CONTROL
Control endpoints are used to allow access to different parts of the USB device.
They are commonly used for configuring the device, retrieving information
about the device, sending commands to the device, or retrieving status reports
about the device. These endpoints are usually small in size. Every USB device has

USB Device Basics | 329

4~ ~4]e

é ,ch13.28948 Page 330 Friday, January 21, 2005 2:29 PM

a control endpoint called “endpoint 0” that is used by the USB core to configure
the device at insertion time. These transfers are guaranteed by the USB protocol
to always have enough reserved bandwidth to make it through to the device.

INTERRUPT
Interrupt endpoints transfer small amounts of data at a fixed rate every time the
USB host asks the device for data. These endpoints are the primary transport
method for USB keyboards and mice. They are also commonly used to send data
to USB devices to control the device, but are not generally used to transfer large
amounts of data. These transfers are guaranteed by the USB protocol to always
have enough reserved bandwidth to make it through.

BULK

Bulk endpoints transfer large amounts of data. These endpoints are usually
much larger (they can hold more characters at once) than interrupt endpoints.
They are common for devices that need to transfer any data that must get
through with no data loss. These transfers are not guaranteed by the USB proto-
col to always make it through in a specific amount of time. If there is not enough
room on the bus to send the whole BULK packet, it is split up across multiple
transfers to or from the device. These endpoints are common on printers, stor-
age, and network devices.

ISOCHRONOUS
Isochronous endpoints also transfer large amounts of data, but the data is not
always guaranteed to make it through. These endpoints are used in devices that
can handle loss of data, and rely more on keeping a constant stream of data
flowing. Real-time data collections, such as audio and video devices, almost
always use these endpoints.

Control and bulk endpoints are used for asynchronous data transfers, whenever the
driver decides to use them. Interrupt and isochronous endpoints are periodic. This
means that these endpoints are set up to transfer data at fixed times continuously,
which causes their bandwidth to be reserved by the USB core.

USB endpoints are described in the kernel with the structure struct usb_host_endpoint.
This structure contains the real endpoint information in another structure called
struct usb_endpoint_descriptor. The latter structure contains all of the USB-specific
data in the exact format that the device itself specified. The fields of this structure that
drivers care about are:

bEndpointAddress
This is the USB address of this specific endpoint. Also included in this 8-bit
value is the direction of the endpoint. The bitmasks USB_DIR_OUT and USB_DIR_IN
can be placed against this field to determine if the data for this endpoint is
directed to the device or to the host.

bmAttributes

This is the type of endpoint. The bitmask USB_ENDPOINT XFERTYPE_MASK should
be placed against this value in order to determine if the endpoint is of type

330 | Chapter13: USB Drivers

- ad

é ,ch13.28948 Page 331 Friday, January 21, 2005 2:29 PM

USB_ENDPOINT XFER_ISOC, USB_ENDPOINT XFER BULK, or of type USB_ENDPOINT
XFER_INT. These macros define a isochronous, bulk, and interrupt endpoint,
respectively.

wMaxPacketSize

This is the maximum size in bytes that this endpoint can handle at once. Note
that it is possible for a driver to send amounts of data to an endpoint that is big-
ger than this value, but the data will be divided up into wMaxPacketSize chunks
when actually transmitted to the device. For high-speed devices, this field can be
used to support a high-bandwidth mode for the endpoint by using a few extra
bits in the upper part of the value. See the USB specification for more details
about how this is done.

bInterval
If this endpoint is of type interrupt, this value is the interval setting for the end-
point—that is, the time between interrupt requests for the endpoint. The value is
represented in milliseconds.

The fields of this structure do not have a “traditional” Linux kernel naming scheme.
This is because these fields directly correspond to the field names in the USB specifi-
cation. The USB kernel programmers felt that it was more important to use the speci-
fied names, so as to reduce confusion when reading the specification, than it was to
have variable names that look familiar to Linux programmers.

Interfaces

USB endpoints are bundled up into interfaces. USB interfaces handle only one type of
a USB logical connection, such as a mouse, a keyboard, or a audio stream. Some USB
devices have multiple interfaces, such as a USB speaker that might consist of two
interfaces: a USB keyboard for the buttons and a USB audio stream. Because a USB
interface represents basic functionality, each USB driver controls an interface; so, for
the speaker example, Linux needs two different drivers for one hardware device.

USB interfaces may have alternate settings, which are different choices for parame-
ters of the interface. The initial state of a interface is in the first setting, numbered 0.
Alternate settings can be used to control individual endpoints in different ways, such
as to reserve different amounts of USB bandwidth for the device. Each device with an
isochronous endpoint uses alternate settings for the same interface.

USB interfaces are described in the kernel with the struct usb_interface structure.
This structure is what the USB core passes to USB drivers and is what the USB driver
then is in charge of controlling. The important fields in this structure are:

struct usb_host interface *altsetting
An array of interface structures containing all of the alternate settings that may
be selected for this interface. Each struct usb_host_interface consists of a set of

USB Device Basics | 331

- ad

é ,ch13.28948 Page 332 Friday, January 21, 2005 2:29 PM

endpoint configurations as defined by the struct usb_host endpoint structure
described above. Note that these interface structures are in no particular order.

unsigned num_altsetting
The number of alternate settings pointed to by the altsetting pointer.

struct usb_host interface *cur_ altsetting
A pointer into the array altsetting, denoting the currently active setting for this
interface.

int minor
If the USB driver bound to this interface uses the USB major number, this vari-
able contains the minor number assigned by the USB core to the interface. This
is valid only after a successful call to usb_register dev (described later in this
chapter).

There are other fields in the struct usb_interface structure, but USB drivers do not
need to be aware of them.

Configurations

USB interfaces are themselves bundled up into configurations. A USB device can have
multiple configurations and might switch between them in order to change the state
of the device. For example, some devices that allow firmware to be downloaded to
them contain multiple configurations to accomplish this. A single configuration can
be enabled only at one point in time. Linux does not handle multiple configuration
USB devices very well, but, thankfully, they are rare.

Linux describes USB configurations with the structure struct usb_host _config and
entire USB devices with the structure struct usb_device. USB device drivers do not
generally ever need to read or write to any values in these structures, so they are not
defined in detail here. The curious reader can find descriptions of them in the file
include/linux/usb.h in the kernel source tree.

A USB device driver commonly has to convert data from a given struct usb_interface
structure into a struct usb_device structure that the USB core needs for a wide range of
function calls. To do this, the function interface_to_usbdev is provided. Hopefully, in the
future, all USB calls that currently need a struct usb_device will be converted to take a
struct usb_interface parameter and will not require the drivers to do the conversion.

So to summarize, USB devices are quite complex and are made up of lots of different
logical units. The relationships among these units can be simply described as follows:
* Devices usually have one or more configurations.
* Configurations often have one or more interfaces.
* Interfaces usually have one or more settings.

* Interfaces have zero or more endpoints.

332 | Chapter13: USB Drivers

4~ ~4]e

é ,ch13.28948 Page 333 Friday, January 21, 2005 2:29 PM

USB and Sysfs

Due to the complexity of a single USB physical device, the representation of that
device in sysfs is also quite complex. Both the physical USB device (as represented by
a struct usb_device) and the individual USB interfaces (as represented by a struct
usb_interface) are shown in sysfs as individual devices. (This is because both of
those structures contain a struct device structure.) As an example, for a simple USB
mouse that contains only one USB interface, the following would be the sysfs direc-
tory tree for that device:

/sys/devices/pci0000:00/0000:00:09.0/usb2/2-1
|-- 2-1:1.0

| |-- bAlternateSetting

| |-- bInterfaceClass
| |-- bInterfaceNumber
| |-- bInterfaceProtocol
| |-- bInterfaceSubClass
| |-- bNumEndpoints
| |-- detach_state

| |-- iInterface

| “-- power

| T-- state

|-- bConfigurationValue
|-- bDeviceClass

| -- bDeviceProtocol
|-- bDeviceSubClass
|-- bMaxPower

|-- bNumConfigurations
|-- bNumInterfaces
|-- bcdDevice
|-- bmAttributes
|-- detach_state
|-~ devnum
|-- idProduct
|-- idVvendor
|-- maxchild
|-- power
| ~-- state
|-- speed
T-- version

The struct usb_device is represented in the tree at:
/sys/devices/pci0000:00/0000:00:09.0/usb2/2-1

while the USB interface for the mouse—the interface that the USB mouse driver is
bound to—is located at the directory:

/sys/devices/pci0000:00/0000:00:09.0/usb2/2-1/2-1:1.0

To help understand what this long device path means, we describe how the kernel
labels the USB devices.

