
This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

288

Chapter 11CHAPTER 11

Data Types in the
Kernel

Before we go on to more advanced topics, we need to stop for a quick note on porta-
bility issues. Modern versions of the Linux kernel are highly portable, running on
numerous different architectures. Given the multiplatform nature of Linux, drivers
intended for serious use should be portable as well.

But a core issue with kernel code is being able both to access data items of known
length (for example, filesystem data structures or registers on device boards) and to
exploit the capabilities of different processors (32-bit and 64-bit architectures, and
possibly 16 bit as well).

Several of the problems encountered by kernel developers while porting x86 code to
new architectures have been related to incorrect data typing. Adherence to strict data
typing and compiling with the -Wall -Wstrict-prototypes flags can prevent most bugs.

Data types used by kernel data are divided into three main classes: standard C types
such as int, explicitly sized types such as u32, and types used for specific kernel
objects, such as pid_t. We are going to see when and how each of the three typing
classes should be used. The final sections of the chapter talk about some other typi-
cal problems you might run into when porting driver code from the x86 to other
platforms, and introduce the generalized support for linked lists exported by recent
kernel headers.

If you follow the guidelines we provide, your driver should compile and run even on
platforms on which you are unable to test it.

Use of Standard C Types
Although most programmers are accustomed to freely using standard types like int
and long, writing device drivers requires some care to avoid typing conflicts and
obscure bugs.

The problem is that you can’t use the standard types when you need “a 2-byte filler”
or “something representing a 4-byte string,” because the normal C data types are not

,ch11.3440 Page 288 Thursday, January 20, 2005 9:25 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Use of Standard C Types | 289

the same size on all architectures. To show the data size of the various C types, the
datasize program has been included in the sample files provided on O’Reilly’s FTP
site in the directory misc-progs. This is a sample run of the program on an i386 sys-
tem (the last four types shown are introduced in the next section):

morgana% misc-progs/datasize
arch Size: char short int long ptr long-long u8 u16 u32 u64
i686 1 2 4 4 4 8 1 2 4 8

The program can be used to show that long integers and pointers feature a different
size on 64-bit platforms, as demonstrated by running the program on different Linux
computers:

arch Size: char short int long ptr long-long u8 u16 u32 u64
i386 1 2 4 4 4 8 1 2 4 8
alpha 1 2 4 8 8 8 1 2 4 8
armv4l 1 2 4 4 4 8 1 2 4 8
ia64 1 2 4 8 8 8 1 2 4 8
m68k 1 2 4 4 4 8 1 2 4 8
mips 1 2 4 4 4 8 1 2 4 8
ppc 1 2 4 4 4 8 1 2 4 8
sparc 1 2 4 4 4 8 1 2 4 8
sparc64 1 2 4 4 4 8 1 2 4 8
x86_64 1 2 4 8 8 8 1 2 4 8

It’s interesting to note that the SPARC 64 architecture runs with a 32-bit user space,
so pointers are 32 bits wide there, even though they are 64 bits wide in kernel space.
This can be verified by loading the kdatasize module (available in the directory misc-
modules within the sample files). The module reports size information at load time
using printk and returns an error (so there’s no need to unload it):

kernel: arch Size: char short int long ptr long-long u8 u16 u32 u64
kernel: sparc64 1 2 4 8 8 8 1 2 4 8

Although you must be careful when mixing different data types, sometimes there are
good reasons to do so. One such situation is for memory addresses, which are spe-
cial as far as the kernel is concerned. Although, conceptually, addresses are pointers,
memory administration is often better accomplished by using an unsigned integer
type; the kernel treats physical memory like a huge array, and a memory address is
just an index into the array. Furthermore, a pointer is easily dereferenced; when deal-
ing directly with memory addresses, you almost never want to dereference them in
this manner. Using an integer type prevents this dereferencing, thus avoiding bugs.
Therefore, generic memory addresses in the kernel are usually unsigned long, exploit-
ing the fact that pointers and long integers are always the same size, at least on all the
platforms currently supported by Linux.

For what it’s worth, the C99 standard defines the intptr_t and uintptr_t types for
an integer variable that can hold a pointer value. These types are almost unused in
the 2.6 kernel, however.

,ch11.3440 Page 289 Thursday, January 20, 2005 9:25 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

290 | Chapter 11: Data Types in the Kernel

Assigning an Explicit Size to Data Items
Sometimes kernel code requires data items of a specific size, perhaps to match pre-
defined binary structures,* to communicate with user space, or to align data within
structures by inserting “padding” fields (but refer to the section “Data Alignment”
for information about alignment issues).

