é ,ch06.8719 Page 135 Friday, January 21, 2005 10:44 AM

CHAPTER 6

Advanced Char Driver
Operations

In Chapter 3, we built a complete device driver that the user can write to and read
from. But a real device usually offers more functionality than synchronous read and
write. Now that we’re equipped with debugging tools should something go awry—
and a firm understanding of concurrency issues to help keep things from going
awry—we can safely go ahead and create a more advanced driver.

This chapter examines a few concepts that you need to understand to write fully fea-
tured char device drivers. We start with implementing the ioctl system call, which is
a common interface used for device control. Then we proceed to various ways of syn-
chronizing with user space; by the end of this chapter you have a good idea of how to
put processes to sleep (and wake them up), implement nonblocking /0, and inform
user space when your devices are available for reading or writing. We finish with a
look at how to implement a few different device access policies within drivers.

The ideas discussed here are demonstrated by way of a couple of modified versions
of the scull driver. Once again, everything is implemented using in-memory virtual
devices, so you can try out the code yourself without needing to have any particular
hardware. By now, you may be wanting to get your hands dirty with real hardware,
but that will have to wait until Chapter 9.

ioctl

Most drivers need—in addition to the ability to read and write the device—the abil-
ity to perform various types of hardware control via the device driver. Most devices
can perform operations beyond simple data transfers; user space must often be able
to request, for example, that the device lock its door, eject its media, report error
information, change a baud rate, or self destruct. These operations are usually sup-
ported via the ioctl method, which implements the system call by the same name.

In user space, the ioctl system call has the following prototype:

int ioctl(int fd, unsigned long cmd, ...);

135

- ad

é ,ch06.8719 Page 136 Friday, January 21, 2005 10:44 AM

The prototype stands out in the list of Unix system calls because of the dots, which
usually mark the function as having a variable number of arguments. In a real sys-
tem, however, a system call can’t actually have a variable number of arguments. Sys-
tem calls must have a well-defined prototype, because user programs can access
them only through hardware “gates.” Therefore, the dots in the prototype represent
not a variable number of arguments but a single optional argument, traditionally
identified as char *argp. The dots are simply there to prevent type checking during
compilation. The actual nature of the third argument depends on the specific con-
trol command being issued (the second argument). Some commands take no argu-
ments, some take an integer value, and some take a pointer to other data. Using a
pointer is the way to pass arbitrary data to the ioctl call; the device is then able to
exchange any amount of data with user space.

The unstructured nature of the ioctl call has caused it to fall out of favor among ker-
nel developers. Each ioctl command is, essentially, a separate, usually undocu-
mented system call, and there is no way to audit these calls in any sort of
comprehensive manner. It is also difficult to make the unstructured ioctl arguments
work identically on all systems; for example, consider 64-bit systems with a user-
space process running in 32-bit mode. As a result, there is strong pressure to imple-
ment miscellaneous control operations by just about any other means. Possible alter-
natives include embedding commands into the data stream (we will discuss this
approach later in this chapter) or using virtual filesystems, either sysfs or driver-
specific filesystems. (We will look at sysfs in Chapter 14.) However, the fact remains
that ioctl is often the easiest and most straightforward choice for true device operations.

The ioctl driver method has a prototype that differs somewhat from the user-space
version:
int (*ioctl) (struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg);

The inode and filp pointers are the values corresponding to the file descriptor fd
passed on by the application and are the same parameters passed to the open
method. The cmd argument is passed from the user unchanged, and the optional arg
argument is passed in the form of an unsigned long, regardless of whether it was
given by the user as an integer or a pointer. If the invoking program doesn’t pass a
third argument, the arg value received by the driver operation is undefined. Because
type checking is disabled on the extra argument, the compiler can’t warn you if an
invalid argument is passed to ioctl, and any associated bug would be difficult to spot.

As you might imagine, most ioctl implementations consist of a big switch statement
that selects the correct behavior according to the cmd argument. Different commands
have different numeric values, which are usually given symbolic names to simplify
coding. The symbolic name is assigned by a preprocessor definition. Custom drivers
usually declare such symbols in their header files; scull.h declares them for scull. User

136 | Chapter6: Advanced Char Driver Operations

4~ ~4]e

é ,ch06.8719 Page 137 Friday, January 21, 2005 10:44 AM

programs must, of course, include that header file as well to have access to those
symbols.

Choosing the ioctl Commands

Before writing the code for ioctl, you need to choose the numbers that correspond to
commands. The first instinct of many programmers is to choose a set of small num-
bers starting with O or 1 and going up from there. There are, however, good reasons
for not doing things that way. The ioctl command numbers should be unique across
the system in order to prevent errors caused by issuing the right command to the
wrong device. Such a mismatch is not unlikely to happen, and a program might find
itself trying to change the baud rate of a non-serial-port input stream, such as a FIFO
or an audio device. If each ioctl number is unique, the application gets an EINVAL
error rather than succeeding in doing something unintended.

To help programmers create unique ioctl command codes, these codes have been
split up into several bitfields. The first versions of Linux used 16-bit numbers: the
top eight were the “magic” numbers associated with the device, and the bottom eight
were a sequential number, unique within the device. This happened because Linus
was “clueless” (his own word); a better division of bitfields was conceived only later.
Unfortunately, quite a few drivers still use the old convention. They have to: chang-
ing the command codes would break no end of binary programs, and that is not
something the kernel developers are willing to do.

To choose ioctl numbers for your driver according to the Linux kernel convention,
you should first check include/asm/fioctl.h and Documentation/ioctl-number.txt. The
header defines the bitfields you will be using: type (magic number), ordinal number,
direction of transfer, and size of argument. The ioctl-number.txt file lists the magic
numbers used throughout the kernel,” so you’ll be able to choose your own magic
number and avoid overlaps. The text file also lists the reasons why the convention

should be used.

The approved way to define ioctl command numbers uses four bitfields, which have
the following meanings. New symbols introduced in this list are defined in <linux/
ioctl.h>.

type
The magic number. Just choose one number (after consulting ioctl-number.txt)
and use it throughout the driver. This field is eight bits wide (_I0C_TYPEBITS).

number
The ordinal (sequential) number. It’s eight bits (_I0C_NRBITS) wide.

* Maintenance of this file has been somewhat scarce as of late, however.

joctl | 137

- ad

é ,ch06.8719 Page 138 Friday, January 21, 2005 10:44 AM

direction
The direction of data transfer, if the particular command involves a data trans-
fer. The possible values are _I0C_NONE (no data transfer), IOC READ, IOC WRITE,
and I0C READ| IOC WRITE (data is transferred both ways). Data transfer is seen
from the application’s point of view; I0C_READ means reading from the device,
so the driver must write to user space. Note that the field is a bit mask, so _I0C_
READ and _IOC_WRITE can be extracted using a logical AND operation.

size
The size of user data involved. The width of this field is architecture dependent,
but is usually 13 or 14 bits. You can find its value for your specific architecture
in the macro I0C_SIZEBITS. It’s not mandatory that you use the size field—the
kernel does not check it—but it is a good idea. Proper use of this field can help
detect user-space programming errors and enable you to implement backward
compatibility if you ever need to change the size of the relevant data item. If you
need larger data structures, however, you can just ignore the size field. We’ll see
how this field is used soon.

The header file <asm/ioctl.h>, which is included by <linux/ioctl.h>, defines macros
that help set up the command numbers as follows: _I0(type,nr) (for a command
that has no argument), _IOR(type,nr,datatype) (for reading data from the
driver), TIOW(type,nr,datatype) (for writing data), and _IOWR(type,nr,datatype) (for
bidirectional transfers). The type and number fields are passed as arguments, and the
size field is derived by applying sizeof to the datatype argument.