USBand Sysfs | 333

4~ ~4]e

é ,ch13.28948 Page 334 Friday, January 21, 2005 2:29 PM

The first USB device is a root hub. This is the USB controller, usually contained in a
PCI device. The controller is so named because it controls the whole USB bus con-
nected to it. The controller is a bridge between the PCI bus and the USB bus, as well
as being the first USB device on that bus.

All root hubs are assigned a unique number by the USB core. In our example, the
root hub is called usb2, as it is the second root hub that was registered with the USB
core. There is no limit on the number of root hubs that can be contained in a single
system at any time.

Every device that is on a USB bus takes the number of the root hub as the first num-
ber in its name. That is followed by a - character and then the number of the port
that the device is plugged into. As the device in our example is plugged into the first
port, a 1 is added to the name. So the device name for the main USB mouse device is
2-1. Because this USB device contains one interface, that causes another device in the
tree to be added to the sysfs path. The naming scheme for USB interfaces is the
device name up to this point: in our example, it’s 2-1 followed by a colon and the
USB configuration number, then a period and the interface number. So for this
example, the device name is 2-1:1.0 because it is the first configuration and has
interface number zero.

So to summarize, the USB sysfs device naming scheme is:
root_hub-hub_port:config.interface

As the devices go further down in the USB tree, and as more and more USB hubs are
used, the hub port number is added to the string following the previous hub port
number in the chain. For a two-deep tree, the device name looks like:

root hub-hub_port-hub_port:config.interface

As can be seen in the previous directory listing of the USB device and interface, all of
the USB specific information is available directly through sysfs (for example, the idVen-
dor, idProduct, and bMaxPower information). One of these files, bConfigurationValue,
can be written to in order to change the active USB configuration that is being used.
This is useful for devices that have multiple configurations, when the kernel is unable
to determine what configuration to select in order to properly operate the device. A
number of USB modems need to have the proper configuration value written to this file
in order to have the correct USB driver bind to the device.

Sysfs does not expose all of the different parts of a USB device, as it stops at the inter-
face level. Any alternate configurations that the device may contain are not shown, as
well as the details of the endpoints associated with the interfaces. This information
can be found in the usbfs filesystem, which is mounted in the /proc/bus/usb/ direc-
tory on the system. The file /proc/bus/usb/devices does show all of the same informa-
tion exposed in sysfs, as well as the alternate configuration and endpoint information

334 | Chapter13: USB Drivers

é ,ch13.28948 Page 335 Friday, January 21, 2005 2:29 PM

*

for all USB devices that are present in the system. usbfs also allows user-space pro-
grams to directly talk to USB devices, which has enabled a lot of kernel drivers to be
moved out to user space, where it is easier to maintain and debug. The USB scanner
driver is a good example of this, as it is no longer present in the kernel because its
functionality is now contained in the user-space SANE library programs.

USB Urbs

The USB code in the Linux kernel communicates with all USB devices using some-
thing called a urb (USB request block). This request block is described with the
struct urb structure and can be found in the include/linux/usb.h file.

A urb is used to send or receive data to or from a specific USB endpoint on a specific
USB device in an asynchronous manner. It is used much like a kiocb structure is used
in the filesystem async I/O code or as a struct skbuff is used in the networking code.
A USB device driver may allocate many urbs for a single endpoint or may reuse a sin-
gle urb for many different endpoints, depending on the need of the driver. Every end-
point in a device can handle a queue of urbs, so that multiple urbs can be sent to the
same endpoint before the queue is empty. The typical lifecycle of a urb is as follows:

* Created by a USB device driver.
* Assigned to a specific endpoint of a specific USB device.
* Submitted to the USB core, by the USB device driver.

* Submitted to the specific USB host controller driver for the specified device by
the USB core.

* Processed by the USB host controller driver that makes a USB transfer to the
device.

* When the urb is completed, the USB host controller driver notifies the USB
device driver.

Urbs can also be canceled any time by the driver that submitted the urb, or by the
USB core if the device is removed from the system. urbs are dynamically created and
contain an internal reference count that enables them to be automatically freed when
the last user of the urb releases it.

The procedure described in this chapter for handling urbs is useful, because it per-
mits streaming and other complex, overlapping communications that allow drivers
to achieve the highest possible data transfer speeds. But less cumbersome proce-
dures are available if you just want to send individual bulk or control messages and
do not care about data throughput rates. (See the section “USB Transfers Without
Urbs.”)

USBUrbs | 335

ﬁ

*@%

é ,ch13.28948 Page 336 Friday, January 21, 2005 2:29 PM

*

struct urb

The fields of the struct urb structure that matter to a USB device driver are:

struct usb_device *dev

Pointer to the struct usb_device to which this urb is sent. This variable must be
initialized by the USB driver before the urb can be sent to the USB core.

unsigned int pipe

Endpoint information for the specific struct usb_device that this urb is to be
sent to. This variable must be initialized by the USB driver before the urb can be
sent to the USB core.

To set fields of this structure, the driver uses the following functions as appropri-
ate, depending on the direction of traffic. Note that every endpoint can be of
only one type.

unsigned int usb_sndctrlpipe(struct usb_device *dev, unsigned int
endpoint)
Specifies a control OUT endpoint for the specified USB device with the spec-
ified endpoint number.

unsigned int usb_rcvctrlpipe(struct usb_device *dev, unsigned int
endpoint)
Specifies a control IN endpoint for the specified USB device with the speci-
fied endpoint number.

unsigned int usb_sndbulkpipe(struct usb_device *dev, unsigned int
endpoint)
Specifies a bulk OUT endpoint for the specified USB device with the speci-
fied endpoint number.

unsigned int usb_rcvbulkpipe(struct usb_device *dev, unsigned int
endpoint)
Specifies a bulk IN endpoint for the specified USB device with the specified
endpoint number.

unsigned int usb_sndintpipe(struct usb_device *dev, unsigned int endpoint)
Specifies an interrupt OUT endpoint for the specified USB device with the
specified endpoint number.

unsigned int usb_rcvintpipe(struct usb_device *dev, unsigned int endpoint)
Specifies an interrupt IN endpoint for the specified USB device with the
specified endpoint number.

336

| Chapter13: USB Drivers

ﬁ

*@%

é ,ch13.28948 Page 337 Friday, January 21, 2005 2:29 PM

unsigned int usb_sndisocpipe(struct usb_device *dev, unsigned int
endpoint)
Specifies an isochronous OUT endpoint for the specified USB device with
the specified endpoint number.

unsigned int usb_rcvisocpipe(struct usb_device *dev, unsigned int
endpoint)
Specifies an isochronous IN endpoint for the specified USB device with the
specified endpoint number.

unsigned int transfer flags
This variable can be set to a number of different bit values, depending on what
the USB driver wants to happen to the urb. The available values are:

URB_SHORT NOT OK
When set, it specifies that any short read on an IN endpoint that might
occur should be treated as an error by the USB core. This value is useful only
for urbs that are to be read from the USB device, not for write urbs.

URB_ISO_ASAP
If the urb is isochronous, this bit can be set if the driver wants the urb to be
scheduled, as soon as the bandwidth utilization allows it to be, and to set
the start_frame variable in the urb at that point. If this bit is not set for an
isochronous urb, the driver must specify the start_frame value and must be
able to recover properly if the transfer cannot start at that moment. See the
upcoming section about isochronous urbs for more information.