The kernel offers the following data types to use whenever you need to know the size
of your data. All the types are declared in <asm/types.h>, which, in turn, is included
by <linux/types.h>:

u8; /* unsigned byte (8 bits) */
u16; /* unsigned word (16 bits) */
u32; /* unsigned 32-bit value */
u64; /* unsigned 64-bit value */

The corresponding signed types exist, but are rarely needed; just replace u with s in
the name if you need them.

If a user-space program needs to use these types, it can prefix the names with a dou-
ble underscore: __u8 and the other types are defined independent of __KERNEL__. If,
for example, a driver needs to exchange binary structures with a program running in
user space by means of ioctl, the header files should declare 32-bit fields in the struc-
tures as __u32.

It’s important to remember that these types are Linux specific, and using them hin-
ders porting software to other Unix flavors. Systems with recent compilers support
the C99-standard types, such as uint8_t and uint32_t; if portability is a concern,
those types can be used in favor of the Linux-specific variety.

You might also note that sometimes the kernel uses conventional types, such as
unsigned int, for items whose dimension is architecture independent. This is usually
done for backward compatibility. When u32 and friends were introduced in Version
1.1.67, the developers couldn’t change existing data structures to the new types
because the compiler issues a warning when there is a type mismatch between the
structure field and the value being assigned to it.† Linus didn’t expect the operating
system (OS) he wrote for his own use to become multiplatform; as a result, old struc-
tures are sometimes loosely typed.

* This happens when reading partition tables, when executing a binary file, or when decoding a network
packet.

† As a matter of fact, the compiler signals type inconsistencies even if the two types are just different names for
the same object, such as unsigned long and u32 on the PC.

,ch11.3440 Page 290 Thursday, January 20, 2005 9:25 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Interface-Specific Types | 291

Interface-Specific Types
Some of the commonly used data types in the kernel have their own typedef state-
ments, thus preventing any portability problems. For example, a process identifier
(pid) is usually pid_t instead of int. Using pid_t masks any possible difference in the
actual data typing. We use the expression interface-specific to refer to a type defined
by a library in order to provide an interface to a specific data structure.

Note that, in recent times, relatively few new interface-specific types have been
defined. Use of the typedef statement has gone out of favor among many kernel
developers, who would rather see the real type information used directly in the code,
rather than hidden behind a user-defined type. Many older interface-specific types
remain in the kernel, however, and they will not be going away anytime soon.

Even when no interface-specific type is defined, it’s always important to use the
proper data type in a way consistent with the rest of the kernel. A jiffy count, for
instance, is always unsigned long, independent of its actual size, so the unsigned long
type should always be used when working with jiffies. In this section we concentrate
on use of _t types.

Many _t types are defined in <linux/types.h>, but the list is rarely useful. When you
need a specific type, you’ll find it in the prototype of the functions you need to call or
in the data structures you use.

Whenever your driver uses functions that require such “custom” types and you don’t
follow the convention, the compiler issues a warning; if you use the -Wall compiler
flag and are careful to remove all the warnings, you can feel confident that your code
is portable.

The main problem with _t data items is that when you need to print them, it’s not
always easy to choose the right printk or printf format, and warnings you resolve on
one architecture reappear on another. For example, how would you print a size_t,
that is unsigned long on some platforms and unsigned int on some others?

Whenever you need to print some interface-specific data, the best way to do it is by
casting the value to the biggest possible type (usually long or unsigned long) and then
printing it through the corresponding format. This kind of tweaking won’t generate
errors or warnings because the format matches the type, and you won’t lose data bits
because the cast is either a null operation or an extension of the item to a bigger data
type.

In practice, the data items we’re talking about aren’t usually meant to be printed, so
the issue applies only to debugging messages. Most often, the code needs only to
store and compare the interface-specific types, in addition to passing them as argu-
ments to library or kernel functions.

Although _t types are the correct solution for most situations, sometimes the right type
doesn’t exist. This happens for some old interfaces that haven’t yet been cleaned up.

,ch11.3440 Page 291 Thursday, January 20, 2005 9:25 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

292 | Chapter 11: Data Types in the Kernel

The one ambiguous point we’ve found in the kernel headers is data typing for I/O
functions, which is loosely defined (see the section “Platform Dependencies” in
Chapter 9). The loose typing is mainly there for historical reasons, but it can create
problems when writing code. For example, one can get into trouble by swapping the
arguments to functions like outb; if there were a port_t type, the compiler would find
this type of error.