The header also defines macros that may be used in your driver to decode the num-
bers: I0C DIR(nr), IOC TYPE(nr), IOC NR(nr), and IOC SIZE(nr). We won’t go
into any more detail about these macros because the header file is clear, and sample
code is shown later in this section.

Here is how some ioctl commands are defined in scull. In particular, these com-
mands set and get the driver’s configurable parameters.

/* Use 'k' as magic number */
#define SCULL_IOC MAGIC 'k’
/* Please use a different 8-bit number in your code */

#define SCULL_IOCRESET _TO(SCULL_IOC MAGIC, o)

/*

* S means "Set" through a ptr,

* T means "Tell" directly with the argument value

* G means "Get": reply by setting through a pointer
* Q means "Query": response is on the return value
* X means "eXchange": switch G and S atomically

* H means "sHift": switch T and Q atomically

*/

#define SCULL_TOCSQUANTUM TOW(SCULL IOC MAGIC, 1, int)
#define SCULL_IOCSQSET _IOW(SCULL_IOC MAGIC, 2, int)

138 | Chapter6: Advanced Char Driver Operations

- ad

é ,ch06.8719 Page 139 Friday, January 21, 2005 10:44 AM

#define SCULL_TOCTQUANTUM _TO(SCULL_IOC MAGIC, 3)
#define SCULL_IOCTQSET _IO(SCULL_IOC MAGIC, 4)
#define SCULL_TOCGQUANTUM TOR(SCULL_IOC MAGIC, 5, int)
#define SCULL_IOCGQSET ~ _IOR(SCULL_IOC MAGIC, 6, int)
#define SCULL_TOCQQUANTUM _TO(SCULL_IOC MAGIC, 7)
#define SCULL_TOCQQSET _TO(SCULL_IOC MAGIC, 8)
#define SCULL_TOCXQUANTUM _TOWR(SCULL_IOC MAGIC, 9, int)
#define SCULL_IOCXQSET ~ _IOWR(SCULL_IOC MAGIC,10, int)
#define SCULL_TOCHQUANTUM TO(SCULL IOC MAGIC, 11)
#define SCULL_IOCHQSET ~ _IO(SCULL_IOC MAGIC, 12)

#idefine SCULL_TOC_MAXNR 14
The actual source file defines a few extra commands that have not been shown here.

We chose to implement both ways of passing integer arguments: by pointer and by
explicit value (although, by an established convention, ioctl should exchange values
by pointer). Similarly, both ways are used to return an integer number: by pointer or
by setting the return value. This works as long as the return value is a positive inte-
ger; as you know by now, on return from any system call, a positive value is pre-
served (as we saw for read and write), while a negative value is considered an error
and is used to set errno in user space.”

The “exchange” and “shift” operations are not particularly useful for scull. We
implemented “exchange” to show how the driver can combine separate operations
into a single atomic one, and “shift” to pair “tell” and “query.” There are times when
atomic test-and-set operations like these are needed, in particular, when applica-
tions need to set or release locks.

The explicit ordinal number of the command has no specific meaning. It is used only
to tell the commands apart. Actually, you could even use the same ordinal number
for a read command and a write command, since the actual ioctl number is different
in the “direction” bits, but there is no reason why you would want to do so. We
chose not to use the ordinal number of the command anywhere but in the declara-
tion, so we didn’t assign a symbolic value to it. That’s why explicit numbers appear
in the definition given previously. The example shows one way to use the command
numbers, but you are free to do it differently.

With the exception of a small number of predefined commands (to be discussed
shortly), the value of the ioctl cmd argument is not currently used by the kernel, and
it’s quite unlikely it will be in the future. Therefore, you could, if you were feeling
lazy, avoid the complex declarations shown earlier and explicitly declare a set of sca-
lar numbers. On the other hand, if you did, you wouldn’t benefit from using the bit-
fields, and you would encounter difficulties if you ever submitted your code for

* Actually, all libc implementations currently in use (including uClibc) consider as error codes only values in
the range —4095 to —1. Unfortunately, being able to return large negative numbers but not small ones is not
very useful.

joctl | 139

4~ ~4]e

é ,ch06.8719 Page 140 Friday, January 21, 2005 10:44 AM

inclusion in the mainline kernel. The header <linux/kd.h> is an example of this old-
fashioned approach, using 16-bit scalar values to define the ioctl commands. That
source file relied on scalar numbers because it used the conventions obeyed at that
time, not out of laziness. Changing it now would cause gratuitous incompatibility.

The Return Value

The implementation of ioctl is usually a switch statement based on the command
number. But what should the default selection be when the command number
doesn’t match a valid operation? The question is controversial. Several kernel func-
tions return -EINVAL (“Invalid argument”), which makes sense because the com-
mand argument is indeed not a valid one. The POSIX standard, however, states that
if an inappropriate ioctl command has been issued, then -ENOTTY should be returned.
This error code is interpreted by the C library as “inappropriate ioctl for device,”
which is usually exactly what the programmer needs to hear. It’s still pretty com-
mon, though, to return -EINVAL in response to an invalid ioctl command.

The Predefined Commands

Although the ioctl system call is most often used to act on devices, a few commands
are recognized by the kernel. Note that these commands, when applied to your
device, are decoded before your own file operations are called. Thus, if you choose
the same number for one of your ioctl commands, you won’t ever see any request for
that command, and the application gets something unexpected because of the con-
flict between the ioctl numbers.

The predefined commands are divided into three groups:

* Those that can be issued on any file (regular, device, FIFO, or socket)
* Those that are issued only on regular files

* Those specific to the filesystem type

Commands in the last group are executed by the implementation of the hosting file-
system (this is how the chattr command works). Device driver writers are interested
only in the first group of commands, whose magic number is “T.” Looking at the
workings of the other groups is left to the reader as an exercise; ext2_ioctl is a most
interesting function (and easier to understand than one might expect), because it
implements the append-only flag and the immutable flag.

140 | Chapter6: Advanced Char Driver Operations

- ad

é ,ch06.8719 Page 141 Friday, January 21, 2005 10:44 AM

*

The following ioctl commands are predefined for any file, including device-special
files:

FIOCLEX
Set the close-on-exec flag (File IOctl CLose on EXec). Setting this flag causes the
file descriptor to be closed when the calling process executes a new program.

FIONCLEX
Clear the close-on-exec flag (File 1Octl Not CLos on EXec). The command
restores the common file behavior, undoing what FIOCLEX above does.

FIOASYNC
Set or reset asynchronous notification for the file (as discussed in the section
“Asynchronous Notification,” later in this chapter). Note that kernel versions up
to Linux 2.2.4 incorrectly used this command to modify the 0_SYNC flag. Since
both actions can be accomplished through fentl, nobody actually uses the
FIOASYNC command, which is reported here only for completeness.

FIOQSIZE
This command returns the size of a file or directory; when applied to a device
file, however, it yields an ENOTTY error return.

FIONBIO
“File 10ctl Non-Blocking I/0” (described in the section “Blocking and Non-
blocking Operations”). This call modifies the 0_NONBLOCK flag in filp->f flags.
The third argument to the system call is used to indicate whether the flag is to be
set or cleared. (We’ll look at the role of the flag later in this chapter.) Note that
the usual way to change this flag is with the fentl system call, using the F_SETFL
command.