URB_NO_TRANSFER DMA_MAP
Should be set when the urb contains a DMA bulffer to be transferred. The
USB core uses the buffer pointed to by the transfer_dma variable and not the
buffer pointed to by the transfer_buffer variable.

URB_NO_SETUP_DMA_MAP
Like the URB_NO TRANSFER DMA MAP bit, this bit is used for control urbs that
have a DMA buffer already set up. If it is set, the USB core uses the buffer
pointed to by the setup_dma variable instead of the setup_packet variable.

URB_ASYNC_UNLINK
If set, the call to usb_unlink_urb for this urb returns almost immediately,
and the urb is unlinked in the background. Otherwise, the function waits
until the urb is completely unlinked and finished before returning. Use this
bit with care, because it can make synchronization issues very difficult to

debug.

USBUrbs | 337

é ,ch13.28948 Page 338 Friday, January 21, 2005 2:29 PM

*

URB_NO_FSBR
Used by only the UHCI USB Host controller driver and tells it to not try to
do Front Side Bus Reclamation logic. This bit should generally not be set,
because machines with a UHCI host controller create a lot of CPU over-
head, and the PCI bus is saturated waiting on a urb that sets this bit.

URB_ZERO_PACKET
If set, a bulk out urb finishes by sending a short packet containing no data
when the data is aligned to an endpoint packet boundary. This is needed by
some broken USB devices (such as a number of USB to IR devices) in order
to work properly.

URB_NO_INTERRUPT
If set, the hardware may not generate an interrupt when the urb is finished.
This bit should be used with care and only when queuing multiple urbs to
the same endpoint. The USB core functions use this in order to do DMA
buffer transfers.

void *transfer buffer

Pointer to the buffer to be used when sending data to the device (for an OUT
urb) or when receiving data from the device (for an IN urb). In order for the host
controller to properly access this buffer, it must be created with a call to kmalloc,
not on the stack or statically. For control endpoints, this buffer is for the data
stage of the transfer.

dma_addr t transfer dma

int

Buffer to be used to transfer data to the USB device using DMA.

transfer buffer length

The length of the buffer pointed to by the transfer buffer or the transfer dma
variable (as only one can be used for a urb). If this is 0, neither transfer buffers
are used by the USB core.

For an OUT endpoint, if the endpoint maximum size is smaller than the value
specified in this variable, the transfer to the USB device is broken up into smaller
chunks in order to properly transfer the data. This large transfer occurs in con-
secutive USB frames. It is much faster to submit a large block of data in one urb,
and have the USB host controller split it up into smaller pieces, than it is to send
smaller buffers in consecutive order.

unsigned char *setup packet

Pointer to the setup packet for a control urb. It is transferred before the data in
the transfer buffer. This variable is valid only for control urbs.

dma_addr_t setup_dma

DMA buffer for the setup packet for a control urb. It is transferred before the
data in the normal transfer buffer. This variable is valid only for control urbs.

338

| Chapter13: USB Drivers

%

ﬁ

*@%

é ,ch13.28948 Page 339 Friday, January 21, 2005 2:29 PM

*

usb_complete t complete

Pointer to the completion handler function that is called by the USB core when
the urb is completely transferred or when an error occurs to the urb. Within this
function, the USB driver may inspect the urb, free it, or resubmit it for another
transfer. (See the section “Completing Urbs: The Completion Callback Han-
dler” for more details about the completion handler.)

The usb_complete_t typedef is defined as:
typedef void (*usb_complete t)(struct urb *, struct pt regs *);

void *context

int

int

Pointer to a data blob that can be set by the USB driver. It can be used in the
completion handler when the urb is returned to the driver. See the following sec-
tion for more details about this variable.

actual length

When the urb is finished, this variable is set to the actual length of the data
either sent by the urb (for OUT urbs) or received by the urb (for IN urbs.) For
IN urbs, this must be used instead of the transfer buffer length variable,
because the data received could be smaller than the whole buffer size.

status

When the urb is finished, or being processed by the USB core, this variable is set
to the current status of the urb. The only time a USB driver can safely access this
variable is in the urb completion handler function (described in the section
“Completing Urbs: The Completion Callback Handler”). This restriction is to
prevent race conditions that occur while the urb is being processed by the USB
core. For isochronous urbs, a successful value (0) in this variable merely indi-
cates whether the urb has been unlinked. To obtain a detailed status on isochro-
nous urbs, the iso_frame desc variables should be checked.

Valid values for this variable include:
0
The urb transfer was successful.

-ENOENT
The urb was stopped by a call to usb_kill_urb.

-ECONNRESET
The urb was unlinked by a call to usb_unlink_urb, and the transfer flags
variable of the urb was set to URB_ASYNC_UNLINK.

-EINPROGRESS
The urb is still being processed by the USB host controllers. If your driver
ever sees this value, it is a bug in your driver.

-EPROTO
One of the following errors occurred with this urb:

* A bitstuff error happened during the transfer.

* No response packet was received in time by the hardware.

USBUrbs | 339

%

ﬁ

.

é ,ch13.28948 Page 340 Friday, January 21, 2005 2:29 PM

-EILSEQ
There was a CRC mismatch in the urb transfer.

-EPIPE
The endpoint is now stalled. If the endpoint involved is not a control end-
point, this error can be cleared through a call to the function usb_clear_halt.

-ECOMM
Data was received faster during the transfer than it could be written to sys-
tem memory. This error value happens only for an IN urb.

-ENOSR
Data could not be retrieved from the system memory during the transfer fast
enough to keep up with the requested USB data rate. This error value hap-
pens only for an OUT urb.

-EOVERFLOW
A “babble” error happened to the urb. A “babble” error occurs when the
endpoint receives more data than the endpoint’s specified maximum packet
size.

-EREMOTEIO
Occurs only if the URB_SHORT NOT_OK flag is set in the urb’s transfer flags
variable and means that the full amount of data requested by the urb was
not received.

-ENODEV
The USB device is now gone from the system.

-EXDEV
Occurs only for a isochronous urb and means that the transfer was only par-
tially completed. In order to determine what was transferred, the driver
must look at the individual frame status.

-EINVAL
Something very bad happened with the urb. The USB kernel documentation
describes what this value means:
ISO madness, if this happens: Log off and go home

It also can happen if a parameter is incorrectly set in the urb stucture or if an
incorrect function parameter in the usb_submit_urb call submitted the urb to
the USB core.

-ESHUTDOWN
There was a severe error with the USB host controller driver; it has now
been disabled, or the device was disconnected from the system, and the urb
was submitted after the device was removed. It can also occur if the configu-
ration was changed for the device, while the urb was submitted to the
device.

340 | Chapter13: USB Drivers

é ,ch13.28948 Page 341 Friday, January 21, 2005 2:29 PM

int

int

int

int

Generally, the error values -EPROTO, -EILSEQ, and -EOVERFLOW indicate hardware
problems with the device, the device firmware, or the cable connecting the
device to the computer.

start_frame
Sets or returns the initial frame number for isochronous transfers to use.

interval

The interval at which the urb is polled. This is valid only for interrupt or isochro-
nous urbs. The value’s units differ depending on the speed of the device. For
low-speed and full-speed devices, the units are frames, which are equivalent to
milliseconds. For devices, the units are in microframes, which is equivalent to
units of 1/8 milliseconds. This value must be set by the USB driver for isochro-
nous or interrupt urbs before the urb is sent to the USB core.

number of packets

Valid only for isochronous urbs and specifies the number of isochronous trans-
fer buffers to be handled by this urb. This value must be set by the USB driver
for isochronous urbs before the urb is sent to the USB core.

error _count
Set by the USB core only for isochronous urbs after their completion. It specifies
the number of isochronous transfers that reported any type of error.

struct usb_iso packet descriptor iso frame desc[0]

Valid only for isochronous urbs. This variable is an array of the struct usb_iso
packet_descriptor structures that make up this urb. This structure allows a sin-
gle urb to define a number of isochronous transfers at once. It is also used to col-
lect the transfer status of each individual transfer.