Other Portability Issues
In addition to data typing, there are a few other software issues to keep in mind
when writing a driver if you want it to be portable across Linux platforms.

A general rule is to be suspicious of explicit constant values. Usually the code has
been parameterized using preprocessor macros. This section lists the most impor-
tant portability problems. Whenever you encounter other values that have been
parameterized, you can find hints in the header files and in the device drivers distrib-
uted with the official kernel.

Time Intervals
When dealing with time intervals, don’t assume that there are 1000 jiffies per sec-
ond. Although this is currently true for the i386 architecture, not every Linux plat-
form runs at this speed. The assumption can be false even for the x86 if you play
with the HZ value (as some people do), and nobody knows what will happen in future
kernels. Whenever you calculate time intervals using jiffies, scale your times using HZ
(the number of timer interrupts per second). For example, to check against a time-
out of half a second, compare the elapsed time against HZ/2. More generally, the
number of jiffies corresponding to msec milliseconds is always msec*HZ/1000.

Page Size
When playing games with memory, remember that a memory page is PAGE_SIZE
bytes, not 4 KB. Assuming that the page size is 4 KB and hardcoding the value is a
common error among PC programmers, instead, supported platforms show page
sizes from 4 KB to 64 KB, and sometimes they differ between different implementa-
tions of the same platform. The relevant macros are PAGE_SIZE and PAGE_SHIFT. The
latter contains the number of bits to shift an address to get its page number. The
number currently is 12 or greater for pages that are 4 KB and larger. The macros are
defined in <asm/page.h>; user-space programs can use the getpagesize library func-
tion if they ever need the information.

,ch11.3440 Page 292 Thursday, January 20, 2005 9:25 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Other Portability Issues | 293

Let’s look at a nontrivial situation. If a driver needs 16 KB for temporary data, it
shouldn’t specify an order of 2 to get_free_pages. You need a portable solution. Such a
solution, fortunately, has been written by the kernel developers and is called get_order:

#include <asm/page.h>
int order = get_order(16*1024);
buf = get_free_pages(GFP_KERNEL, order);

Remember that the argument to get_order must be a power of two.

Byte Order
Be careful not to make assumptions about byte ordering. Whereas the PC stores
multibyte values low-byte first (little end first, thus little-endian), some high-level
platforms work the other way (big-endian). Whenever possible, your code should be
written such that it does not care about byte ordering in the data it manipulates.
However, sometimes a driver needs to build an integer number out of single bytes or
do the opposite, or it must communicate with a device that expects a specific order.

The include file <asm/byteorder.h> defines either __BIG_ENDIAN or __LITTLE_ENDIAN,
depending on the processor’s byte ordering. When dealing with byte ordering issues,
you could code a bunch of #ifdef __LITTLE_ENDIAN conditionals, but there is a bet-
ter way. The Linux kernel defines a set of macros that handle conversions between
the processor’s byte ordering and that of the data you need to store or load in a spe-
cific byte order. For example:

u32 cpu_to_le32 (u32);
u32 le32_to_cpu (u32);

These two macros convert a value from whatever the CPU uses to an unsigned, little-
endian, 32-bit quantity and back. They work whether your CPU is big-endian or lit-
tle-endian and, for that matter, whether it is a 32-bit processor or not. They return
their argument unchanged in cases where there is no work to be done. Use of these
macros makes it easy to write portable code without having to use a lot of condi-
tional compilation constructs.

There are dozens of similar routines; you can see the full list in <linux/byteorder/
big_endian.h> and <linux/byteorder/little_endian.h>. After a while, the pattern is
not hard to follow. be64_to_cpu converts an unsigned, big-endian, 64-bit value to
the internal CPU representation. le16_to_cpus, instead, handles signed, little-
endian, 16-bit quantities. When dealing with pointers, you can also use functions
like cpu_to_le32p, which take a pointer to the value to be converted rather than the
value itself. See the include file for the rest.

Data Alignment
The last problem worth considering when writing portable code is how to access
unaligned data—for example, how to read a 4-byte value stored at an address that

,ch11.3440 Page 293 Thursday, January 20, 2005 9:25 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

294 | Chapter 11: Data Types in the Kernel

isn’t a multiple of 4 bytes. i386 users often access unaligned data items, but not all
architectures permit it. Many modern architectures generate an exception every time
the program tries unaligned data transfers; data transfer is handled by the exception
handler, with a great performance penalty. If you need to access unaligned data, you
should use the following macros:

#include <asm/unaligned.h>
get_unaligned(ptr);
put_unaligned(val, ptr);

These macros are typeless and work for every data item, whether it’s one, two, four,
or eight bytes long. They are defined with any kernel version.