The last item in the list introduced a new system call, fentl, which looks like ioctl. In
fact, the fentl call is very similar to ioctl in that it gets a command argument and an
extra (optional) argument. It is kept separate from ioctl mainly for historical reasons:
when Unix developers faced the problem of controlling I/O operations, they decided
that files and devices were different. At the time, the only devices with ioctl imple-
mentations were ttys, which explains why -ENOTTY is the standard reply for an incor-
rect ioctl command. Things have changed, but fentl remains a separate system call.

Using the ioctl Argument

Another point we need to cover before looking at the ioctl code for the scull driver is
how to use the extra argument. If it is an integer, it’s easy: it can be used directly. If it
is a pointer, however, some care must be taken.

joctl | 141

ﬁ

*@%

é ,ch06.8719 Page 142 Friday, January 21, 2005 10:44 AM

When a pointer is used to refer to user space, we must ensure that the user address is
valid. An attempt to access an unverified user-supplied pointer can lead to incorrect
behavior, a kernel oops, system corruption, or security problems. It is the driver’s
responsibility to make proper checks on every user-space address it uses and to
return an error if it is invalid.

In Chapter 3, we looked at the copy_from_user and copy_to_user functions, which
can be used to safely move data to and from user space. Those functions can be used
in ioctl methods as well, but ioctl calls often involve small data items that can be
more efficiently manipulated through other means. To start, address verification
(without transferring data) is implemented by the function access_ok, which is
declared in <asm/uaccess.h>:

int access_ok(int type, const void *addr, unsigned long size);

The first argument should be either VERIFY READ or VERIFY WRITE, depending on
whether the action to be performed is reading the user-space memory area or writing
it. The addr argument holds a user-space address, and size is a byte count. If ioctl,
for instance, needs to read an integer value from user space, size is sizeof(int). If
you need to both read and write at the given address, use VERIFY_WRITE, since it is a
superset of VERIFY_READ.

Unlike most kernel functions, access_ok returns a boolean value: 1 for success (access
is OK) and o for failure (access is not OK). If it returns false, the driver should usu-
ally return -EFAULT to the caller.

There are a couple of interesting things to note about access_ok. First, it does not do
the complete job of verifying memory access; it only checks to see that the memory
reference is in a region of memory that the process might reasonably have access to.
In particular, access_ok ensures that the address does not point to kernel-space mem-
ory. Second, most driver code need not actually call access_ok. The memory-access
routines described later take care of that for you. Nonetheless, we demonstrate its
use so that you can see how it is done.

The scull source exploits the bitfields in the ioctl number to check the arguments
before the switch:

int err = 0, tmp;
int retval = 0;

/*

* extract the type and number bitfields, and don't decode

* wrong cmds: return ENOTTY (inappropriate ioctl) before access ok()
*/

if (_IOC TYPE(cmd) != SCULL_IOC _MAGIC) return -ENOTTY;

if (_I0C_NR(cmd) > SCULL TOC MAXNR) return -ENOTTY;

/*
* the direction is a bitmask, and VERIFY_WRITE catches R/W
* transfers. “Type' is user-oriented, while

142 | Chapter6: Advanced Char Driver Operations

4~ ~4]e

é ,ch06.8719 Page 143 Friday, January 21, 2005 10:44 AM

* access_ok is kernel-oriented, so the concept of "read" and
* "write" is reversed
*/
if (_I0C DIR(cmd) & IOC_READ)
err = laccess ok(VERIFY _WRITE, (void _ user *)arg, IOC SIZE(cmd));
else if (_I0C DIR(cmd) & _IOC_WRITE)
err = laccess_ok(VERIFY_READ, (void __user *)arg, IOC SIZE(cmd));
if (err) return -EFAULT;
After calling access_ok, the driver can safely perform the actual transfer. In addition
to the copy_from_user and copy_to_user functions, the programmer can exploit a set
of functions that are optimized for the most used data sizes (one, two, four, and eight
bytes). These functions are described in the following list and are defined in <asm/

uaccess.h>:

put_user(datum, ptr)

__put_user(datum, ptr)
These macros write the datum to user space; they are relatively fast and should be
called instead of copy_to_user whenever single values are being transferred. The
macros have been written to allow the passing of any type of pointer to put_user,
as long as it is a user-space address. The size of the data transfer depends on the
type of the ptr argument and is determined at compile time using the sizeof and
typeof compiler builtins. As a result, if ptr is a char pointer, one byte is trans-
ferred, and so on for two, four, and possibly eight bytes.

put_user checks to ensure that the process is able to write to the given memory
address. It returns 0 on success, and -EFAULT on error. __put_user performs less
checking (it does not call access_ok), but can still fail if the memory pointed to is
not writable by the user. Thus, __put_user should only be used if the memory
region has already been verified with access_ok.

As a general rule, you call __put_user to save a few cycles when you are imple-
menting a read method, or when you copy several items and, thus, call access_ok
just once before the first data transfer, as shown above for ioctl.

get user(local, ptr)

__get user(local, ptr)
These macros are used to retrieve a single datum from user space. They behave
like put_user and __put_user, but transfer data in the opposite direction. The
value retrieved is stored in the local variable local; the return value indicates
whether the operation succeeded. Again, __get_user should only be used if the
address has already been verified with access_ok.

If an attempt is made to use one of the listed functions to transfer a value that does
not fit one of the specific sizes, the result is usually a strange message from the com-
piler, such as “conversion to non-scalar type requested.” In such cases, copy_to_user
or copy_from_user must be used.

joctl | 143

é ,ch06.8719 Page 144 Friday, January 21, 2005 10:44 AM

Capabilities and Restricted Operations

Access to a device is controlled by the permissions on the device file(s), and the driver
is not normally involved in permissions checking. There are situations, however,
where any user is granted read/write permission on the device, but some control oper-
ations should still be denied. For example, not all users of a tape drive should be able
to set its default block size, and a user who has been granted read/write access to a
disk device should probably still be denied the ability to format it. In cases like these,
the driver must perform additional checks to be sure that the user is capable of per-
forming the requested operation.

Unix systems have traditionally restricted privileged operations to the superuser
account. This meant that privilege was an all-or-nothing thing—the superuser can do
absolutely anything, but all other users are highly restricted. The Linux kernel pro-
vides a more flexible system called capabilities. A capability-based system leaves the
all-or-nothing mode behind and breaks down privileged operations into separate
subgroups. In this way, a particular user (or program) can be empowered to perform
a specific privileged operation without giving away the ability to perform other, unre-
lated operations. The kernel uses capabilities exclusively for permissions manage-
ment and exports two system calls capget and capset, to allow them to be managed
from user space.

The full set of capabilities can be found in <linux/capability.h>. These are the only
capabilities known to the system; it is not possible for driver authors or system admin-
istrators to define new ones without modifying the kernel source. A subset of those
capabilities that might be of interest to device driver writers includes the following:

CAP_DAC_OVERRIDE
The ability to override access restrictions (data access control, or DAC) on files
and directories.

CAP_NET_ADMIN
The ability to perform network administration tasks, including those that affect
network interfaces.

CAP_SYS_MODULE
The ability to load or remove kernel modules.

CAP_SYS_RAWIO
The ability to perform “raw” I/O operations. Examples include accessing device
ports or communicating directly with USB devices.

CAP_SYS_ADMIN
A catch-all capability that provides access to many system administration opera-
tions.

CAP_SYS_TTY CONFIG
The ability to perform tty configuration tasks.