The struct usb_iso_packet descriptor is made up of the following fields:

unsigned int offset
The offset into the transfer buffer (starting at 0 for the first byte) where this
packet’s data is located.

unsigned int length
The length of the transfer buffer for this packet.

unsigned int actual_length
The length of the data received into the transfer buffer for this isochronous
packet.

unsigned int status
The status of the individual isochronous transfer of this packet. It can take
the same return values as the main struct urb structure’s status variable.

Creating and Destroying Urbs

The struct urb structure must never be created statically in a driver or within
another structure, because that would break the reference counting scheme used by

USBUrbs | 341

%

é ,ch13.28948 Page 342 Friday, January 21, 2005 2:29 PM

the USB core for urbs. It must be created with a call to the usb_alloc_urb function.
This function has the prototype:

struct urb *usb_alloc_urb(int iso_packets, int mem_flags);

The first parameter, iso_packets, is the number of isochronous packets this urb
should contain. If you do not want to create an isochronous urb, this variable should
be set to 0. The second parameter, mem_flags, is the same type of flag that is passed
to the kmalloc function call to allocate memory from the kernel (see the section “The
Flags Argument” in Chapter 8 for the details on these flags). If the function is suc-
cessful in allocating enough space for the urb, a pointer to the urb is returned to the
caller. If the return value is NULL, some error occurred within the USB core, and the
driver needs to clean up properly.

After a urb has been created, it must be properly initialized before it can be used by
the USB core. See the next sections for how to initialize different types of urbs.

In order to tell the USB core that the driver is finished with the urb, the driver must
call the usb_free_urb function. This function only has one argument:

void usb_free urb(struct urb *urb);

The argument is a pointer to the struct urb you want to release. After this function
is called, the urb structure is gone, and the driver cannot access it any more.

Interrupt urbs

The function usb_fill_int_urb is a helper function to properly initialize a urb to be
sent to a interrupt endpoint of a USB device:
void usb_fill int urb(struct urb *urb, struct usb_device *dev,
unsigned int pipe, void *transfer_buffer,

int buffer length, usb_complete t complete,
void *context, int interval);

This function contains a lot of parameters:

struct urb *urb
A pointer to the urb to be initialized.

struct usb_device *dev
The USB device to which this urb is to be sent.

unsigned int pipe
The specific endpoint of the USB device to which this urb is to be sent. This
value is created with the previously mentioned usb_sndintpipe or usb_rcvintpipe
functions.

void *transfer buffer
A pointer to the buffer from which outgoing data is taken or into which incom-
ing data is received. Note that this can not be a static buffer and must be created
with a call to kmalloc.

342 | Chapter13: USB Drivers

4~ ~4]e

é ,ch13.28948 Page 343 Friday, January 21, 2005 2:29 PM

int buffer_length
The length of the buffer pointed to by the transfer buffer pointer.

usb_complete t complete
Pointer to the completion handler that is called when this urb is completed.

void *context
Pointer to the blob that is added to the urb structure for later retrieval by the
completion handler function.

int interval
The interval at which that this urb should be scheduled. See the previous
description of the struct urb structure to find the proper units for this value.

Bulk urbs

Bulk urbs are initialized much like interrupt urbs. The function that does this is

usb_fill_bulk_urb, and it looks like:

void usb_fill bulk_urb(struct urb *urb, struct usb_device *dev,

unsigned int pipe, void *transfer buffer,

int buffer length, usb complete t complete,

void *context);
The function parameters are all the same as in the usb_fill_int_urb function. How-
ever, there is no interval parameter because bulk urbs have no interval value. Please
note that the unsigned int pipe variable must be initialized with a call to the usb_snd-
bulkpipe or usb_rcvbulkpipe function.

The usb_fill_int_urb function does not set the transfer flags variable in the urb, so
any modification to this field has to be done by the driver itself.

Control urbs

Control urbs are initialized almost the same way as bulk urbs, with a call to the func-
tion usb_fill_control_urb:
void usb_fill control urb(struct urb *urb, struct usb_device *dev,

unsigned int pipe, unsigned char *setup_packet,

void *transfer buffer, int buffer length,

usb_complete t complete, void *context);
The function parameters are all the same as in the usb_fill_bulk_urb function, except
that there is a new parameter, unsigned char *setup_packet, which must point to the
setup packet data that is to be sent to the endpoint. Also, the unsigned int pipe vari-
able must be initialized with a call to the usb_sndctrlpipe or usb_rcvictrlpipe function.

The usb_fill_control_urb function does not set the transfer flags variable in the urb,
so any modification to this field has to be done by the driver itself. Most drivers do
not use this function, as it is much simpler to use the synchronous API calls as
described in the section “USB Transfers Without Urbs.”

USBUrbs | 343

4~ ~4]e

é ,ch13.28948 Page 344 Friday, January 21, 2005 2:29 PM

Isochronous urbs

Isochronous urbs unfortunately do not have an initializer function like the interrupt,
control, and bulk urbs do. So they must be initialized “by hand” in the driver before
they can be submitted to the USB core. The following is an example of how to prop-
erly initialize this type of urb. It was taken from the konicawc.c kernel driver located
in the drivers/usb/media directory in the main kernel source tree.
urb->dev = dev;
urb->context = uvd;
urb->pipe = usb_rcvisocpipe(dev, uvd->video endp-1);
urb->interval = 1;
urb->transfer flags = URB ISO ASAP;
urb->transfer buffer = cam->sts buf[i];
urb->complete = konicawc_isoc_irgq;
urb->number of packets = FRAMES PER DESC;
urb->transfer buffer length = FRAMES PER DESC;
for (j=0; j < FRAMES_PER_DESC; j++) {
urb->iso frame desc[j].offset = j;
urb->iso frame desc[j].length = 1;

Submitting Urbs

Once the urb has been properly created and initialized by the USB driver, it is ready
to be submitted to the USB core to be sent out to the USB device. This is done with a
call to the function usb_submit_urb:

int usb_submit_urb(struct urb *urb, int mem_flags);

The urb parameter is a pointer to the urb that is to be sent to the device. The mem_flags
parameter is equivalent to the same parameter that is passed to the kmalloc call and is
used to tell the USB core how to allocate any memory buffers at this moment in time.

After a urb has been submitted to the USB core successfully, it should never try to
access any fields of the urb structure until the complete function is called.

Because the function usb_submit_urb can be called at any time (including from
within an interrupt context), the specification of the mem_flags variable must be cor-
rect. There are really only three valid values that should be used, depending on when
usb_submit_urb is being called:

GFP_ATOMIC
This value should be used whenever the following are true:

* The caller is within a urb completion handler, an interrupt, a bottom half, a
tasklet, or a timer callback.

* The caller is holding a spinlock or rwlock. Note that if a semaphore is being
held, this value is not necessary.

* The current->state is not TASK_RUNNING. The state is always TASK_RUNNING
unless the driver has changed the current state itself.

344 | Chapter13: USB Drivers

4~ ~4]e

é ,ch13.28948 Page 345 Friday, January 21, 2005 2:29 PM

*

GFP_NOIO
This value should be used if the driver is in the block I/O patch. It should also be
used in the error handling path of all storage-type devices.

GFP_KERNEL
This should be used for all other situations that do not fall into one of the previ-
ously mentioned categories.

Completing Urbs: The Completion Callback Handler

If the call to usb_submit_urb was successful, transferring control of the urb to the
USB core, the function returns 0; otherwise, a negative error number is returned. If
the function succeeds, the completion handler of the urb (as specified by the com-
plete function pointer) is called exactly once when the urb is completed. When this
function is called, the USB core is finished with the URB, and control of it is now
returned to the device driver.

There are only three ways a urb can be finished and have the complete function

called:

* The urb is successfully sent to the device, and the device returns the proper
acknowledgment. For an OUT urb, the data was successfully sent, and for an IN
urb, the requested data was successfully received. If this has happened, the
status variable in the urb is set to 0.