Another issue related to alignment is portability of data structures across platforms.
The same data structure (as defined in the C-language source file) can be compiled
differently on different platforms. The compiler arranges structure fields to be
aligned according to conventions that differ from platform to platform.

In order to write data structures for data items that can be moved across architec-
tures, you should always enforce natural alignment of the data items in addition to
standardizing on a specific endianness. Natural alignment means storing data items
at an address that is a multiple of their size (for instance, 8-byte items go in an
address multiple of 8). To enforce natural alignment while preventing the compiler
to arrange the fields in unpredictable ways, you should use filler fields that avoid
leaving holes in the data structure.

To show how alignment is enforced by the compiler, the dataalign program is dis-
tributed in the misc-progs directory of the sample code, and an equivalent kdataalign
module is part of misc-modules. This is the output of the program on several plat-
forms and the output of the module on the SPARC64:

arch Align: char short int long ptr long-long u8 u16 u32 u64
i386 1 2 4 4 4 4 1 2 4 4
i686 1 2 4 4 4 4 1 2 4 4
alpha 1 2 4 8 8 8 1 2 4 8
armv4l 1 2 4 4 4 4 1 2 4 4
ia64 1 2 4 8 8 8 1 2 4 8
mips 1 2 4 4 4 8 1 2 4 8
ppc 1 2 4 4 4 8 1 2 4 8
sparc 1 2 4 4 4 8 1 2 4 8
sparc64 1 2 4 4 4 8 1 2 4 8
x86_64 1 2 4 8 8 8 1 2 4 8

kernel: arch Align: char short int long ptr long-long u8 u16 u32 u64
kernel: sparc64 1 2 4 8 8 8 1 2 4 8

It’s interesting to note that not all platforms align 64-bit values on 64-bit bound-
aries, so you need filler fields to enforce alignment and ensure portability.

Finally, be aware that the compiler may quietly insert padding into structures itself to
ensure that every field is aligned for good performance on the target processor. If you

,ch11.3440 Page 294 Thursday, January 20, 2005 9:25 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Linked Lists | 295

are defining a structure that is intended to match a structure expected by a device,
this automatic padding may thwart your attempt. The way around this problem is to
tell the compiler that the structure must be “packed,” with no fillers added. For
example, the kernel header file <linux/edd.h> defines several data structures used in
interfacing with the x86 BIOS, and it includes the following definition:

struct {
 u16 id;
 u64 lun;
 u16 reserved1;
 u32 reserved2;
} __attribute__ ((packed)) scsi;

Without the __attribute__ ((packed)), the lun field would be preceded by two filler
bytes or six if we compile the structure on a 64-bit platform.

Pointers and Error Values
Many internal kernel functions return a pointer value to the caller. Many of those
functions can also fail. In most cases, failure is indicated by returning a NULL pointer
value. This technique works, but it is unable to communicate the exact nature of the
problem. Some interfaces really need to return an actual error code so that the caller
can make the right decision based on what actually went wrong.

A number of kernel interfaces return this information by encoding the error code in a
pointer value. Such functions must be used with care, since their return value cannot
simply be compared against NULL. To help in the creation and use of this sort of inter-
face, a small set of functions has been made available (in <linux/err.h>).

A function returning a pointer type can return an error value with:

void *ERR_PTR(long error);

where error is the usual negative error code. The caller can use IS_ERR to test
whether a returned pointer is an error code or not:

long IS_ERR(const void *ptr);

If you need the actual error code, it can be extracted with:

long PTR_ERR(const void *ptr);

You should use PTR_ERR only on a value for which IS_ERR returns a true value;
any other value is a valid pointer.

Linked Lists
Operating system kernels, like many other programs, often need to maintain lists of
data structures. The Linux kernel has, at times, been host to several linked list imple-
mentations at the same time. To reduce the amount of duplicated code, the kernel

,ch11.3440 Page 295 Thursday, January 20, 2005 9:25 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

296 | Chapter 11: Data Types in the Kernel

developers have created a standard implementation of circular, doubly linked lists;
others needing to manipulate lists are encouraged to use this facility.

When working with the linked list interface, you should always bear in mind that the
list functions perform no locking. If there is a possibility that your driver could
attempt to perform concurrent operations on the same list, it is your responsibility to
implement a locking scheme. The alternatives (corrupted list structures, data loss,
kernel panics) tend to be difficult to diagnose.

