é ,ch09.10715 Page 235 Friday, January 21, 2005 10:51 AM

CHAPTER 9

Communicating
with Hardware

Although playing with scull and similar toys is a good introduction to the software
interface of a Linux device driver, implementing a real device requires hardware. The
driver is the abstraction layer between software concepts and hardware circuitry; as
such, it needs to talk with both of them. Up until now, we have examined the inter-
nals of software concepts; this chapter completes the picture by showing you how
a driver can access I/O ports and I/O memory while being portable across Linux
platforms.

This chapter continues in the tradition of staying as independent of specific hard-
ware as possible. However, where specific examples are needed, we use simple digi-
tal I/O ports (such as the standard PC parallel port) to show how the I/O
instructions work and normal frame-buffer video memory to show memory-mapped

/0.

We chose simple digital I/O because it is the easiest form of an input/output port.
Also, the parallel port implements raw I/O and is available in most computers: data
bits written to the device appear on the output pins, and voltage levels on the input
pins are directly accessible by the processor. In practice, you have to connect LEDs
or a printer to the port to actually see the results of a digital I/O operation, but the
underlying hardware is extremely easy to use.

I/0 Ports and I/0 Memory

Every peripheral device is controlled by writing and reading its registers. Most of the
time a device has several registers, and they are accessed at consecutive addresses,
either in the memory address space or in the I/O address space.

At the hardware level, there is no conceptual difference between memory regions and
I/O regions: both of them are accessed by asserting electrical signals on the address

235

é ,ch09.10715 Page 236 Friday, January 21, 2005 10:51 AM

bus and control bus (i.e., the read and write signals)” and by reading from or writing
to the data bus.

While some CPU manufacturers implement a single address space in their chips, oth-
ers decided that peripheral devices are different from memory and, therefore, deserve
a separate address space. Some processors (most notably the x86 family) have sepa-
rate read and write electrical lines for I/O ports and special CPU instructions to
access ports.

Because peripheral devices are built to fit a peripheral bus, and the most popular I/O
buses are modeled on the personal computer, even processors that do not have a sep-
arate address space for I/O ports must fake reading and writing I/O ports when
accessing some peripheral devices, usually by means of external chipsets or extra cir-
cuitry in the CPU core. The latter solution is common within tiny processors meant
for embedded use.

For the same reason, Linux implements the concept of I/O ports on all computer
platforms it runs on, even on platforms where the CPU implements a single address
space. The implementation of port access sometimes depends on the specific make
and model of the host computer (because different models use different chipsets to
map bus transactions into memory address space).

Even if the peripheral bus has a separate address space for I/O ports, not all devices
map their registers to I/O ports. While use of I/O ports is common for ISA periph-
eral boards, most PCI devices map registers into a memory address region. This I/O
memory approach is generally preferred, because it doesn’t require the use of special-
purpose processor instructions; CPU cores access memory much more efficiently,
and the compiler has much more freedom in register allocation and addressing-mode
selection when accessing memory.

I/0 Registers and Conventional Memory

Despite the strong similarity between hardware registers and memory, a program-
mer accessing /O registers must be careful to avoid being tricked by CPU (or com-
piler) optimizations that can modify the expected I/O behavior.

The main difference between 1/O registers and RAM is that I/O operations have side
effects, while memory operations have none: the only effect of a memory write is
storing a value to a location, and a memory read returns the last value written there.
Because memory access speed is so critical to CPU performance, the no-side-effects
case has been optimized in several ways: values are cached and read/write instruc-
tions are reordered.

* Not all computer platforms use a read and a write signal; some have different means to address external cir-
cuits. The difference is irrelevant at software level, however, and we’ll assume all have read and write to sim-
plify the discussion.

236 | Chapter9: Communicating with Hardware

4~ ~4]e

é ,ch09.10715 Page 237 Friday, January 21, 2005 10:51 AM

The compiler can cache data values into CPU registers without writing them to
memory, and even if it stores them, both write and read operations can operate on
cache memory without ever reaching physical RAM. Reordering can also happen
both at the compiler level and at the hardware level: often a sequence of instructions
can be executed more quickly if it is run in an order different from that which
appears in the program text, for example, to prevent interlocks in the RISC pipeline.
On CISC processors, operations that take a significant amount of time can be exe-
cuted concurrently with other, quicker ones.

These optimizations are transparent and benign when applied to conventional mem-
ory (at least on uniprocessor systems), but they can be fatal to correct I/O opera-
tions, because they interfere with those “side effects” that are the main reason why a
driver accesses I/O registers. The processor cannot anticipate a situation in which
some other process (running on a separate processor, or something happening inside
an I/O controller) depends on the order of memory access. The compiler or the CPU
may just try to outsmart you and reorder the operations you request; the result can
be strange errors that are very difficult to debug. Therefore, a driver must ensure that
no caching is performed and no read or write reordering takes place when accessing
registers.

The problem with hardware caching is the easiest to face: the underlying hardware is
already configured (either automatically or by Linux initialization code) to disable
any hardware cache when accessing I/O regions (whether they are memory or port
regions).

The solution to compiler optimization and hardware reordering is to place a memory
barrier between operations that must be visible to the hardware (or to another pro-
cessor) in a particular order. Linux provides four macros to cover all possible order-
ing needs:

#include <linux/kernel.h>

void barrier(void)
This function tells the compiler to insert a memory barrier but has no effect on
the hardware. Compiled code stores to memory all values that are currently
modified and resident in CPU registers, and rereads them later when they are
needed. A call to barrier prevents compiler optimizations across the barrier but
leaves the hardware free to do its own reordering.