* Some kind of error happened when sending or receiving data from the device.
This is noted by the error value in the status variable in the urb structure.

* The urb was “unlinked” from the USB core. This happens either when the driver
tells the USB core to cancel a submitted urb with a call to usb_unlink_urb or
usb_kill_urb, or when a device is removed from the system and a urb had been
submitted to it.

An example of how to test for the different return values within a urb completion call
is shown later in this chapter.

Canceling Urbs

To stop a urb that has been submitted to the USB core, the functions usb_kill_urb or
usb_unlink_urb should be called:

int usb_kill urb(struct urb *urb);
int usb_unlink urb(struct urb *urb);

The urb parameter for both of these functions is a pointer to the urb that is to be
canceled.

USBUrbs | 345

ﬁ

*@%

é ,ch13.28948 Page 346 Friday, January 21, 2005 2:29 PM

*

When the function is usb_kill_urb, the urb lifecycle is stopped. This function is
usually used when the device is disconnected from the system, in the disconnect
callback.

For some drivers, the usb_unlink_urb function should be used to tell the USB core to
stop an urb. This function does not wait for the urb to be fully stopped before
returning to the caller. This is useful for stopping the urb while in an interrupt han-
dler or when a spinlock is held, as waiting for a urb to fully stop requires the abil-
ity for the USB core to put the calling process to sleep. This function requires
that the URB_ASYNC UNLINK flag value be set in the urb that is being asked to be
stopped in order to work properly.

Writing a USB Driver

The approach to writing a USB device driver is similar to a pci_driver: the driver reg-
isters its driver object with the USB subsystem and later uses vendor and device iden-
tifiers to tell if its hardware has been installed.

What Devices Does the Driver Support?

The struct usb_device_id structure provides a list of different types of USB devices
that this driver supports. This list is used by the USB core to decide which driver to
give a device to, and by the hotplug scripts to decide which driver to automatically
load when a specific device is plugged into the system.

The struct usb_device_id structure is defined with the following fields:

__u16 match_flags
Determines which of the following fields in the structure the device should be
matched against. This is a bit field defined by the different USB_DEVICE _ID MATCH *
values specified in the include/linux/mod_devicetable.h file. This field is usually
never set directly but is initialized by the USB_DEVICE type macros described later.

__u16 idVendor
The USB vendor ID for the device. This number is assigned by the USB forum to
its members and cannot be made up by anyone else.

__u16 idProduct
The USB product ID for the device. All vendors that have a vendor ID assigned
to them can manage their product IDs however they choose to.

__Uu16 bcdDevice lo

__u16 bcdDevice hi
Define the low and high ends of the range of the vendor-assigned product ver-
sion number. The bcdDevice hi value is inclusive; its value is the number of the
highest-numbered device. Both of these values are expressed in binary-coded

346 | Chapter13: USB Drivers

%

ﬁ

*@%

é ,ch13.28948 Page 347 Friday, January 21, 2005 2:29 PM

decimal (BCD) form. These variables, combined with the idVendor and
idProduct, are used to define a specific version of a device.

__u8 bDeviceClass

__u8 bDeviceSubClass

_u8 bDeviceProtocol
Define the class, subclass, and protocol of the device, respectively. These num-
bers are assigned by the USB forum and are defined in the USB specification.
These values specify the behavior for the whole device, including all interfaces
on this device.

__u8 bInterfaceClass

__u8 bInterfaceSubClass

__u8 bInterfaceProtocol
Much like the device-specific values above, these define the class, subclass, and
protocol of the individual interface, respectively. These numbers are assigned by
the USB forum and are defined in the USB specification.

kernel ulong t driver info
This value is not used to match against, but it holds information that the driver
can use to differentiate the different devices from each other in the probe call-
back function to the USB driver.

As with PCI devices, there are a number of macros that are used to initialize this
structure:

USB_DEVICE(vendor, product)
Creates a struct usb_device id that can be used to match only the specified ven-
dor and product ID values. This is very commonly used for USB devices that
need a specific driver.

USB_DEVICE VER(vendor, product, lo, hi)
Creates a struct usb_device id that can be used to match only the specified ven-
dor and product ID values within a version range.

USB_DEVICE INFO(class, subclass, protocol)
Creates a struct usb_device id that can be used to match a specific class of USB
devices.

USB_INTERFACE INFO(class, subclass, protocol)
Creates a struct usb_device id that can be used to match a specific class of USB
interfaces.

So, for a simple USB device driver that controls only a single USB device from a sin-
gle vendor, the struct usb_device_id table would be defined as:

/* table of devices that work with this driver */

static struct usb device id skel table [] = {
{ USB_DEVICE(USB_SKEL VENDOR ID, USB_SKEL PRODUCT ID) },
{1} /* Terminating entry */

};

MODULE_DEVICE TABLE (usb, skel table);

Writing a USB Driver | 347

- ad

é ,ch13.28948 Page 348 Friday, January 21, 2005 2:29 PM

As with a PCI driver, the MODULE_DEVICE TABLE macro is necessary to allow user-space
tools to figure out what devices this driver can control. But for USB drivers, the string
usb must be the first value in the macro.

Registering a USB Driver

The main structure that all USB drivers must create is a struct usb_driver. This
structure must be filled out by the USB driver and consists of a number of function
callbacks and variables that describe the USB driver to the USB core code:

struct module *owner
Pointer to the module owner of this driver. The USB core uses it to properly ref-
erence count this USB driver so that it is not unloaded at inopportune moments.
The variable should be set to the THIS MODULE macro.

const char *name
Pointer to the name of the driver. It must be unique among all USB drivers in the
kernel and is normally set to the same name as the module name of the driver. It
shows up in sysfs under /sys/bus/usb/drivers/ when the driver is in the kernel.

const struct usb_device id *id table
Pointer to the struct usb_device id table that contains a list of all of the differ-
ent kinds of USB devices this driver can accept. If this variable is not set, the
probe function callback in the USB driver is never called. If you want your driver
always to be called for every USB device in the system, create a entry that sets
only the driver_info field:

static struct usb device id usb_ids[] = {
{.driver_info = 42},
{3
};
int (*probe) (struct usb_interface *intf, const struct usb device id *id)
Pointer to the probe function in the USB driver. This function (described in the
section “probe and disconnect in Detail”) is called by the USB core when it
thinks it has a struct usb_interface that this driver can handle. A pointer to the
struct usb_device id that the USB core used to make this decision is also passed
to this function. If the USB driver claims the struct usb_interface that is passed
to it, it should initialize the device properly and return 0. If the driver does not
want to claim the device, or an error occurs, it should return a negative error
value.

void (*disconnect) (struct usb_interface *intf)
Pointer to the disconnect function in the USB driver. This function (described in
the section “probe and disconnect in Detail”) is called by the USB core when the
struct usb_interface has been removed from the system or when the driver is
being unloaded from the USB core.

348 | Chapter13: USB Drivers

- ad

é ,ch13.28948 Page 349 Friday, January 21, 2005 2:29 PM

So, to create a value struct usb_driver structure, only five fields need to be initialized:

static struct usb driver skel driver = {
.owner = THIS MODULE,
.name = "skeleton",
.id_table = skel table,
.probe = skel probe,
.disconnect = skel disconnect,
};
The struct usb_driver does contain a few more callbacks, which are generally not
used very often, and are not required in order for a USB driver to work properly:

int (*ioctl) (struct usb_interface *intf, unsigned int code, void *buf)
Pointer to an ioctl function in the USB driver. If it is present, it is called when a
user-space program makes a ioctl call on the usbfs filesystem device entry associ-
ated with a USB device attached to this USB driver. In pratice, only the USB hub
driver uses this ioctl, as there is no other real need for any other USB driver to
use it.

int (*suspend) (struct usb_interface *intf, u32 state)
Pointer to a suspend function in the USB driver. It is called when the device is to
be suspended by the USB core.

int (*resume) (struct usb_interface *intf)
Pointer to a resume function in the USB driver. It is called when the device is
being resumed by the USB core.