144 | Chapter6: Advanced Char Driver Operations

- ad

é ,ch06.8719 Page 145 Friday, January 21, 2005 10:44 AM

Before performing a privileged operation, a device driver should check that the call-
ing process has the appropriate capability; failure to do so could result user pro-
cesses performing unauthorized operations with bad results on system stability or
security. Capability checks are performed with the capable function (defined in
<linux/sched.h>):

int capable(int capability);

In the scull sample driver, any user is allowed to query the quantum and quantum set
sizes. Only privileged users, however, may change those values, since inappropriate
values could badly affect system performance. When needed, the scull implementa-
tion of ioctl checks a user’s privilege level as follows:

if (! capable (CAP_SYS ADMIN))
return -EPERM;

In the absence of a more specific capability for this task, CAP_SYS ADMIN was chosen
for this test.

The Implementation of the ioctl Commands

The scull implementation of ioctl only transfers the configurable parameters of the
device and turns out to be as easy as the following:

switch(cmd) {

case SCULL_IOCRESET:
scull quantum = SCULL_QUANTUM;
scull gset = SCULL_QSET;
break;

case SCULL_IOCSQUANTUM: /* Set: arg points to the value */
if (! capable (CAP_SYS ADMIN))
return -EPERM;
retval = __get user(scull quantum, (int __user *)arg);
break;

case SCULL_IOCTQUANTUM: /* Tell: arg is the value */
if (! capable (CAP_SYS ADMIN))
return -EPERM;
scull_quantum = arg;
break;

case SCULL_IOCGQUANTUM: /* Get: arg is pointer to result */
retval = put user(scull quantum, (int _ user *)arg);
break;

case SCULL_TOCQQUANTUM: /* Query: return it (it's positive) */
return scull_quantum;

case SCULL_IOCXQUANTUM: /* eXchange: use arg as pointer */
if (! capable (CAP_SYS_ADMIN))

joctl | 145

4~ ~4]e

é ,ch06.8719 Page 146 Friday, January 21, 2005 10:44 AM

return -EPERM;
tmp = scull quantum;

retval = get user(scull quantum, (int _ user *)arg);
if (retval == 0)

retval = put user(tmp, (int _ user *)arg);
break;

case SCULL_IOCHQUANTUM: /* sHift: like Tell + Query */
if (! capable (CAP_SYS_ADMIN))
return -EPERM;
tmp = scull quantum;
scull quantum = arg;
return tmp;

default: /* redundant, as cmd was checked against MAXNR */
return -ENOTTY;
}

return retval;

scull also includes six entries that act on scull gset. These entries are identical to the
ones for scull quantum and are not worth showing in print.

The six ways to pass and receive arguments look like the following from the caller’s
point of view (i.e., from user space):

int quantum;

ioctl(fd,SCULL_IOCSQUANTUM, 8quantum); /* Set by pointer */
ioctl(fd,SCULL_TOCTQUANTUM, quantum); /* Set by value */
ioctl(fd,SCULL_TIOCGQUANTUM, 8quantum); /* Get by pointer */
quantum = ioctl(fd,SCULL_TOCQQUANTUM); /* Get by return value */
ioctl(fd,SCULL_IOCXQUANTUM, 8quantum); /* Exchange by pointer */

quantum = ioctl(fd,SCULL_TOCHQUANTUM, quantum); /* Exchange by value */

Of course, a normal driver would not implement such a mix of calling modes. We
have done so here only to demonstrate the different ways in which things could be
done. Normally, however, data exchanges would be consistently performed, either
through pointers or by value, and mixing of the two techniques would be avoided.

Device Control Without ioctl

Sometimes controlling the device is better accomplished by writing control
sequences to the device itself. For example, this technique is used in the console
driver, where so-called escape sequences are used to move the cursor, change the
default color, or perform other configuration tasks. The benefit of implementing
device control this way is that the user can control the device just by writing data,
without needing to use (or sometimes write) programs built just for configuring the
device. When devices can be controlled in this manner, the program issuing commands
often need not even be running on the same system as the device it is controlling.

146 | Chapter6: Advanced Char Driver Operations

4~ ~4]e

é ,ch06.8719 Page 147 Friday, January 21, 2005 10:44 AM

For example, the setterm program acts on the console (or another terminal) configu-
ration by printing escape sequences. The controlling program can live on a different
computer from the controlled device, because a simple redirection of the data stream
does the configuration job. This is what happens every time you run a remote tty ses-
sion: escape sequences are printed remotely but affect the local tty; the technique is
not restricted to ttys, though.

The drawback of controlling by printing is that it adds policy constraints to the
device; for example, it is viable only if you are sure that the control sequence can’t
appear in the data being written to the device during normal operation. This is only
partly true for ttys. Although a text display is meant to display only ASCII charac-
ters, sometimes control characters can slip through in the data being written and
can, therefore, affect the console setup. This can happen, for example, when you cat
a binary file to the screen; the resulting mess can contain anything, and you often
end up with the wrong font on your console.

Controlling by write is definitely the way to go for those devices that don’t transfer
data but just respond to commands, such as robotic devices.

For instance, a driver written for fun by one of your authors moves a camera on two
axes. In this driver, the “device” is simply a pair of old stepper motors, which can’t
really be read from or written to. The concept of “sending a data stream” to a step-
per motor makes little or no sense. In this case, the driver interprets what is being
written as ASCII commands and converts the requests to sequences of impulses that
manipulate the stepper motors. The idea is similar, somewhat, to the AT commands
you send to the modem in order to set up communication, the main difference being
that the serial port used to communicate with the modem must transfer real data as
well. The advantage of direct device control is that you can use cat to move the cam-
era without writing and compiling special code to issue the ioctl calls.

When writing command-oriented drivers, there’s no reason to implement the ioctl
method. An additional command in the interpreter is easier to implement and use.

Sometimes, though, you might choose to act the other way around: instead of turn-
ing the write method into an interpreter and avoiding ioctl, you might choose to
avoid write altogether and use ioctl commands exclusively, while accompanying the
driver with a specific command-line tool to send those commands to the driver. This
approach moves the complexity from kernel space to user space, where it may be
easier to deal with, and helps keep the driver small while denying use of simple cat or
echo commands.

Blocking 1/0

Back in Chapter 3, we looked at how to implement the read and write driver meth-
ods. At that point, however, we skipped over one important issue: how does a driver
respond if it cannot immediately satisfy the request? A call to read may come when

Blocking1/0 | 147

4~ ~4]e

é ,ch06.8719 Page 148 Friday, January 21, 2005 10:44 AM

no data is available, but more is expected in the future. Or a process could attempt to
write, but your device is not ready to accept the data, because your output buffer is
full. The calling process usually does not care about such issues; the programmer
simply expects to call read or write and have the call return after the necessary work
has been done. So, in such cases, your driver should (by default) block the process,
putting it to sleep until the request can proceed.

This section shows how to put a process to sleep and wake it up again later on. As
usual, however, we have to explain a few concepts first.

Introduction to Sleeping

What does it mean for a process to “sleep”? When a process is put to sleep, it is
marked as being in a special state and removed from the scheduler’s run queue. Until
something comes along to change that state, the process will not be scheduled on
any CPU and, therefore, will not run. A sleeping process has been shunted off to the
side of the system, waiting for some future event to happen.

Causing a process to sleep is an easy thing for a Linux device driver to do. There are,
however, a couple of rules that you must keep in mind to be able to code sleeps in a
safe manner.