#include <asm/system.h>

void rmb(void);

void read barrier depends(void);

void wmb(void);

void mb(void);
These functions insert hardware memory barriers in the compiled instruction
flow; their actual instantiation is platform dependent. An rmb (read memory
barrier) guarantees that any reads appearing before the barrier are completed

/0 Ports and I/0 Memory | 237

4~ ~4]e

é ,ch09.10715 Page 238 Friday, January 21, 2005 10:51 AM

prior to the execution of any subsequent read. wmb guarantees ordering in write
operations, and the mb instruction guarantees both. Each of these functions is a
superset of barrier.

read_barrier_depends is a special, weaker form of read barrier. Whereas rmb pre-
vents the reordering of all reads across the barrier, read_barrier_depends blocks
only the reordering of reads that depend on data from other reads. The distinc-
tion is subtle, and it does not exist on all architectures. Unless you understand
exactly what is going on, and you have a reason to believe that a full read barrier
is exacting an excessive performance cost, you should probably stick to using
rmb.

void smp_rmb(void);

void smp_read barrier depends(void);

void smp_wmb(void);

void smp_mb(void);
These versions of the barrier macros insert hardware barriers only when the ker-
nel is compiled for SMP systems; otherwise, they all expand to a simple barrier
call.

A typical usage of memory barriers in a device driver may have this sort of form:
writel(dev->registers.addr, io destination address);
writel(dev->registers.size, io_size);
writel(dev->registers.operation, DEV READ);
wmb () ;
writel(dev->registers.control, DEV_GO);
In this case, it is important to be sure that all of the device registers controlling a par-
ticular operation have been properly set prior to telling it to begin. The memory bar-
rier enforces the completion of the writes in the necessary order.

Because memory barriers affect performance, they should be used only where they
are really needed. The different types of barriers can also have different performance
characteristics, so it is worthwhile to use the most specific type possible. For exam-
ple, on the x86 architecture, wmb() currently does nothing, since writes outside the
processor are not reordered. Reads are reordered, however, so mb() is slower than
wmb().

It is worth noting that most of the other kernel primitives dealing with synchroniza-
tion, such as spinlock and atomic_t operations, also function as memory barriers.
Also worthy of note is that some peripheral buses (such as the PCI bus) have cach-
ing issues of their own; we discuss those when we get to them in later chapters.

Some architectures allow the efficient combination of an assignment and a memory
barrier. The kernel provides a few macros that perform this combination; in the
default case, they are defined as follows:

#tdefine set mb(var, value) do {var = value; mb();} while 0

#tdefine set wmb(var, value) do {var = value; wmb();} while 0
#tdefine set_rmb(var, value) do {var = value; rmb();} while 0

238 | Chapter9: Communicating with Hardware

4~ ~4]e

é ,ch09.10715 Page 239 Friday, January 21, 2005 10:51 AM

Where appropriate, <asm/system.h> defines these macros to use architecture-spe-
cific instructions that accomplish the task more quickly. Note that set_rmb is defined
only by a small number of architectures. (The use of a do. . .while construct is a stan-
dard C idiom that causes the expanded macro to work as a normal C statement in all
contexts.)

Using 1/0 Ports

I/O ports are the means by which drivers communicate with many devices, at least
part of the time. This section covers the various functions available for making use of
/O ports; we also touch on some portability issues.

1/0 Port Allocation

As you might expect, you should not go off and start pounding on I/O ports without
first ensuring that you have exclusive access to those ports. The kernel provides a
registration interface that allows your driver to claim the ports it needs. The core
function in that interface is request_region:

#include <linux/ioport.h>

struct resource *request region(unsigned long first, unsigned long n,

const char *name);

This function tells the kernel that you would like to make use of n ports, starting
with first. The name parameter should be the name of your device. The return value
is non-NULL if the allocation succeeds. If you get NULL back from request_region, you
will not be able to use the desired ports.

All port allocations show up in /procfioports. If you are unable to allocate a needed
set of ports, that is the place to look to see who got there first.

When you are done with a set of I/O ports (at module unload time, perhaps), they
should be returned to the system with:

void release region(unsigned long start, unsigned long n);

There is also a function that allows your driver to check to see whether a given set of
I/O ports is available:

int check_region(unsigned long first, unsigned long n);

Here, the return value is a negative error code if the given ports are not available.
This function is deprecated because its return value provides no guarantee of
whether an allocation would succeed; checking and later allocating are not an atomic
operation. We list it here because several drivers are still using it, but you should
always use request_region, which performs the required locking to ensure that the
allocation is done in a safe, atomic manner.

Usingl/OPorts | 239

4~ ~4]e

é ,ch09.10715 Page 240 Friday, January 21, 2005 10:51 AM

Manipulating 1/0 ports

After a driver has requested the range of I/O ports it needs to use in its activities, it
must read and/or write to those ports. To this end, most hardware differentiates
between 8-bit, 16-bit, and 32-bit ports. Usually you can’t mix them like you nor-
mally do with system memory access.”

A C program, therefore, must call different functions to access different size ports. As
suggested in the previous section, computer architectures that support only memory-
mapped 1/O registers fake port /O by remapping port addresses to memory
addresses, and the kernel hides the details from the driver in order to ease portabil-
ity. The Linux kernel headers (specifically, the architecture-dependent header <asm/
io.h>) define the following inline functions to access I/O ports:

unsigned inb(unsigned port);

void outb(unsigned char byte, unsigned port);
Read or write byte ports (eight bits wide). The port argument is defined as
unsigned long for some platforms and unsigned short for others. The return
type of inb is also different across architectures.

unsigned inw(unsigned port);

void outw(unsigned short word, unsigned port);
These functions access 16-bit ports (one word wide); they are not available when
compiling for the S390 platform, which supports only byte I/O.

unsigned inl(unsigned port);

void outl(unsigned longword, unsigned port);
These functions access 32-bit ports. longword is declared as either unsigned long
or unsigned int, according to the platform. Like word I/O, “long” 1/O is not
available on S390.