To register the struct usb_driver with the USB core, a call to usb_register_driver is
made with a pointer to the struct usb_driver. This is traditionally done in the mod-
ule initialization code for the USB driver:

static int __init usb_skel init(void)

{
int result;
/* register this driver with the USB subsystem */
result = usb_register(8skel driver);
if (result)
err("usb_register failed. Error number %d", result);
return result;
}

When the USB driver is to be unloaded, the struct usb_driver needs to be unregis-
tered from the kernel. This is done with a call to usb_deregister_driver. When this
call happens, any USB interfaces that were currently bound to this driver are discon-
nected, and the disconnect function is called for them.

static void __exit usb_skel exit(void)

{

/* deregister this driver with the USB subsystem */
usb_deregister(&skel driver);

Writing a USB Driver | 349

4~ ~4]e

é ,ch13.28948 Page 350 Friday, January 21, 2005 2:29 PM

probe and disconnect in Detail

In the struct usb_driver structure described in the previous section, the driver speci-
fied two functions that the USB core calls at appropriate times. The probe function is
called when a device is installed that the USB core thinks this driver should handle;
the probe function should perform checks on the information passed to it about the
device and decide whether the driver is really appropriate for that device. The discon-
nect function is called when the driver should no longer control the device for some
reason and can do clean-up.

Both the probe and disconnect function callbacks are called in the context of the USB
hub kernel thread, so it is legal to sleep within them. However, it is recommended
that the majority of work be done when the device is opened by a user if possible, in
order to keep the USB probing time to a minimum. This is because the USB core
handles the addition and removal of USB devices within a single thread, so any slow
device driver can cause the USB device detection time to slow down and become
noticeable by the user.

In the probe function callback, the USB driver should initialize any local structures
that it might use to manage the USB device. It should also save any information that
it needs about the device to the local structure, as it is usually easier to do so at this
time. As an example, USB drivers usually want to detect what the endpoint address
and bulffer sizes are for the device, as they are needed in order to communicate with
the device. Here is some example code that detects both IN and OUT endpoints of
BULK type and saves some information about them in a local device structure:

/* set up the endpoint information */

/* use only the first bulk-in and bulk-out endpoints */

iface_desc = interface->cur_altsetting;

for (i = 0; 1 < iface_desc->desc.bNumEndpoints; ++i) {
endpoint = &iface desc->endpoint[i].desc;

if (!dev->bulk_in_endpointAddr &&
(endpoint->bEndpointAddress & USB DIR IN) &&
((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
== USB_ENDPOINT XFER BULK)) {

/* we found a bulk in endpoint */
buffer_size = endpoint->wMaxPacketSize;
dev->bulk in size = buffer size;
dev->bulk in endpointAddr = endpoint->bEndpointAddress;
dev->bulk_in_buffer = kmalloc(buffer_size, GFP_KERNEL);
if (!dev->bulk_in buffer) {

err("Could not allocate bulk in buffer");

goto error;

}

if (!dev->bulk out endpointAddr &8&
I (endpoint->bEndpointAddress & USB DIR_IN) &&
((endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)

350 | Chapter13: USB Drivers

4~ ~4]e

é ,ch13.28948 Page 351 Friday, January 21, 2005 2:29 PM

== USB_ENDPOINT XFER BULK)) {
/* we found a bulk out endpoint */
dev->bulk_out_endpointAddr = endpoint->bEndpointAddress;

}

}

if (!(dev->bulk_in_endpointAddr &3 dev->bulk out endpointAddr)) {
err("Could not find both bulk-in and bulk-out endpoints");
goto error;

}

This block of code first loops over every endpoint that is present in this interface and
assigns a local pointer to the endpoint structure to make it easier to access later:
for (i = 0; 1 < iface_desc->desc.bNumEndpoints; ++i) {
endpoint = &iface desc->endpoint[i].desc;
Then, after we have an endpoint, and we have not found a bulk IN type endpoint
already, we look to see if this endpoint’s direction is IN. That can be tested by seeing
whether the bitmask USB_DIR_IN is contained in the bEndpointAddress endpoint vari-
able. If this is true, we determine whether the endpoint type is bulk or not, by first
masking off the bmAttributes variable with the USB_ENDPOINT XFERTYPE MASK bitmask,
and then checking if it matches the value USB_ENDPOINT XFER BULK:
if (!dev->bulk_in endpointAddr &%
(endpoint->bEndpointAddress & USB_DIR_IN) &&
((endpoint->bmAttributes & USB_ENDPOINT XFERTYPE_MASK)
== USB_ENDPOINT XFER BULK)) {
If all of these tests are true, the driver knows it found the proper type of endpoint
and can save the information about the endpoint that it will later need to communi-
cate over it in a local structure:
/* we found a bulk in endpoint */
buffer size = endpoint->wMaxPacketSize;
dev->bulk _in size = buffer size;
dev->bulk_in_endpointAddr = endpoint->bEndpointAddress;
dev->bulk in buffer = kmalloc(buffer size, GFP_KERNEL);
if (!dev->bulk_in buffer) {
err("Could not allocate bulk in buffer");
goto error;

}
Because the USB driver needs to retrieve the local data structure that is associated
with this struct usb_interface later in the lifecycle of the device, the function
usb_set_intfdata can be called:

/* save our data pointer in this interface device */

usb_set_intfdata(interface, dev);

This function accepts a pointer to any data type and saves it in the struct usb_interface

structure for later access. To retrieve the data, the function usb_get_intfdata should
be called:

struct usb_skel *dev;
struct usb_interface *interface;

Writing a USB Driver | 351

4~ ~4]e

é ,ch13.28948 Page 352 Friday, January 21, 2005 2:29 PM

int subminor;
int retval = 0;

subminor = iminor(inode);

interface = usb_find interface(8skel driver, subminor);
if (linterface) {
err ("%s - error, can't find device for minor %d",
__FUNCTION_ _, subminor);
retval = -ENODEV;
goto exit;

}

dev = usb get intfdata(interface);
if (ldev) {
retval = -ENODEV;
goto exit;
}
usb_get_intfdata is usually called in the open function of the USB driver and again in
the disconnect function. Thanks to these two functions, USB drivers do not need to
keep a static array of pointers that store the individual device structures for all cur-
rent devices in the system. The indirect reference to device information allows an
unlimited number of devices to be supported by any USB driver.

If the USB driver is not associated with another type of subsystem that handles the
user interaction with the device (such as input, tty, video, etc.), the driver can use the
USB major number in order to use the traditional char driver interface with user
space. To do this, the USB driver must call the usb_register_dev function in the probe
function when it wants to register a device with the USB core. Make sure that the
device and driver are in a proper state to handle a user wanting to access the device
as soon as this function is called.
/* we can register the device now, as it is ready */
retval = usb register dev(interface, 8skel class);
if (retval) {
/* something prevented us from registering this driver */
err("Not able to get a minor for this device.");
usb_set_intfdata(interface, NULL);
goto error;

}
The usb_register_dev function requires a pointer to a struct usb_interface and a
pointer to a struct usb_class_driver. This struct usb_class_driver is used to define
a number of different parameters that the USB driver wants the USB core to know
when registering for a minor number. This structure consists of the following variables:

char *name
The name that sysfs uses to describe the device. A leading pathname, if present,
is used only in devfs and is not covered in this book. If the number of the device
needs to be in the name, the characters %d should be in the name string. For

352 | Chapter13: USB Drivers

4~ ~4]e

é ,ch13.28948 Page 353 Friday, January 21, 2005 2:29 PM

example, to create the devfs name usb/fool and the sysfs class name foo1, the
name string should be set to usb/foo%d.

struct file operations *fops;
Pointer to the struct file operations that this driver has defined to use to regis-
ter as the character device. See Chapter 3 for more information about this structure.

mode_t mode;
The mode for the devfs file to be created for this driver; unused otherwise. A typ-
ical setting for this variable would be the value S_IRUSR combined with the value
S_IWUSR, which would provide only read and write access by the owner of the
device file.

int minor_base;

This is the start of the assigned minor range for this driver. All devices associ-
ated with this driver are created with unique, increasing minor numbers begin-
ning with this value. Only 16 devices are allowed to be associated with this
driver at any one time unless the CONFIG USB DYNAMIC MINORS configuration
option has been enabled for the kernel. If so, this variable is ignored, and all
minor numbers for the device are allocated on a first-come, first-served manner.
It is recommended that systems that have enabled this option use a program
such as udev to manage the device nodes in the system, as a static /dev tree will
not work properly.