The first of these rules is: never sleep when you are running in an atomic context.
We got an introduction to atomic operation in Chapter 5; an atomic context is sim-
ply a state where multiple steps must be performed without any sort of concurrent
access. What that means, with regard to sleeping, is that your driver cannot sleep
while holding a spinlock, seqlock, or RCU lock. You also cannot sleep if you have
disabled interrupts. It is legal to sleep while holding a semaphore, but you should
look very carefully at any code that does so. If code sleeps while holding a sema-
phore, any other thread waiting for that semaphore also sleeps. So any sleeps that
happen while holding semaphores should be short, and you should convince your-
self that, by holding the semaphore, you are not blocking the process that will even-
tually wake you up.

Another thing to remember with sleeping is that, when you wake up, you never
know how long your process may have been out of the CPU or what may have
changed in the mean time. You also do not usually know if another process may
have been sleeping for the same event; that process may wake before you and grab
whatever resource you were waiting for. The end result is that you can make no
assumptions about the state of the system after you wake up, and you must check to
ensure that the condition you were waiting for is, indeed, true.

One other relevant point, of course, is that your process cannot sleep unless it is
assured that somebody else, somewhere, will wake it up. The code doing the awak-
ening must also be able to find your process to be able to do its job. Making sure that
a wakeup happens is a matter of thinking through your code and knowing, for each

148 | Chapter6: Advanced Char Driver Operations

4~ ~4]e

é ,ch06.8719 Page 149 Friday, January 21, 2005 10:44 AM

sleep, exactly what series of events will bring that sleep to an end. Making it possible
for your sleeping process to be found is, instead, accomplished through a data struc-
ture called a wait queue. A wait queue is just what it sounds like: a list of processes,
all waiting for a specific event.

In Linux, a wait queue is managed by means of a “wait queue head,” a structure of
type wait _queue_head t, which is defined in <linux/wait.h>. A wait queue head can
be defined and initialized statically with:

DECLARE_WAIT QUEUE_HEAD(name);
or dynamicly as follows:

wait queue head t my queue;

init_waitqueue_head(&my queue);
We will return to the structure of wait queues shortly, but we know enough now to
take a first look at sleeping and waking up.

Simple Sleeping

When a process sleeps, it does so in expectation that some condition will become
true in the future. As we noted before, any process that sleeps must check to be sure
that the condition it was waiting for is really true when it wakes up again. The sim-
plest way of sleeping in the Linux kernel is a macro called wait_event (with a few
variants); it combines handling the details of sleeping with a check on the condition
a process is waiting for. The forms of wait_event are:

wait_event(queue, condition)

wait_event interruptible(queue, condition)

wait_event timeout(queue, condition, timeout)

wait_event_interruptible_timeout(queue, condition, timeout)
In all of the above forms, queue is the wait queue head to use. Notice that it is passed
“by value.” The condition is an arbitrary boolean expression that is evaluated by the
macro before and after sleeping; until condition evaluates to a true value, the pro-
cess continues to sleep. Note that condition may be evaluated an arbitrary number of
times, so it should not have any side effects.

If you use wait_event, your process is put into an uninterruptible sleep which, as we
have mentioned before, is usually not what you want. The preferred alternative is
wait_event_interruptible, which can be interrupted by signals. This version returns an
integer value that you should check; a nonzero value means your sleep was inter-
rupted by some sort of signal, and your driver should probably return -ERESTARTSYS.
The final versions (wait_event_timeout and wait_event_interruptible_timeout) wait for
a limited time; after that time period (expressed in jiffies, which we will discuss in
Chapter 7) expires, the macros return with a value of 0 regardless of how condition
evaluates.

Blocking1/0 | 149

é ,ch06.8719 Page 150 Friday, January 21, 2005 10:44 AM

The other half of the picture, of course, is waking up. Some other thread of execu-
tion (a different process, or an interrupt handler, perhaps) has to perform the
wakeup for you, since your process is, of course, asleep. The basic function that
wakes up sleeping processes is called wake_up. It comes in several forms (but we
look at only two of them now):

void wake_up(wait_queue_head_t *queue);

void wake up_interruptible(wait queue head t *queue);
wake_up wakes up all processes waiting on the given queue (though the situation is a
little more complicated than that, as we will see later). The other form (wake_up_
interruptible) restricts itself to processes performing an interruptible sleep. In gen-
eral, the two are indistinguishable (if you are using interruptible sleeps); in practice,
the convention is to use wake_up if you are using wait_event and wake_up_interrupt-
ible if you use wait_event_interruptible.

We now know enough to look at a simple example of sleeping and waking up. In the
sample source, you can find a module called sleepy. It implements a device with sim-
ple behavior: any process that attempts to read from the device is put to sleep.
Whenever a process writes to the device, all sleeping processes are awakened. This
behavior is implemented with the following read and write methods:

static DECLARE WAIT QUEUE HEAD(wq);
static int flag = o;

ssize t sleepy read (struct file *filp, char __user *buf, size t count, loff t *pos)

{
printk (KERN_DEBUG "process %i (%s) going to sleep\n",
current->pid, current->comm);
wait event interruptible(wq, flag != 0);
flag = 0;
printk (KERN_DEBUG "awoken %i (%s)\n", current->pid, current->comm);
return 0; /* EOF */
}

ssize t sleepy write (struct file *filp, const char _ user *buf, size t count,
loff_t *pos)

{
printk (KERN_DEBUG "process %i (%s) awakening the readers...\n",
current->pid, current->comm);
flag = 1;
wake_up_interruptible(8wq);
return count; /* succeed, to avoid retrial */
}

Note the use of the flag variable in this example. Since wait_event_interruptible
checks for a condition that must become true, we use flag to create that condition.

It is interesting to consider what happens if two processes are waiting when sleepy_write
is called. Since sleepy_read resets flag to 0 once it wakes up, you might think that the
second process to wake up would immediately go back to sleep. On a single-processor

150 | Chapter6: Advanced Char Driver Operations

4~ ~4]e

é ,ch06.8719 Page 151 Friday, January 21, 2005 10:44 AM

system, that is almost always what happens. But it is important to understand why you
cannot count on that behavior. The wake_up_interruptible call will cause both sleeping
processes to wake up. It is entirely possible that they will both note that flag is nonzero
before either has the opportunity to reset it. For this trivial module, this race condition is
unimportant. In a real driver, this kind of race can create rare crashes that are difficult to
diagnose. If correct operation required that exactly one process see the nonzero value, it
would have to be tested in an atomic manner. We will see how a real driver handles
such situations shortly. But first we have to cover one other topic.

Blocking and Nonblocking Operations

One last point we need to touch on before we look at the implementation of full-fea-
tured read and write methods is deciding when to put a process to sleep. There are
times when implementing proper Unix semantics requires that an operation not
block, even if it cannot be completely carried out.

There are also times when the calling process informs you that it does not want to
block, whether or not its I/O can make any progress at all. Explicitly nonblocking I/0
is indicated by the 0 NONBLOCK flag in filp->f flags. The flag is defined in <linux/
fentl.h>, which is automatically included by <linux/fs.h>. The flag gets its name from
“open-nonblock,” because it can be specified at open time (and originally could be
specified only there). If you browse the source code, you find some references to an
O NDELAY flag; this is an alternate name for 0_NONBLOCK, accepted for compatibility
with System V code. The flag is cleared by default, because the normal behavior of a
process waiting for data is just to sleep. In the case of a blocking operation, which is
the default, the following behavior should be implemented in order to adhere to the
standard semantics:

* If a process calls read but no data is (yet) available, the process must block. The
process is awakened as soon as some data arrives, and that data is returned to
the caller, even if there is less than the amount requested in the count argument
to the method.