W8

From now on, when we use unsigned without further type specifica-

tions, we are referring to an architecture-dependent definition whose

* Q¢ exact nature is not relevant. The functions are almost always portable,

" because the compiler automatically casts the values during assign-
ment—their being unsigned helps prevent compile-time warnings. No
information is lost with such casts as long as the programmer assigns
sensible values to avoid overflow. We stick to this convention of
“incomplete typing” throughout this chapter.

Note that no 64-bit port I/O operations are defined. Even on 64-bit architectures, the
port address space uses a 32-bit (maximum) data path.

* Sometimes 1/O ports are arranged like memory, and you can (for example) bind two 8-bit writes into a single
16-bit operation. This applies, for instance, to PC video boards. But generally, you can’t count on this feature.

240 | Chapter9: Communicating with Hardware

- ad

é ,ch09.10715 Page 241 Friday, January 21, 2005 10:51 AM

*

1/0 Port Access from User Space

The functions just described are primarily meant to be used by device drivers, but
they can also be used from user space, at least on PC-class computers. The GNU C
library defines them in <sys/io.h>. The following conditions should apply in order
for inb and friends to be used in user-space code:

* The program must be compiled with the -O option to force expansion of inline
functions.

* The ioperm or iopl system calls must be used to get permission to perform I/O
operations on ports. ioperm gets permission for individual ports, while iopl gets
permission for the entire I/O space. Both of these functions are x86-specific.

* The program must run as root to invoke ioperm or iopl.” Alternatively, one of its
ancestors must have gained port access running as root.

If the host platform has no ioperm and no iopl system calls, user space can still access
I/O ports by using the /dev/port device file. Note, however, that the meaning of the
file is very platform-specific and not likely useful for anything but the PC.

The sample sources misc-progs/inp.c and misc-progs/outp.c are a minimal tool for
reading and writing ports from the command line, in user space. They expect to be
installed under multiple names (e.g., inb, inw, and inl and manipulates byte, word, or
long ports depending on which name was invoked by the user). They use ioperm or
iopl under x86, /dev/port on other platforms.

The programs can be made setuid root, if you want to live dangerously and play with
your hardware without acquiring explicit privileges. Please do not install them set-
uid on a production system, however; they are a security hole by design.

String Operations

In addition to the single-shot in and out operations, some processors implement spe-
cial instructions to transfer a sequence of bytes, words, or longs to and from a single
I/O port or the same size. These are the so-called string instructions, and they per-
form the task more quickly than a C-language loop can do. The following macros
implement the concept of string I/O either by using a single machine instruction or
by executing a tight loop if the target processor has no instruction that performs
string I/O. The macros are not defined at all when compiling for the S390 platform.
This should not be a portability problem, since this platform doesn’t usually share
device drivers with other platforms, because its peripheral buses are different.

* Technically, it must have the CAP_SYS_RAWIO capability, but that is the same as running as root on most cur-
rent systems.

Usingl/OPorts | 241

%

ﬁ

.

é ,ch09.10715 Page 242 Friday, January 21, 2005 10:51 AM

*

The prototypes for string functions are:

void insb(unsigned port, void *addr, unsigned long count);

void outsb(unsigned port, void *addr, unsigned long count);
Read or write count bytes starting at the memory address addr. Data is read from
or written to the single port port.

void insw(unsigned port, void *addr, unsigned long count);
void outsw(unsigned port, void *addr, unsigned long count);
Read or write 16-bit values to a single 16-bit port.

void insl(unsigned port, void *addr, unsigned long count);
void outsl(unsigned port, void *addr, unsigned long count);
Read or write 32-bit values to a single 32-bit port.

There is one thing to keep in mind when using the string functions: they move a
straight byte stream to or from the port. When the port and the host system have dif-
ferent byte ordering rules, the results can be surprising. Reading a port with inw
swaps the bytes, if need be, to make the value read match the host ordering. The
string functions, instead, do not perform this swapping.

Pausing 1/0

Some platforms—most notably the i386—can have problems when the processor
tries to transfer data too quickly to or from the bus. The problems can arise when the
processor is overclocked with respect to the peripheral bus (think ISA here) and can
show up when the device board is too slow. The solution is to insert a small delay
after each I/O instruction if another such instruction follows. On the x86, the pause
is achieved by performing an out b instruction to port 0x80 (normally but not always
unused), or by busy waiting. See the io.h file under your platform’s asm subdirectory
for details.

If your device misses some data, or if you fear it might miss some, you can use paus-
ing functions in place of the normal ones. The pausing functions are exactly like
those listed previously, but their names end in _p; they are called inb_p, outb_p, and
so on. The functions are defined for most supported architectures, although they
often expand to the same code as nonpausing I/O, because there is no need for the
extra pause if the architecture runs with a reasonably modern peripheral bus.

Platform Dependencies

I/O instructions are, by their nature, highly processor dependent. Because they work
with the details of how the processor handles moving data in and out, it is very hard
to hide the differences between systems. As a consequence, much of the source code
related to port I/0O is platform-dependent.

You can see one of the incompatibilities, data typing, by looking back at the list of func-
tions, where the arguments are typed differently based on the architectural differences

242 | Chapter9: Communicating with Hardware

%

ﬁ

*@%

é ,ch09.10715 Page 243 Friday, January 21, 2005 10:51 AM

*

between platforms. For example, a port is unsigned short on the x86 (where the proces-
sor supports a 64-KB I/O space), but unsigned long on other platforms, whose ports are
just special locations in the same address space as memory.