When the USB device is disconnected, all resources associated with the device
should be cleaned up, if possible. At this time, if usb_register_dev has been called to
allocate a minor number for this USB device during the probe function, the function
usb_deregister_dev must be called to give the minor number back to the USB core.

In the disconnect function, it is also important to retrieve from the interface any data
that was previously set with a call to usb_set_intfdata. Then set the data pointer in
the struct usb_interface structure to NULL to prevent any further mistakes in access-
ing the data improperly:

static void skel disconnect(struct usb_interface *interface)

{

struct usb_skel *dev;
int minor = interface->minor;

/* prevent skel open() from racing skel disconnect() */
lock kernel();

dev = usb_get intfdata(interface);
usb_set_intfdata(interface, NULL);

/* give back our minor */
usb_deregister dev(interface, &skel class);

unlock kernel();

Writing a USB Driver | 353

é ,ch13.28948 Page 354 Friday, January 21, 2005 2:29 PM

/* decrement our usage count */
kref put(8dev->kref, skel delete);

info("USB Skeleton #%d now disconnected", minor);

}

Note the call to lock_kernel in the previous code snippet. This takes the big kernel
lock, so that the disconnect callback does not encounter a race condition with the
open call when trying to get a pointer to the correct interface data structure. Because
the open is called with the big kernel lock taken, if the disconnect also takes that same
lock, only one portion of the driver can access and then set the interface data pointer.

Just before the disconnect function is called for a USB device, all urbs that are cur-
rently in transmission for the device are canceled by the USB core, so the driver does
not have to explicitly call usb_kill_urb for these urbs. If a driver tries to submit a urb
to a USB device after it has been disconnected with a call to usb_submit_urb, the sub-
mission will fail with an error value of -EPIPE.

Submitting and Controlling a Urb

When the driver has data to send to the USB device (as typically happens in a driver’s
write function), a urb must be allocated for transmitting the data to the device:

urb = usb _alloc_urb(0, GFP_KERNEL);
if (lurb) {

retval = -ENOMEM;

goto error;

}

After the urb is allocated successfully, a DMA buffer should also be created to send
the data to the device in the most efficient manner, and the data that is passed to the
driver should be copied into that buffer:

buf = usb_buffer_alloc(dev->udev, count, GFP_KERNEL, &urb->transfer dma);
if (Ibuf) {
retval = -ENOMEM;
goto error;
}
if (copy from user(buf, user buffer, count)) {
retval = -EFAULT;
goto error;

}

Once the data is properly copied from the user space into the local buffer, the urb
must be initialized correctly before it can be submitted to the USB core:

/* initialize the urb properly */
usb_fill bulk urb(urb, dev->udev,
usb_sndbulkpipe(dev->udev, dev->bulk_out_endpointAddr),
buf, count, skel write bulk callback, dev);
urb->transfer flags |= URB_NO_TRANSFER_DMA MAP;

354 | Chapter13: USB Drivers

4~ ~4]e

é ,ch13.28948 Page 355 Friday, January 21, 2005 2:29 PM

Now that the urb is properly allocated, the data is properly copied, and the urb is
properly initialized, it can be submitted to the USB core to be transmitted to the
device:
/* send the data out the bulk port */
retval = usb_submit urb(urb, GFP_KERNEL);
if (retval) {
err("%s - failed submitting write urb, error %d", __FUNCTION__, retval);
goto error;

}

After the urb is successfully transmitted to the USB device (or something happens in
transmission), the urb callback is called by the USB core. In our example, we initial-
ized the urb to point to the function skel_write_bulk_callback, and that is the func-
tion that is called:

static void skel write bulk callback(struct urb *urb, struct pt_regs *regs)

{
/* sync/async unlink faults aren't errors */
if (urb->status 8&
I (urb->status == -ENOENT ||
urb->status == -ECONNRESET |
urb->status == -ESHUTDOWN)) {
dbg("%s - nonzero write bulk status received: %d",
__FUNCTION_ _, urb->status);
}
/* free up our allocated buffer */
usb_buffer_free(urb->dev, urb->transfer_ buffer length,
urb->transfer buffer, urb->transfer dma);
}

The first thing the callback function does is check the status of the urb to determine
if this urb completed successfully or not. The error values, -ENOENT, -ECONNRESET, and
-ESHUTDOWN are not real transmission errors, just reports about conditions accompa-
nying a successful transmission. (See the list of possible errors for urbs detailed in the
section “struct urb.”) Then the callback frees up the allocated buffer that was
assigned to this urb to transmit.

It’s common for another urb to be submitted to the device while the urb callback
function is running. This is useful when streaming data to a device. Remember that
the urb callback is running in interrupt context, so it should do any memory alloca-
tion, hold any semaphores, or do anything else that could cause the process to sleep.
When submitting a urb from within a callback, use the GFP_ATOMIC flag to tell the
USB core to not sleep if it needs to allocate new memory chunks during the submis-
sion process.

Writing a USB Driver | 355

é ,ch13.28948 Page 356 Friday, January 21, 2005 2:29 PM

USB Transfers Without Urbs

Sometimes a USB driver does not want to go through all of the hassle of creating a
struct urb, initializing it, and then waiting for the urb completion function to run,
just to send or receive some simple USB data. Two functions are available to provide
a simpler interface.

usb_bulk_msg

usb_bulk_msg creates a USB bulk urb and sends it to the specified device, then waits
for it to complete before returning to the caller. It is defined as:
int usb_bulk msg(struct usb_device *usb_dev, unsigned int pipe,

void *data, int len, int *actual length,
int timeout);

The parameters of this function are:

struct usb_device *usb_dev
A pointer to the USB device to send the bulk message to.

unsigned int pipe
The specific endpoint of the USB device to which this bulk message is to be sent.
This value is created with a call to either usb_sndbulkpipe or usb_rcvbulkpipe.

void *data
A pointer to the data to send to the device if this is an OUT endpoint. If this is
an IN endpoint, this is a pointer to where the data should be placed after being
read from the device.

int len
The length of the buffer that is pointed to by the data parameter.

int *actual_length
A pointer to where the function places the actual number of bytes that have
either been transferred to the device or received from the device, depending on
the direction of the endpoint.

int timeout
The amount of time, in jiffies, that should be waited before timing out. If this
value is 0, the function waits forever for the message to complete.

If the function is successful, the return value is 0; otherwise, a negative error number
is returned. This error number matches up with the error numbers previously
described for urbs in the section “struct urb.” If successful, the actual length param-
eter contains the number of bytes that were transferred or received from this message.

The following is an example of using this function call:

/* do a blocking bulk read to get data from the device */
retval = usb_bulk msg(dev->udev,
usb_rcvbulkpipe(dev->udev, dev->bulk in_endpointAddr),

356 | Chapter13: USB Drivers

4~ ~4]e

é ,ch13.28948 Page 357 Friday, January 21, 2005 2:29 PM

dev->bulk_in_buffer,
min(dev->bulk _in size, count),
&count, HZ*10);

/* if the read was successful, copy the data to user space */
if (lretval) {
if (copy to_user(buffer, dev->bulk in_buffer, count))
retval = -EFAULT;
else
retval = count;

}

This example shows a simple bulk read from an IN endpoint. If the read is success-
ful, the data is then copied to user space. This is typically done in a read function for
a USB driver.