To use the list mechanism, your driver must include the file <linux/list.h>. This file
defines a simple structure of type list_head:

struct list_head {
 struct list_head *next, *prev;
};

Linked lists used in real code are almost invariably made up of some type of struc-
ture, each one describing one entry in the list. To use the Linux list facility in your
code, you need only embed a list_head inside the structures that make up the list. If
your driver maintains a list of things to do, say, its declaration would look some-
thing like this:

struct todo_struct {
 struct list_head list;
 int priority; /* driver specific */
 /* ... add other driver-specific fields */
};

The head of the list is usually a standalone list_head structure. Figure 11-1 shows
how the simple struct list_head is used to maintain a list of data structures.

Figure 11-1. The list_head data structure

Lists in
<linux/list.h>

Effects of the list_entry macro

An empty list

A list head with a two-item list

struct list_head

nextprev

A custom structure
including a list_head

,ch11.3440 Page 296 Thursday, January 20, 2005 9:25 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Linked Lists | 297

List heads must be initialized prior to use with the INIT_LIST_HEAD macro. A “things
to do” list head could be declared and initialized with:

struct list_head todo_list;

INIT_LIST_HEAD(&todo_list);

Alternatively, lists can be initialized at compile time:

LIST_HEAD(todo_list);

Several functions are defined in <linux/list.h> that work with lists:

list_add(struct list_head *new, struct list_head *head);
Adds the new entry immediately after the list head—normally at the beginning of
the list. Therefore, it can be used to build stacks. Note, however, that the head
need not be the nominal head of the list; if you pass a list_head structure that
happens to be in the middle of the list somewhere, the new entry goes immedi-
ately after it. Since Linux lists are circular, the head of the list is not generally dif-
ferent from any other entry.

list_add_tail(struct list_head *new, struct list_head *head);
Adds a new entry just before the given list head—at the end of the list, in other
words. list_add_tail can, thus, be used to build first-in first-out queues.

list_del(struct list_head *entry);
list_del_init(struct list_head *entry);

The given entry is removed from the list. If the entry might ever be reinserted
into another list, you should use list_del_init, which reinitializes the linked list
pointers.

list_move(struct list_head *entry, struct list_head *head);
list_move_tail(struct list_head *entry, struct list_head *head);

The given entry is removed from its current list and added to the beginning of
head. To put the entry at the end of the new list, use list_move_tail instead.

list_empty(struct list_head *head);
Returns a nonzero value if the given list is empty.

list_splice(struct list_head *list, struct list_head *head);
Joins two lists by inserting list immediately after head.

The list_head structures are good for implementing a list of like structures, but the
invoking program is usually more interested in the larger structures that make up the
list as a whole. A macro, list_entry, is provided that maps a list_head structure
pointer back into a pointer to the structure that contains it. It is invoked as follows:

list_entry(struct list_head *ptr, type_of_struct, field_name);

where ptr is a pointer to the struct list_head being used, type_of_struct is the type
of the structure containing the ptr, and field_name is the name of the list field within

,ch11.3440 Page 297 Thursday, January 20, 2005 9:25 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

298 | Chapter 11: Data Types in the Kernel

the structure. In our todo_struct structure from before, the list field is called simply
list. Thus, we would turn a list entry into its containing structure with a line such as:

struct todo_struct *todo_ptr =
 list_entry(listptr, struct todo_struct, list);

The list_entry macro takes a little getting used to but is not that hard to use.

The traversal of linked lists is easy: one need only follow the prev and next pointers.
As an example, suppose we want to keep the list of todo_struct items sorted in
descending priority order. A function to add a new entry would look something like
this:

void todo_add_entry(struct todo_struct *new)
{
 struct list_head *ptr;
 struct todo_struct *entry;

 for (ptr = todo_list.next; ptr != &todo_list; ptr = ptr->next) {
 entry = list_entry(ptr, struct todo_struct, list);
 if (entry->priority < new->priority) {
 list_add_tail(&new->list, ptr);
 return;
 }
 }
 list_add_tail(&new->list, &todo_struct)
}

However, as a general rule, it is better to use one of a set of predefined macros for
creating loops that iterate through lists. The previous loop, for example, could be
coded as:

void todo_add_entry(struct todo_struct *new)
{
 struct list_head *ptr;
 struct todo_struct *entry;

 list_for_each(ptr, &todo_list) {
 entry = list_entry(ptr, struct todo_struct, list);
 if (entry->priority < new->priority) {
 list_add_tail(&new->list, ptr);
 return;
 }
 }
 list_add_tail(&new->list, &todo_struct)
}