Other platform dependencies arise from basic structural differences in the proces-
sors and are, therefore, unavoidable. We won’t go into detail about the differences,
because we assume that you won’t be writing a device driver for a particular system
without understanding the underlying hardware. Instead, here is an overview of the
capabilities of the architectures supported by the kernel:

IA-32 (x86)

x86_64
The architecture supports all the functions described in this chapter. Port num-
bers are of type unsigned short.

IA-64 (Itanium)
All functions are supported; ports are unsigned long (and memory-mapped).
String functions are implemented in C.

Alpha
All the functions are supported, and ports are memory-mapped. The implemen-
tation of port I/O is different in different Alpha platforms, according to the
chipset they use. String functions are implemented in C and defined in arch/
alpha/libfio.c. Ports are unsigned long.

ARM
Ports are memory-mapped, and all functions are supported; string functions are
implemented in C. Ports are of type unsigned int.

Cris
This architecture does not support the I/O port abstraction even in an emulated
mode; the various port operations are defined to do nothing at all.

M68k

M68k-nommu
Ports are memory-mapped. String functions are supported, and the port type is
unsigned char *.

MIPS

MIPS64
The MIPS port supports all the functions. String operations are implemented
with tight assembly loops, because the processor lacks machine-level string 1/0.
Ports are memory-mapped; they are unsigned long.

PA-RISC
All of the functions are supported; ports are int on PCl-based systems and
unsigned short on EISA systems, except for string operations, which use
unsigned long port numbers.

Usingl/OPorts | 243

ﬁ

*@%

é ,ch09.10715 Page 244 Friday, January 21, 2005 10:51 AM

PowerPC

PowerPC64
All the functions are supported; ports have type unsigned char * on 32-bit sys-
tems and unsigned long on 64-bit systems.

$390
Similar to the M68k, the header for this platform supports only byte-wide port I/O
with no string operations. Ports are char pointers and are memory-mapped.
Super-H
Ports are unsigned int (memory-mapped), and all the functions are supported.
SPARC
SPARC64
Once again, I/O space is memory-mapped. Versions of the port functions are
defined to work with unsigned long ports.

The curious reader can extract more information from the io.h files, which some-
times define a few architecture-specific functions in addition to those we describe in
this chapter. Be warned that some of these files are rather difficult reading, however.

It’s interesting to note that no processor outside the x86 family features a different
address space for ports, even though several of the supported families are shipped
with ISA and/or PCI slots (and both buses implement separate I/O and memory
address spaces).

Moreover, some processors (most notably the early Alphas) lack instructions that
move one or two bytes at a time.” Therefore, their peripheral chipsets simulate 8-bit
and 16-bit I/O accesses by mapping them to special address ranges in the memory
address space. Thus, an inb and an inw instruction that act on the same port are
implemented by two 32-bit memory reads that operate on different addresses. Fortu-
nately, all of this is hidden from the device driver writer by the internals of the mac-
ros described in this section, but we feel it’s an interesting feature to note. If you
want to probe further, look for examples in include/asm-alpha/core_lca.h.

How I/O operations are performed on each platform is well described in the pro-
grammer’s manual for each platform; those manuals are usually available for down-
load as PDFs on the Web.

* Single-byte I/0 is not as important as one may imagine, because it is a rare operation. To read/write a single
byte to any address space, you need to implement a data path connecting the low bits of the register-set data
bus to any byte position in the external data bus. These data paths require additional logic gates that get in
the way of every data transfer. Dropping byte-wide loads and stores can benefit overall system performance.

244 | Chapter9: Communicating with Hardware

4~ ~4]e

é ,ch09.10715 Page 245 Friday, January 21, 2005 10:51 AM

*

An /0 Port Example

The sample code we use to show port I/O from within a device driver acts on gen-
eral-purpose digital I/O ports; such ports are found in most computer systems.

A digital I/O port, in its most common incarnation, is a byte-wide I/O location,
either memory-mapped or port-mapped. When you write a value to an output loca-
tion, the electrical signal seen on output pins is changed according to the individual
bits being written. When you read a value from the input location, the current logic
level seen on input pins is returned as individual bit values.

The actual implementation and software interface of such I/O ports varies from sys-
tem to system. Most of the time, I/O pins are controlled by two I/O locations: one
that allows selecting what pins are used as input and what pins are used as output
and one in which you can actually read or write logic levels. Sometimes, however,
things are even simpler, and the bits are hardwired as either input or output (but, in
this case, they’re no longer called “general-purpose I/0”); the parallel port found on
all personal computers is one such not-so-general-purpose I/O port. Either way, the
I/O pins are usable by the sample code we introduce shortly.

An Overview of the Parallel Port

Because we expect most readers to be using an x86 platform in the form called “per-
sonal computer,” we feel it is worth explaining how the PC parallel port is designed.
The parallel port is the peripheral interface of choice for running digital I/O sample
code on a personal computer. Although most readers probably have parallel port
specifications available, we summarize them here for your convenience.

The parallel interface, in its minimal configuration (we overlook the ECP and EPP
modes) is made up of three 8-bit ports. The PC standard starts the 1/0O ports for the
first parallel interface at 0x378 and for the second at 0x278. The first port is a bidirec-
tional data register; it connects directly to pins 2-9 on the physical connector. The
second port is a read-only status register; when the parallel port is being used for a
printer, this register reports several aspects of printer status, such as being online,
out of paper, or busy. The third port is an output-only control register, which,
among other things, controls whether interrupts are enabled.

The signal levels used in parallel communications are standard transistor-transistor
logic (TTL) levels: 0 and 5 volts, with the logic threshold at about 1.2 volts. You can
count on the ports at least meeting the standard TTL LS current ratings, although
most modern parallel ports do better in both current and voltage ratings.

An1/0 Port Example | 245

ﬁ

.