The usb_bulk_msg function cannot be called from within interrupt context or with a
spinlock held. Also, this function cannot be canceled by any other function, so be
careful when using it; make sure that your driver’s disconnect knows enough to wait
for the call to complete before allowing itself to be unloaded from memory.

usb_control_msg

The usb_control_msg function works just like the usb_bulk_msg function, except it
allows a driver to send and receive USB control messages:
int usb_control msg(struct usb_device *dev, unsigned int pipe,
__u8 request, _ u8 requesttype,
__u16 value, _ u16 index,
void *data, _ u16 size, int timeout);
The parameters of this function are almost the same as usb_bulk_msg, with a few
important differences:

struct usb_device *dev
A pointer to the USB device to send the control message to.

unsigned int pipe
The specific endpoint of the USB device that this control message is to be sent
to. This value is created with a call to either usb_sndctrlpipe or usb_rcvctrlpipe.

__u8 request

The USB request value for the control message.
__u8 requesttype

The USB request type value for the control message
__u16 value

The USB message value for the control message.

__ul6 index
The USB message index value for the control message.

USB Transfers Without Urbs | 357

4~ ~4]e

é ,ch13.28948 Page 358 Friday, January 21, 2005 2:29 PM

void *data
A pointer to the data to send to the device if this is an OUT endpoint. If this is
an IN endpoint, this is a pointer to where the data should be placed after being
read from the device.

_ul6 size
The size of the buffer that is pointed to by the data parameter.

int timeout
The amount of time, in jiffies, that should be waited before timing out. If this
value is 0, the function will wait forever for the message to complete.

If the function is successful, it returns the number of bytes that were transferred to or
from the device. If it is not successful, it returns a negative error number.

The parameters request, requesttype, value, and index all directly map to the USB
specification for how a USB control message is defined. For more information on the
valid values for these parameters and how they are used, see Chapter 9 of the USB
specification.

Like the function usb_bulk_msg, the function usb_control_msg cannot be called from
within interrupt context or with a spinlock held. Also, this function cannot be can-
celed by any other function, so be careful when using it; make sure that your driver
disconnect function knows enough to wait for the call to complete before allowing
itself to be unloaded from memory.

Other USB Data Functions

A number of helper functions in the USB core can be used to retrieve standard infor-
mation from all USB devices. These functions cannot be called from within interrupt
context or with a spinlock held.

The function usb_get_descriptor retrieves the specified USB descriptor from the speci-
fied device. The function is defined as:

int usb_get descriptor(struct usb_device *dev, unsigned char type,

unsigned char index, void *buf, int size);

This function can be used by a USB driver to retrieve from the struct usb_device
structure any of the device descriptors that are not already present in the existing
struct usb_device and struct usb_interface structures, such as audio descriptors or
other class specific information. The parameters of the function are:

struct usb_device *usb dev
A pointer to the USB device that the descriptor should be retrieved from.

unsigned char type
The descriptor type. This type is described in the USB specification and can be
one of the following types:

USB_DT_DEVICE
USB_DT_CONFIG

358 | Chapter13: USB Drivers

4~ ~4]e

é ,ch13.28948 Page 359 Friday, January 21, 2005 2:29 PM

USB_DT_STRING
USB_DT_INTERFACE
USB_DT_ENDPOINT
USB_DT DEVICE QUALIFIER
USB_DT OTHER_SPEED_CONFIG
USB_DT_INTERFACE POWER
USB_DT_0TG
USB_DT_DEBUG
USB_DT_INTERFACE_ASSOCIATION
USB_DT _CS_DEVICE
USB_DT_CS_CONFIG
USB_DT_CS_STRING
USB_DT_CS_INTERFACE
USB_DT_CS_ENDPOINT

unsigned char index

The number of the descriptor that should be retrieved from the device.
void *buf

A pointer to the buffer to which you copy the descriptor.
int size

The size of the memory pointed to by the buf variable.

If this function is successful, it returns the number of bytes read from the device.
Otherwise, it returns a negative error number returned by the underlying call to
usb_control_msg that this function makes.

One of the more common uses for the usb_get_descriptor call is to retrieve a string
from the USB device. Because this is quite common, there is a helper function for it
called usb_get_string:
int usb_get string(struct usb device *dev, unsigned short langid,
unsigned char index, void *buf, int size);

If successful, this function returns the number of bytes received by the device for the
string. Otherwise, it returns a negative error number returned by the underlying call
to usb_control_msg that this function makes.

If this function is successful, it returns a string encoded in the UTF-16LE format (Uni-
code, 16 bits per character, in little-endian byte order) in the buffer pointed to by the buf
parameter. As this format is usually not very useful, there is another function, called
usb_string, that returns a string that is read from a USB device and is already converted
into an ISO 8859-1 format string. This character set is a 8-bit subset of Unicode and is
the most common format for strings in English and other Western European languages.
As this is typically the format that the USB device’s strings are in, it is recommended
that the usb_string function be used instead of the usb_get_string function.

USB Transfers Without Urbs | 359

é ,ch13.28948 Page 360 Friday, January 21, 2005 2:29 PM

Quick Reference

This section summarizes the symbols introduced in the chapter:

#include <linux/usb.h>
Header file where everything related to USB resides. It must be included by all
USB device drivers.

struct usb_driver;
Structure that describes a USB driver.

struct usb_device id;
Structure that describes the types of USB devices this driver supports.

int usb_register(struct usb driver *d);
void usb_deregister(struct usb_driver *d);
Functions used to register and unregister a USB driver from the USB core.

struct usb_device *interface to usbdev(struct usb_interface *intf);
Retrieves the controlling struct usb_device * out of a struct usb_interface *.

struct usb_device;
Structure that controls an entire USB device.

struct usb_interface;
Main USB device structure that all USB drivers use to communicate with the
USB core.

void usb_set intfdata(struct usb_interface *intf, void *data);

void *usb get intfdata(struct usb_interface *intf);
Functions to set and get access to the private data pointer section within the
struct usb_interface.

struct usb_class_driver;
A structure that describes a USB driver that wants to use the USB major number
to communicate with user-space programs.

int usb_register dev(struct usb_interface *intf, struct usb class driver
*class_driver);
void usb_deregister dev(struct usb interface *intf, struct usb class driver
*class_driver);
Functions used to register and unregister a specific struct usb_interface * struc-
ture with a struct usb_class_driver * structure.

struct urb;
Structure that describes a USB data transmission.

struct urb *usb_alloc urb(int iso packets, int mem flags);
void usb_free urb(struct urb *urb);
Functions used to create and destroy a struct usb urb *.

360 | Chapter13: USB Drivers

- ad

é ,ch13.28948 Page 361 Friday, January 21, 2005 2:29 PM

int usb_submit_urb(struct urb *urb, int mem flags);
int usb kill urb(struct urb *urb);
int usb_unlink urb(struct urb *urb);
Functions used to start and stop a USB data transmission.

void usb_fill int urb(struct urb *urb, struct usb_device *dev, unsigned int
pipe, void *transfer_buffer, int buffer_length, usb_complete t complete,
void *context, int interval);

void usb_fill bulk urb(struct urb *urb, struct usb_device *dev, unsigned int
pipe, void *transfer buffer, int buffer length, usb_complete t complete,
void *context);

void usb_fill control urb(struct urb *urb, struct usb device *dev, unsigned
int pipe, unsigned char *setup packet, void *transfer buffer, int
buffer length, usb _complete t complete, void *context);

Functions used to initialize a struct urb before it is submitted to the USB core.

int usb_bulk msg(struct usb device *usb_dev, unsigned int pipe, void *data,
int len, int *actual length, int timeout);
int usb _control msg(struct usb device *dev, unsigned int pipe, _ u8 request,
__u8 requesttype, _ u16 value, _ ul6 index, void *data, _ ul6 size,
int timeout);
Functions used to send or receive USB data without having to use a struct urb.

Quick Reference | 361