,ch11.3440 Page 298 Thursday, January 20, 2005 9:25 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Quick Reference | 299

Using the provided macros helps avoid simple programming errors; the developers of
these macros have also put some effort into ensuring that they perform well. A few
variants exist:

list_for_each(struct list_head *cursor, struct list_head *list)
This macro creates a for loop that executes once with cursor pointing at each
successive entry in the list. Be careful about changing the list while iterating
through it.

list_for_each_prev(struct list_head *cursor, struct list_head *list)
This version iterates backward through the list.

list_for_each_safe(struct list_head *cursor, struct list_head *next, struct
 list_head *list)

If your loop may delete entries in the list, use this version. It simply stores the
next entry in the list in next at the beginning of the loop, so it does not get con-
fused if the entry pointed to by cursor is deleted.

list_for_each_entry(type *cursor, struct list_head *list, member)
list_for_each_entry_safe(type *cursor, type *next, struct list_head *list,
 member)

These macros ease the process of dealing with a list containing a given type of
structure. Here, cursor is a pointer to the containing structure type, and member
is the name of the list_head structure within the containing structure. With
these macros, there is no need to put list_entry calls inside the loop.

If you look inside <linux/list.h>, you see some additional declarations. The hlist
type is a doubly linked list with a separate, single-pointer list head type; it is often
used for creation of hash tables and similar structures. There are also macros for iter-
ating through both types of lists that are intended to work with the read-copy-update
mechanism (described in the section “Read-Copy-Update” in Chapter 5). These
primitives are unlikely to be useful in device drivers; see the header file if you would
like more information on how they work.

Quick Reference
The following symbols were introduced in this chapter:

#include <linux/types.h>
typedef u8;
typedef u16;
typedef u32;
typedef u64;

Types guaranteed to be 8-, 16-, 32-, and 64-bit unsigned integer values. The
equivalent signed types exist as well. In user space, you can refer to the types
as __u8, __u16, and so forth.

,ch11.3440 Page 299 Thursday, January 20, 2005 9:25 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

300 | Chapter 11: Data Types in the Kernel

#include <asm/page.h>
PAGE_SIZE
PAGE_SHIFT

Symbols that define the number of bytes per page for the current architecture
and the number of bits in the page offset (12 for 4-KB pages and 13 for 8-KB
pages).

#include <asm/byteorder.h>
__LITTLE_ENDIAN
__BIG_ENDIAN

Only one of the two symbols is defined, depending on the architecture.

#include <asm/byteorder.h>
u32 __cpu_to_le32 (u32);
u32 __le32_to_cpu (u32);

Functions that convert between known byte orders and that of the processor.
There are more than 60 such functions; see the various files in include/linux/
byteorder/ for a full list and the ways in which they are defined.

#include <asm/unaligned.h>
get_unaligned(ptr);
put_unaligned(val, ptr);

Some architectures need to protect unaligned data access using these macros.
The macros expand to normal pointer dereferencing for architectures that per-
mit you to access unaligned data.

#include <linux/err.h>
void *ERR_PTR(long error);
long PTR_ERR(const void *ptr);
long IS_ERR(const void *ptr);

Functions allow error codes to be returned by functions that return a pointer
value.

#include <linux/list.h>
list_add(struct list_head *new, struct list_head *head);
list_add_tail(struct list_head *new, struct list_head *head);
list_del(struct list_head *entry);
list_del_init(struct list_head *entry);
list_empty(struct list_head *head);
list_entry(entry, type, member);
list_move(struct list_head *entry, struct list_head *head);
list_move_tail(struct list_head *entry, struct list_head *head);
list_splice(struct list_head *list, struct list_head *head);

Functions that manipulate circular, doubly linked lists.

,ch11.3440 Page 300 Thursday, January 20, 2005 9:25 AM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Quick Reference | 301

list_for_each(struct list_head *cursor, struct list_head *list)
list_for_each_prev(struct list_head *cursor, struct list_head *list)
list_for_each_safe(struct list_head *cursor, struct list_head *next, struct
 list_head *list)
list_for_each_entry(type *cursor, struct list_head *list, member)
list_for_each_entry_safe(type *cursor, type *next struct list_head *list,
 member)

Convenience macros for iterating through linked lists.

,ch11.3440 Page 301 Thursday, January 20, 2005 9:25 AM