é ,ch09.10715 Page 246 Friday, January 21, 2005 10:51 AM

The parallel connector is not isolated from the computer’s internal cir-
cuitry, which is useful if you want to connect logic gates directly to the
port. But you have to be careful to do the wiring correctly; the parallel
port circuitry is easily damaged when you play with your own custom
circuitry, unless you add optoisolators to your circuit. You can choose
to use plug-in parallel ports if you fear you’ll damage your motherboard.

The bit specifications are outlined in Figure 9-1. You can access 12 output bits and 5
input bits, some of which are logically inverted over the course of their signal path.
The only bit with no associated signal pin is bit 4 (0x10) of port 2, which enables
interrupts from the parallel port. We use this bit as part of our implementation of an
interrupt handler in Chapter 10.

76543210
Control port:base_addr +2 LI] 14

irg enable -)

Data port: base_addr + 0 |

14

KeY

Input line
— Outputline

1111
3 2 Bit# l
17T | :]<] =
\\ .
noninverted

inverted 3 25

Figure 9-1. The pinout of the parallel port

A Sample Driver

The driver we introduce is called short (Simple Hardware Operations and Raw
Tests). All it does is read and write a few 8-bit ports, starting from the one you select
at load time. By default, it uses the port range assigned to the parallel interface of the
PC. Each device node (with a unique minor number) accesses a different port. The
short driver doesn’t do anything useful; it just isolates for external use as a single
instruction acting on a port. If you are not used to port I/O, you can use short to get

246 | Chapter9: Communicating with Hardware

4~ ~4]e

é ,ch09.10715 Page 247 Friday, January 21, 2005 10:51 AM

*

familiar with it; you can measure the time it takes to transfer data through a port or
play other games.

For short to work on your system, it must have free access to the underlying hard-
ware device (by default, the parallel interface); thus, no other driver may have allo-
cated it. Most modern distributions set up the parallel port drivers as modules that
are loaded only when needed, so contention for the I/O addresses is not usually a
problem. If, however, you get a “can’t get I/O address” error from short (on the con-
sole or in the system log file), some other driver has probably already taken the port.
A quick look at /proc/ioports usually tells you which driver is getting in the way. The
same caveat applies to other I/O devices if you are not using the parallel interface.

From now on, we just refer to “the parallel interface” to simplify the discussion.
However, you can set the base module parameter at load time to redirect short to
other I/O devices. This feature allows the sample code to run on any Linux platform
where you have access to a digital I/O interface that is accessible via outb and inb
(even though the actual hardware is memory-mapped on all platforms but the x86).
Later, in the section “Using I/O Memory,” we show how short can be used with
generic memory-mapped digital I/O as well.

To watch what happens on the parallel connector and if you have a bit of an inclina-
tion to work with hardware, you can solder a few LEDs to the output pins. Each
LED should be connected in series to a 1-KQ resistor leading to a ground pin (unless,
of course, your LEDs have the resistor built in). If you connect an output pin to an
input pin, you’ll generate your own input to be read from the input ports.

Note that you cannot just connect a printer to the parallel port and see data sent to
short. This driver implements simple access to the I/O ports and does not perform
the handshake that printers need to operate on the data. In the next chapter, we
show a sample driver (called shortprint), that is capable of driving parallel printers;
that driver uses interrupts, however, so we can’t get to it quite yet.

If you are going to view parallel data by soldering LEDs to a D-type connector, we
suggest that you not use pins 9 and 10, because we connect them together later to
run the sample code shown in Chapter 10.

As far as short is concerned, /dev/shortO writes to and reads from the 8-bit port
located at the I/O address base (0x378 unless changed at load time). /dev/shortl
writes to the 8-bit port located at base + 1, and so on up to base + 7.

The actual output operation performed by /dev/short0 is based on a tight loop using
outb. A memory barrier instruction is used to ensure that the output operation actu-
ally takes place and is not optimized away:

while (count--) {

outb(*(ptr++), port);
wmb() ;

Anl/0 Port Example | 247

ﬁ

.

é ,ch09.10715 Page 248 Friday, January 21, 2005 10:51 AM

You can run the following command to light your LEDs:
echo -n "any string" > /dev/shorto

Each LED monitors a single bit of the output port. Remember that only the last char-
acter written remains steady on the output pins long enough to be perceived by your
eyes. For that reason, we suggest that you prevent automatic insertion of a trailing
newline by passing the -n option to echo.

Reading is performed by a similar function, built around inb instead of outb. In order
to read “meaningful” values from the parallel port, you need to have some hardware
connected to the input pins of the connector to generate signals. If there is no signal,
you read an endless stream of identical bytes. If you choose to read from an output
port, you most likely get back the last value written to the port (this applies to the
parallel interface and to most other digital I/O circuits in common use). Thus, those
uninclined to get out their soldering irons can read the current output value on port
0x378 by running a command such as:

dd if=/dev/shorto bs=1 count=1 | od -t x1

To demonstrate the use of all the I/O instructions, there are three variations of each
short device: /dev/short0 performs the loop just shown, /dev/shortOp uses outb_p and
inb_p in place of the “fast” functions, and /dev/shortOs uses the string instructions.
There are eight such devices, from short0 to short7. Although the PC parallel inter-
face has only three ports, you may need more of them if using a different I/O device
to run your tests.

The short driver performs an absolute minimum of hardware control but is adequate
to show how the I/O port instructions are used. Interested readers may want to look
at the source for the parport and parport_pc modules to see how complicated this
device can get in real life in order to support a range of devices (printers, tape
backup, network interfaces) on the parallel port.

Using I/0 Memory

Despite the popularity of I/O ports in the x86 world, the main mechanism used to
communicate with devices is through memory-mapped registers and device mem-
ory. Both are called I/O memory because the difference between registers and mem-
ory is transparent to software.