* If a process calls write and there is no space in the buffer, the process must
block, and it must be on a different wait queue from the one used for reading.
When some data has been written to the hardware device, and space becomes
free in the output buffer, the process is awakened and the write call succeeds,
although the data may be only partially written if there isn’t room in the buffer
for the count bytes that were requested.

Both these statements assume that there are both input and output buffers; in prac-
tice, almost every device driver has them. The input buffer is required to avoid los-
ing data that arrives when nobody is reading. In contrast, data can’t be lost on write,
because if the system call doesn’t accept data bytes, they remain in the user-space
buffer. Even so, the output buffer is almost always useful for squeezing more perfor-
mance out of the hardware.

Blocking1/0 | 151

- ad

é ,ch06.8719 Page 152 Friday, January 21, 2005 10:44 AM

The performance gain of implementing an output buffer in the driver results from
the reduced number of context switches and user-level/kernel-level transitions.
Without an output buffer (assuming a slow device), only one or a few characters are
accepted by each system call, and while one process sleeps in write, another process
runs (that’s one context switch). When the first process is awakened, it resumes
(another context switch), write returns (kernel/user transition), and the process reit-
erates the system call to write more data (user/kernel transition); the call blocks and
the loop continues. The addition of an output buffer allows the driver to accept
larger chunks of data with each write call, with a corresponding increase in perfor-
mance. If that buffer is big enough, the write call succeeds on the first attempt—the
buffered data will be pushed out to the device later—without control needing to go
back to user space for a second or third write call. The choice of a suitable size for
the output buffer is clearly device-specific.

We don’t use an input buffer in scull, because data is already available when read is
issued. Similarly, no output buffer is used, because data is simply copied to the mem-
ory area associated with the device. Essentially, the device is a buffer, so the imple-
mentation of additional buffers would be superfluous. We’ll see the use of buffers in
Chapter 10.

The behavior of read and write is different if 0 NONBLOCK is specified. In this case, the
calls simply return -EAGAIN (“try it again”) if a process calls read when no data is
available or if it calls write when there’s no space in the buffer.

As you might expect, nonblocking operations return immediately, allowing the
application to poll for data. Applications must be careful when using the stdio func-
tions while dealing with nonblocking files, because they can easily mistake a non-
blocking return for EOF. They always have to check errno.

Naturally, 0_NONBLOCK is meaningful in the open method also. This happens when the
call can actually block for a long time; for example, when opening (for read access) a
FIFO that has no writers (yet), or accessing a disk file with a pending lock. Usually,
opening a device either succeeds or fails, without the need to wait for external
events. Sometimes, however, opening the device requires a long initialization, and
you may choose to support 0_NONBLOCK in your open method by returning immedi-
ately with -EAGAIN if the flag is set, after starting the device initialization process. The
driver may also implement a blocking open to support access policies in a way simi-
lar to file locks. We’ll see one such implementation in the section “Blocking open as
an Alternative to EBUSY” later in this chapter.

Some drivers may also implement special semantics for 0_NONBLOCK; for example, an
open of a tape device usually blocks until a tape has been inserted. If the tape drive is
opened with 0 NONBLOCK, the open succeeds immediately regardless of whether the
media is present or not.

Only the read, write, and open file operations are affected by the nonblocking flag.

152 | Chapter6: Advanced Char Driver Operations

- ad

é ,ch06.8719 Page 153 Friday, January 21, 2005 10:44 AM

A Blocking I/0 Example

Finally, we get to an example of a real driver method that implements blocking 1/O.
This example is taken from the scullpipe driver; it is a special form of scull that imple-
ments a pipe-like device.

Within a driver, a process blocked in a read call is awakened when data arrives; usu-
ally the hardware issues an interrupt to signal such an event, and the driver awakens
waiting processes as part of handling the interrupt. The scullpipe driver works differ-
ently, so that it can be run without requiring any particular hardware or an interrupt
handler. We chose to use another process to generate the data and wake the reading
process; similarly, reading processes are used to wake writer processes that are wait-
ing for buffer space to become available.

The device driver uses a device structure that contains two wait queues and a buffer.
The size of the buffer is configurable in the usual ways (at compile time, load time, or

runtime).
struct scull_pipe {
wait_queue_head_t inq, outg; /* read and write queues */
char *buffer, *end; /* begin of buf, end of buf */
int buffersize; /* used in pointer arithmetic */
char *rp, *wp; /* where to read, where to write */
int nreaders, nwriters; /* number of openings for r/w */
struct fasync_struct *async_queue; /* asynchronous readers */
struct semaphore sem; /* mutual exclusion semaphore */
struct cdev cdev; /* Char device structure */
¥
The read implementation manages both blocking and nonblocking input and looks
like this:

static ssize t scull p read (struct file *filp, char __user *buf, size t count,
loff t *f pos)
{

struct scull pipe *dev = filp->private data;

if (down_interruptible(&dev->sem))
return -ERESTARTSYS;

while (dev->rp == dev->wp) { /* nothing to read */
up(8dev->sem); /* release the lock */
if (filp->f_flags & O_NONBLOCK)
return -EACAIN;
PDEBUG("\"%s\" reading: going to sleep\n", current->comm);
if (wait_event interruptible(dev->ing, (dev->rp != dev->wp)))
return -ERESTARTSYS; /* signal: tell the fs layer to handle it */
/* otherwise loop, but first reacquire the lock */
if (down_interruptible(8dev->sem))
return -ERESTARTSYS;
}

/* ok, data is there, return something */

Blocking1/0 | 153

4~ ~4]e

é ,ch06.8719 Page 154 Friday, January 21, 2005 10:44 AM

if (dev->wp > dev->1p)
count = min(count, (size t)(dev->wp - dev->1p));
else /* the write pointer has wrapped, return data up to dev->end */
count = min(count, (size t)(dev->end - dev->rp));
if (copy to_user(buf, dev->rp, count)) {
up (&dev->sem);
return -EFAULT;
}

dev->rp += count;
if (dev->rp == dev->end)

dev->1p = dev->buffer; /* wrapped */
up (&dev->sem);

/* finally, awake any writers and return */

wake_up_interruptible(&dev->outq);

PDEBUG("\"%s\" did read %1i bytes\n",current->comm, (long)count);

return count;

}

As you can see, we left some PDEBUG statements in the code. When you compile the
driver, you can enable messaging to make it easier to follow the interaction of differ-
ent processes.

Let us look carefully at how scull_p_read handles waiting for data. The while loop
tests the buffer with the device semaphore held. If there is data there, we know we
can return it to the user immediately without sleeping, so the entire body of the loop
is skipped. If, instead, the buffer is empty, we must sleep. Before we can do that,
however, we must drop the device semaphore; if we were to sleep holding it, no
writer would ever have the opportunity to wake us up. Once the semaphore has been
dropped, we make a quick check to see if the user has requested non-blocking 1/0,
and return if so. Otherwise, it is time to call wait_event_interruptible.

Once we get past that call, something has woken us up, but we do not know what.
One possibility is that the process received a signal. The if statement that contains
the wait_event_interruptible call checks for this case. This statement ensures the
proper and expected reaction to signals, which could have been responsible for wak-
ing up the process (since we were in an interruptible sleep). If a signal has arrived
and it has not been blocked by the process, the proper behavior is to let upper layers
of the kernel handle the event. To this end, the driver returns -ERESTARTSYS to the
caller; this value is used internally by the virtual filesystem (VES) layer, which either
restarts the system call or returns -EINTR to user space. We use the same type of
check to deal with signal handling for every read and write implementation.