I[/O memory is simply a region of RAM-like locations that the device makes available
to the processor over the bus. This memory can be used for a number of purposes,
such as holding video data or Ethernet packets, as well as implementing device regis-
ters that behave just like I/O ports (i.e., they have side effects associated with read-
ing and writing them).

The way to access I/O memory depends on the computer architecture, bus, and
device being used, although the principles are the same everywhere. The discussion

248 | Chapter9: Communicating with Hardware

4~ ~4]e

é ,ch09.10715 Page 249 Friday, January 21, 2005 10:51 AM

in this chapter touches mainly on ISA and PCI memory, while trying to convey gen-
eral information as well. Although access to PCI memory is introduced here, a thor-
ough discussion of PCl is deferred to Chapter 12.

Depending on the computer platform and bus being used, I/O memory may or may
not be accessed through page tables. When access passes though page tables, the
kernel must first arrange for the physical address to be visible from your driver, and
this usually means that you must call ioremap before doing any I/O. If no page tables
are needed, I/O memory locations look pretty much like I/O ports, and you can just
read and write to them using proper wrapper functions.

Whether or not ioremap is required to access I/O memory, direct use of pointers to I/O
memory is discouraged. Even though (as introduced in the section “I/O Ports and I/O
Memory”) I/O memory is addressed like normal RAM at hardware level, the extra
care outlined in the section “I/O Registers and Conventional Memory” suggests
avoiding normal pointers. The wrapper functions used to access I/O memory are safe
on all platforms and are optimized away whenever straight pointer dereferencing can
perform the operation.

Therefore, even though dereferencing a pointer works (for now) on the x86, failure
to use the proper macros hinders the portability and readability of the driver.

I/0 Memory Allocation and Mapping

I[/O memory regions must be allocated prior to use. The interface for allocation of
memory regions (defined in <linux/ioport.h>) is:

struct resource *request_mem region(unsigned long start, unsigned long len,
char *name);

This function allocates a memory region of len bytes, starting at start. If all goes
well, a non-NULL pointer is returned; otherwise the return value is NULL. All I/O mem-
ory allocations are listed in /procfiomem.

Memory regions should be freed when no longer needed:
void release mem region(unsigned long start, unsigned long len);

There is also an old function for checking I/O memory region availability:
int check_mem_region(unsigned long start, unsigned long len);

But, as with check_region, this function is unsafe and should be avoided.

Allocation of I/O memory is not the only required step before that memory may be
accessed. You must also ensure that this /O memory has been made accessible to the
kernel. Getting at I/O memory is not just a matter of dereferencing a pointer; on many
systems, I/O memory is not directly accessible in this way at all. So a mapping must
be set up first. This is the role of the ioremap function, introduced in the section

Using I/0 Memory | 249

- ad

é ,ch09.10715 Page 250 Friday, January 21, 2005 10:51 AM

“vmalloc and Friends” in Chapter 1. The function is designed specifically to assign
virtual addresses to I/O memory regions.

Once equipped with ioremap (and iounmap), a device driver can access any 1/O
memory address, whether or not it is directly mapped to virtual address space.
Remember, though, that the addresses returned from ioremap should not be derefer-
enced directly; instead, accessor functions provided by the kernel should be used.
Before we get into those functions, we’d better review the ioremap prototypes and
introduce a few details that we passed over in the previous chapter.

The functions are called according to the following definition:

#include <asm/io.h>

void *ioremap(unsigned long phys addr, unsigned long size);

void *ioremap _nocache(unsigned long phys addr, unsigned long size);

void iounmap(void * addr);
First of all, you notice the new function ioremap_nocache. We didn’t cover it in
Chapter 8, because its meaning is definitely hardware related. Quoting from one of
the kernel headers: “It’s useful if some control registers are in such an area, and write
combining or read caching is not desirable.” Actually, the function’s implementation
is identical to ioremap on most computer platforms: in situations where all of I/O
memory is already visible through noncacheable addresses, there’s no reason to
implement a separate, noncaching version of ioremap.

Accessing 1/0 Memory

On some platforms, you may get away with using the return value from ioremap as a
pointer. Such use is not portable, and, increasingly, the kernel developers have been
working to eliminate any such use. The proper way of getting at /O memory is via a
set of functions (defined via <asm/io.h>) provided for that purpose.

To read from I/O memory, use one of the following:

unsigned int ioread8(void *addr);

unsigned int ioread16(void *addr);

unsigned int ioread32(void *addr);
Here, addr should be an address obtained from ioremap (perhaps with an integer off-
set); the return value is what was read from the given I/O memory.

There is a similar set of functions for writing to I/O memory:

void iowrite8(u8 value, void *addr);

void iowrite16(u16 value, void *addr);

void iowrite32(u32 value, void *addr);
If you must read or write a series of values to a given I/O memory address, you can
use the repeating versions of the functions:

void ioread8 rep(void *addr, void *buf, unsigned long count);
void ioread16 rep(void *addr, void *buf, unsigned long count);

250 | Chapter9: Communicating with Hardware

4~ ~4]e

é ,ch09.10715 Page 251 Friday, January 21, 2005 10:51 AM

void ioread32_rep(void *addr, void *buf, unsigned long count);

void iowrite8 rep(void *addr, const void *buf, unsigned long count);

void iowrite16 rep(void *addr, const void *buf, unsigned long count);

void iowrite32_rep(void *addr, const void *buf, unsigned long count);
These functions read or write count values from the given buf to the given addr. Note
that count is expressed in the size of the data being written; ioread32_rep reads count
32-bit values starting at buf.

The functions described above perform all I/O to the given addr. If, instead, you need
to operate on a block of I/O memory, you can use one of the following:
void memset io(void *addr, u8 value, unsigned int count);

void memcpy fromio(void *dest, void *source, unsigned int count);
void memcpy_toio(void *dest, void *source, unsigned int count);

These functions behave like their C library analogs.

If you read through the kernel source, you see many calls to an older set of functions
when I/O memory is being used. These functions still work, but their use in new
code is discouraged. Among other things, they are less safe because they do not per-
form the same sort of type checking. Nonetheless, we describe them here:

unsigned readb(address);

unsigned readw(address);

unsigned readl(address);
These macros are used to retrieve 8-bit, 16-bit, and 32-bit data values from I/O
memory.

void writeb(unsigned value, address);

void writew(unsigned value, address);

void writel(unsigned value, address);
Like the previous functions, these functions (macros) are used to write 8-bit, 16-
bit, and 32-bit data items.

Some 64-bit platforms also offer readq and writeq, for quad-word (8-byte) memory
operations on the PCI bus. The quad-word nomenclature is a historical leftover from
the times when all real processors had 16-bit words. Actually, the L naming used for
32-bit values has become incorrect too, but renaming everything would confuse
things even more.

Ports as I/0 Memory

Some hardware has an interesting feature: some versions use I/O ports, while others
use I/O memory. The registers exported to the processor are the same in either case,
but the access method is different. As a way of making life easier for drivers dealing
with this kind of hardware, and as a way of minimizing the apparent differences
between I/O port and memory accesses, the 2.6 kernel provides a function called
ioport_map:

void *ioport map(unsigned long port, unsigned int count);

Using I/0 Memory | 251

4~ ~4]e

é ,ch09.10715 Page 252 Friday, January 21, 2005 10:51 AM

*

This function remaps count I/O ports and makes them appear to be I/O memory.
From that point thereafter, the driver may use ioread8 and friends on the returned
addresses and forget that it is using I/O ports at all.

This mapping should be undone when it is no longer needed:
void ioport unmap(void *addr);

These functions make I/O ports look like memory. Do note, however, that the I/O
ports must still be allocated with request_region before they can be remapped in this
way.

Reusing short for I/0 Memory

The short sample module, introduced earlier to access I/O ports, can be used to
access I/O memory as well. To this aim, you must tell it to use I/O memory at load
time; also, you need to change the base address to make it point to your I/O region.

For example, this is how we used short to light the debug LEDs on a MIPS develop-
ment board:

mips.root# ./short_load use_mem=1 base=0xb7ffffco
mips.root# echo -n 7 > /dev/shorto

Use of short for I/O memory is the same as it is for I/O ports.

The following fragment shows the loop used by short in writing to a memory location:

while (count--) {
iowrite8(*ptr++, address);
wmb () ;
}
Note the use of a write memory barrier here. Because iowrite8 likely turns into a
direct assignment on many architectures, the memory barrier is needed to ensure
that the writes happen in the expected order.

short uses inb and outb to show how that is done. It would be a straightforward exer-
cise for the reader, however, to change short to remap /O ports with ioport_map,
and simplify the rest of the code considerably.

ISA Memory Below 1 MB

One of the most well-known I/O memory regions is the ISA range found on per-
sonal computers. This is the memory range between 640 KB (0xA0000) and 1 MB
(0x100000). Therefore, it appears right in the middle of regular system RAM. This
positioning may seem a little strange; it is an artifact of a decision made in the early
1980s, when 640 KB of memory seemed like more than anybody would ever be able
to use.

252 | Chapter9: Communicating with Hardware

%

ﬁ

*@%

é ,ch09.10715 Page 253 Friday, January 21, 2005 10:51 AM

This memory range belongs to the non-directly-mapped class of memory.” You can
read/write a few bytes in that memory range using the short module as explained pre-
viously, that is, by setting use_mem at load time.

Although ISA I/O memory exists only in x86-class computers, we think it’s worth
spending a few words and a sample driver on it.

We are not going to discuss PCI memory in this chapter, since it is the cleanest kind
of I/O memory: once you know the physical address, you can simply remap and
access it. The “problem” with PCI I/O memory is that it doesn’t lend itself to a work-
ing example for this chapter, because we can’t know in advance the physical
addresses your PCI memory is mapped to, or whether it’s safe to access either of
those ranges. We chose to describe the ISA memory range, because it’s both less
clean and more suitable to running sample code.

To demonstrate access to ISA memory, we use yet another silly little module (part of
the sample sources). In fact, this one is called silly, as an acronym for Simple Tool for
Unloading and Printing ISA Data, or something like that.

The module supplements the functionality of short by giving access to the whole
384-KB memory space and by showing all the different I/O functions. It features four
device nodes that perform the same task using different data transfer functions. The
silly devices act as a window over I/O memory, in a way similar to /dev/mem. You
can read and write data, and Iseek to an arbitrary I/O memory address.

Because silly provides access to ISA memory, it must start by mapping the physical
ISA addresses into kernel virtual addresses. In the early days of the Linux kernel, one
could simply assign a pointer to an ISA address of interest, then dereference it
directly. In the modern world, though, we must work with the virtual memory sys-
tem and remap the memory range first. This mapping is done with ioremap, as
explained earlier for short:

#define ISA BASE 0xA0000
#define ISA MAX 0x100000 /* for general memory access */

/* this line appears in silly init */

io_base = ioremap(ISA BASE, ISA MAX - ISA BASE);
ioremap returns a pointer value that can be used with ioread8 and the other func-
tions explained in the section “Accessing I/O Memory.”

Let’s look back at our sample module to see how these functions might be used. /dev/
sillyb, featuring minor number 0, accesses I/O memory with ioread8 and iowrite8.
The following code shows the implementation for read, which makes the address

* Actually, this is not completely true. The memory range is so small and so frequently used that the kernel
builds page tables at boot time to access those addresses. However, the virtual address used to access them
is not the same as the physical address, and thus ioremap is needed anyway.