However, even in the absence of a signal, we do not yet know for sure that there is
data there for the taking. Somebody else could have been waiting for data as well,
and they might win the race and get the data first. So we must acquire the device
semaphore again; only then can we test the read buffer again (in the while loop) and
truly know that we can return the data in the buffer to the user. The end result of all

154 | Chapter6: Advanced Char Driver Operations

4~ ~4]e

é ,ch06.8719 Page 155 Friday, January 21, 2005 10:44 AM

this code is that, when we exit from the while loop, we know that the semaphore is
held and the buffer contains data that we can use.

Just for completeness, let us note that scull_p_read can sleep in another spot after we
take the device semaphore: the call to copy_to_user. If scull sleeps while copying data
between kernel and user space, it sleeps with the device semaphore held. Holding the
semaphore in this case is justified since it does not deadlock the system (we know
that the kernel will perform the copy to user space and wakes us up without trying to
lock the same semaphore in the process), and since it is important that the device
memory array not change while the driver sleeps.

Advanced Sleeping

Many drivers are able to meet their sleeping requirements with the functions we have
covered so far. There are situations, however, that call for a deeper understanding of
how the Linux wait queue mechanism works. Complex locking or performance
requirements can force a driver to use lower-level functions to effect a sleep. In this
section, we look at the lower level to get an understanding of what is really going on
when a process sleeps.

How a process sleeps

If you look inside <linux/wait.h>, you see that the data structure behind the wait_
queue_head_t type is quite simple; it consists of a spinlock and a linked list. What goes
on to that list is a wait queue entry, which is declared with the type wait_queue_t. This
structure contains information about the sleeping process and exactly how it would
like to be woken up.

The first step in putting a process to sleep is usually the allocation and initialization
of await_queue_t structure, followed by its addition to the proper wait queue. When
everything is in place, whoever is charged with doing the wakeup will be able to find
the right processes.

The next step is to set the state of the process to mark it as being asleep. There are sev-
eral task states defined in <linux/sched.h>. TASK_RUNNING means that the process is able
to run, although it is not necessarily executing in the processor at any specific moment.
There are two states that indicate that a process is asleep: TASK_INTERRUPTIBLE and
TASK_UNINTERRUPTIBLE; they correspond, of course, to the two types of sleep. The other
states are not normally of concern to driver writers.

In the 2.6 kernel, it is not normally necessary for driver code to manipulate the pro-
cess state directly. However, should you need to do so, the call to use is:

void set current state(int new_state);
In older code, you often see something like this instead:

current->state = TASK_INTERRUPTIBLE;

Blocking1/0 | 155

4~ ~4]e

é ,ch06.8719 Page 156 Friday, January 21, 2005 10:44 AM

But changing current directly in that manner is discouraged; such code breaks easily
when data structures change. The above code does show, however, that changing the
current state of a process does not, by itself, put it to sleep. By changing the current
state, you have changed the way the scheduler treats a process, but you have not yet
yielded the processor.

Giving up the processor is the final step, but there is one thing to do first: you must
check the condition you are sleeping for first. Failure to do this check invites a race
condition; what happens if the condition came true while you were engaged in the
above process, and some other thread has just tried to wake you up? You could miss
the wakeup altogether and sleep longer than you had intended. Consequently, down
inside code that sleeps, you typically see something such as:

if (!condition)

schedule();

By checking our condition after setting the process state, we are covered against all
possible sequences of events. If the condition we are waiting for had come about
before setting the process state, we notice in this check and not actually sleep. If the
wakeup happens thereafter, the process is made runnable whether or not we have
actually gone to sleep yet.

The call to schedule is, of course, the way to invoke the scheduler and yield the CPU.
Whenever you call this function, you are telling the kernel to consider which process
should be running and to switch control to that process if necessary. So you never
know how long it will be before schedule returns to your code.

After the if test and possible call to (and return from) schedule, there is some
cleanup to be done. Since the code no longer intends to sleep, it must ensure that the
task state is reset to TASK_RUNNING. If the code just returned from schedule, this step is
unnecessary; that function does not return until the process is in a runnable state.
But if the call to schedule was skipped because it was no longer necessary to sleep,
the process state will be incorrect. It is also necessary to remove the process from the
wait queue, or it may be awakened more than once.

Manual sleeps

In previous versions of the Linux kernel, nontrivial sleeps required the programmer
to handle all of the above steps manually. It was a tedious process involving a fair
amount of error-prone boilerplate code. Programmers can still code a manual sleep
in that manner if they want to; <linux/sched.h> contains all the requisite definitions,
and the kernel source abounds with examples. There is an easier way, however.

The first step is the creation and initialization of a wait queue entry. That is usually
done with this macro:

DEFINE_WAIT(my wait);

156 | Chapter6: Advanced Char Driver Operations

4~ ~4]e

é ,ch06.8719 Page 157 Friday, January 21, 2005 10:44 AM

in which name is the name of the wait queue entry variable. You can also do things in
two steps:

wait_queue_t my wait;

init wait(&my wait);
But it is usually easier to put a DEFINE_WAIT line at the top of the loop that imple-
ments your sleep.

The next step is to add your wait queue entry to the queue, and set the process state.
Both of those tasks are handled by this function:
void prepare to wait(wait queue head t *queue,

wait_queue t *wait,

int state);
Here, queue and wait are the wait queue head and the process entry, respectively.
state is the new state for the process; it should be either TASK_INTERRUPTIBLE (for
interruptible sleeps, which is usually what you want) or TASK_UNINTERRUPTIBLE (for
uninterruptible sleeps).

After calling prepare_to_wait, the process can call schedule—after it has checked to
be sure it still needs to wait. Once schedule returns, it is cleanup time. That task, too,
is handled by a special function:

void finish wait(wait queue head t *queue, wait queue t *wait);
Thereafter, your code can test its state and see if it needs to wait again.

We are far past due for an example. Previously we looked at the read method for
scullpipe, which uses wait_event. The write method in the same driver does its wait-
ing with prepare_to_wait and finish_wait, instead. Normally you would not mix
methods within a single driver in this way, but we did so in order to be able to show
both ways of handling sleeps.

First, for completeness, let’s look at the write method itself:

/* How much space is free? */
static int spacefree(struct scull pipe *dev)

if (dev->rp == dev->wp)
return dev->buffersize - 1;
return ((dev->rp + dev->buffersize - dev->wp) % dev->buffersize) - 1;

}

static ssize t scull p write(struct file *filp, const char _ user *buf, size t count,
loff t *f pos)
{
struct scull pipe *dev = filp->private_data;
int result;

if (down_interruptible(8dev->sem))
return -ERESTARTSYS;

Blocking1/0 | 157

4~ ~4]e

é ,ch06.8719 Page 158 Friday, January 21, 2005 10:44 AM

/* Make sure there's space to write */
result = scull getwritespace(dev, filp);
if (result)
return result; /* scull getwritespace called up(&dev->sem) */

/* ok, space is there, accept something */
count = min(count, (size t)spacefree(dev));
if (dev->wp >= dev->1p)
count = min(count, (size t)(dev->end - dev->wp)); /* to end-of-buf */
else /* the write pointer has wrapped, fill up to rp-1 */
count = min(count, (size t)(dev->rp - dev->wp - 1));
PDEBUG("Going to accept %1i bytes to %p from %p\n", (long)count, dev->wp, buf);
if (copy from_user(dev->wp, buf, count)) {
up (8dev->sem);
return -EFAULT,;
}
dev->wp += count;
if (dev->wp == dev->end)
dev->wp = dev->buffer; /* wrapped */
up(8&dev->sem);

/* finally, awake any reader */
wake_up interruptible(&dev->inq); /* blocked in read() and select() */

/* and signal asynchronous readers, explained late in chapter 5 */
if (dev->async_queue)

kill fasync(&dev->async_queue, SIGIO, POLL_IN);
PDEBUG("\"%s\" did write %1i bytes\n",current->comm, (long)count);
return count;

}

This code looks similar to the read method, except that we have pushed the code
that sleeps into a separate function called scull_getwritespace. Its job is to ensure that
there is space in the buffer for new data, sleeping if need be until that space comes
available. Once the space is there, scull_p_write can simply copy the user’s data
there, adjust the pointers, and wake up any processes that may have been waiting to
read data.