Using I/0Memory | 253

4~ ~4]e

é ,ch09.10715 Page 254 Friday, January 21, 2005 10:51 AM

range OxA0000-OXFFFFF available as a virtual file in the range 0-0x5FFFF. The read
function is structured as a switch statement over the different access modes; here is
the sillyb case:

case M_8:

while (count) {
*ptr = ioread8(add);

add++;
count--;
ptr++;

}

break;

The next two devices are /dev/sillyw (minor number 1) and /dev/sillyl (minor number
2). They act like /dev/sillyb, except that they use 16-bit and 32-bit functions. Here’s
the write implementation of sillyl, again part of a switch:

case M 32:

while (count >= 4) {
iowrite8(*(u32 *)ptr, add);

add += 4;
count -= 4;
ptr += 4;

}

break;

The last device is /dev/sillycp (minor number 3), which uses the memcpy_*io func-
tions to perform the same task. Here’s the core of its read implementation:
case M_memcpy:
memcpy fromio(ptr, add, count);
break;
Because ioremap was used to provide access to the ISA memory area, silly must
invoke iounmap when the module is unloaded:

iounmap(io_base);

isa_readb and Friends

A look at the kernel source will turn up another set of routines with names such as
isa_readb. In fact, each of the functions just described has an isa_ equivalent. These
functions provide access to ISA memory without the need for a separate ioremap
step. The word from the kernel developers, however, is that these functions are
intended to be temporary driver-porting aids and that they may go away in the
future. Therefore, you should avoid using them.

254 | Chapter9: Communicating with Hardware

4~ ~4]e

é ,ch09.10715 Page 255 Friday, January 21, 2005 10:51 AM

*

Quick Reference

This chapter introduced the following symbols related to hardware management:

#include <linux/kernel.h>

void barrier(void)
This “software” memory barrier requests the compiler to consider all memory
volatile across this instruction.

#include <asm/system.h>

void rmb(void);

void read barrier depends(void);

void wmb(void);

void mb(void);
Hardware memory barriers. They request the CPU (and the compiler) to check-
point all memory reads, writes, or both across this instruction.

#include <asm/io.h>

unsigned inb(unsigned port);

void outb(unsigned char byte, unsigned port);

unsigned inw(unsigned port);

void outw(unsigned short word, unsigned port);

unsigned inl(unsigned port);

void outl(unsigned doubleword, unsigned port);
Functions that are used to read and write I/O ports. They can also be called by
user-space programs, provided they have the right privileges to access ports.

unsigned inb _p(unsigned port);

If a small delay is needed after an I/O operation, you can use the six pausing
counterparts of the functions introduced in the previous entry; these pausing
functions have names ending in _p.

void insb(unsigned port, void *addr, unsigned long count);

void outsb(unsigned port, void *addr, unsigned long count);

void insw(unsigned port, void *addr, unsigned long count);

void outsw(unsigned port, void *addr, unsigned long count);

void insl(unsigned port, void *addr, unsigned long count);

void outsl(unsigned port, void *addr, unsigned long count);
The “string functions” are optimized to transfer data from an input port to a
region of memory, or the other way around. Such transfers are performed by
reading or writing the same port count times.

Quick Reference | 255

ﬁ

*@%

é ,ch09.10715 Page 256 Friday, January 21, 2005 10:51 AM

#include <linux/ioport.h>
struct resource *request region(unsigned long start, unsigned long len, char
*name) ;
void release region(unsigned long start, unsigned long len);
int check region(unsigned long start, unsigned long len);
Resource allocators for I/O ports. The (deprecated) check function returns 0 for
success and less than 0 in case of error.

struct resource *request mem region(unsigned long start, unsigned long len,
char *name);
void release mem region(unsigned long start, unsigned long len);
int check mem region(unsigned long start, unsigned long len);
Functions that handle resource allocation for memory regions.

#include <asm/io.h>

void *ioremap(unsigned long phys addr, unsigned long size);

void *ioremap nocache(unsigned long phys addr, unsigned long size);

void iounmap(void *virt addr);
ioremap remaps a physical address range into the processor’s virtual address
space, making it available to the kernel. iounmap frees the mapping when it is no
longer needed.

#include <asm/io.h>
unsigned int ioread8(void *addr);
unsigned int ioread16(void *addr);
unsigned int ioread32(void *addr);
void iowrite8(u8 value, void *addr);
void iowrite16(u16 value, void *addr);
void iowrite32(u32 value, void *addr);
Accessor functions that are used to work with I/O memory.

void ioread8 rep(void *addr, void *buf, unsigned long count);

void ioread16 rep(void *addr, void *buf, unsigned long count);

void ioread32 rep(void *addr, void *buf, unsigned long count);

void iowrite8 rep(void *addr, const void *buf, unsigned long count);

void iowrite16 rep(void *addr, const void *buf, unsigned long count);

void iowrite32 rep(void *addr, const void *buf, unsigned long count);
“Repeating” versions of the I/O memory primitives.

256 | Chapter9: Communicating with Hardware

- ad

é ,ch09.10715 Page 257 Friday, January 21, 2005 10:51 AM

*

unsigned readb(address);
unsigned readw(address);
unsigned readl(address);
void writeb(unsigned value, address);
void writew(unsigned value, address);
void writel(unsigned value, address);
memset io(address, value, count);
memcpy _fromio(dest, source, nbytes);
memcpy toio(dest, source, nbytes);
Older, type-unsafe functions for accessing I/O memory.

void *ioport map(unsigned long port, unsigned int count);
void ioport unmap(void *addr);

A driver author that wants to treat I/O ports as if they were I/O memory may pass
those ports to ioport_map. The mapping should be done (with ioport_unmap)

when no longer needed.

Quick Reference

257

ﬁ

*@%