The code that handles the actual sleep is:

/* Wait for space for writing; caller must hold device semaphore. On
* error the semaphore will be released before returning. */
static int scull getwritespace(struct scull pipe *dev, struct file *filp)
{
while (spacefree(dev) == 0) { /* full */
DEFINE_WAIT(wait);

up(8&dev->sem);
if (filp->f flags & O NONBLOCK)
return -EAGAIN;

158 | Chapter6: Advanced Char Driver Operations

4~ ~4]e

é ,ch06.8719 Page 159 Friday, January 21, 2005 10:44 AM

PDEBUG("\"%s\" writing: going to sleep\n",current->comm);
prepare to wait(8dev->outq, 8wait, TASK INTERRUPTIBLE);
if (spacefree(dev) == 0)

schedule();
finish wait(&dev->outq, &wait);
if (signal pending(current))

return -ERESTARTSYS; /* signal: tell the fs layer to handle it */
if (down_interruptible(&dev->sem))

return -ERESTARTSYS;

}

return 0;
}

Note once again the containing while loop. If space is available without sleeping, this
function simply returns. Otherwise, it must drop the device semaphore and wait.
The code uses DEFINE_WAIT to set up a wait queue entry and prepare_to_wait to
get ready for the actual sleep. Then comes the obligatory check on the buffer; we
must handle the case in which space becomes available in the buffer after we have
entered the while loop (and dropped the semaphore) but before we put ourselves
onto the wait queue. Without that check, if the reader processes were able to com-
pletely empty the buffer in that time, we could miss the only wakeup we would ever
get and sleep forever. Having satisfied ourselves that we must sleep, we can call
schedule.

It is worth looking again at this case: what happens if the wakeup happens between
the test in the if statement and the call to schedule? In that case, all is well. The
wakeup resets the process state to TASK_RUNNING and schedule returns—although not
necessarily right away. As long as the test happens after the process has put itself on
the wait queue and changed its state, things will work.

To finish up, we call finish_wait. The call to signal_pending tells us whether we were
awakened by a signal; if so, we need to return to the user and let them try again later.
Otherwise, we reacquire the semaphore, and test again for free space as usual.

Exclusive waits

We have seen that when a process calls wake_up on a wait queue, all processes wait-
ing on that queue are made runnable. In many cases, that is the correct behavior. In
others, however, it is possible to know ahead of time that only one of the processes
being awakened will succeed in obtaining the desired resource, and the rest will sim-
ply have to sleep again. Each one of those processes, however, has to obtain the pro-
cessor, contend for the resource (and any governing locks), and explicitly go back to
sleep. If the number of processes in the wait queue is large, this “thundering herd”
behavior can seriously degrade the performance of the system.

Blocking1/0 | 159

é ,ch06.8719 Page 160 Friday, January 21, 2005 10:44 AM

In response to real-world thundering herd problems, the kernel developers added an
“exclusive wait” option to the kernel. An exclusive wait acts very much like a nor-
mal sleep, with two important differences:

* When a wait queue entry has the WQ_FLAG_EXCLUSIVE flag set, it is added to the end
of the wait queue. Entries without that flag are, instead, added to the beginning.

* When wake_up is called on a wait queue, it stops after waking the first process
that has the WQ_FLAG_EXCLUSIVE flag set.

The end result is that processes performing exclusive waits are awakened one at a
time, in an orderly manner, and do not create thundering herds. The kernel still
wakes up all nonexclusive waiters every time, however.

Employing exclusive waits within a driver is worth considering if two conditions are
met: you expect significant contention for a resource, and waking a single process is
sufficient to completely consume the resource when it becomes available. Exclusive
waits work well for the Apache web server, for example; when a new connection
comes in, exactly one of the (often many) Apache processes on the system should
wake up to deal with it. We did not use exclusive waits in the scullpipe driver, how-
ever; it is rare to see readers contending for data (or writers for buffer space), and we
cannot know that one reader, once awakened, will consume all of the available data.

Putting a process into an interruptible wait is a simple matter of calling prepare_to_
wait_exclusive:
void prepare to wait exclusive(wait queue head t *queue,

wait_queue_t *wait,

int state);
This call, when used in place of prepare_to_wait, sets the “exclusive” flag in the wait
queue entry and adds the process to the end of the wait queue. Note that there is no
way to perform exclusive waits with wait_event and its variants.

The details of waking up

The view we have presented of the wakeup process is simpler than what really hap-
pens inside the kernel. The actual behavior that results when a process is awakened
is controlled by a function in the wait queue entry. The default wakeup function” sets
the process into a runnable state and, possibly, performs a context switch to that
process if it has a higher priority. Device drivers should never need to supply a differ-
ent wake function; should yours prove to be the exception, see <linux/wait.h> for
information on how to do it.

* It has the imaginative name default_wake_function.

160 | Chapter6: Advanced Char Driver Operations

4~ ~4]e

é ,ch06.8719 Page 161 Friday, January 21, 2005 10:44 AM

We have not yet seen all the variations of wake_up. Most driver writers never need
the others, but, for completeness, here is the full set:

wake up(wait queue head t *queue);

wake up interruptible(wait queue_head t *queue);
wake_up awakens every process on the queue that is not in an exclusive wait,
and exactly one exclusive waiter, if it exists. wake_up_interruptible does the
same, with the exception that it skips over processes in an uninterruptible sleep.
These functions can, before returning, cause one or more of the processes awak-
ened to be scheduled (although this does not happen if they are called from an
atomic context).

wake up nr(wait_queue head t *queue, int nr);

wake up_interruptible nr(wait queue head t *queue, int nr);
These functions perform similarly to wake_up, except they can awaken up to nr
exclusive waiters, instead of just one. Note that passing 0 is interpreted as ask-
ing for all of the exclusive waiters to be awakened, rather than none of them.

wake up all(wait queue head t *queue);

wake up interruptible all(wait queue head t *queue);
This form of wake_up awakens all processes whether they are performing an
exclusive wait or not (though the interruptible form still skips processes doing
uninterruptible waits).

wake_up_interruptible sync(wait queue head t *queue);
Normally, a process that is awakened may preempt the current process and be
scheduled into the processor before wake_up returns. In other words, a call to
wake_up may not be atomic. If the process calling wake_up is running in an
atomic context (it holds a spinlock, for example, or is an interrupt handler), this
rescheduling does not happen. Normally, that protection is adequate. If, how-
ever, you need to explicitly ask to not be scheduled out of the processor at this
time, you can use the “sync” variant of wake_up_interruptible. This function is
most often used when the caller is about to reschedule anyway, and it is more
efficient to simply finish what little work remains first.

If all of the above is not entirely clear on a first reading, don’t worry. Very few driv-
ers ever need to call anything except wake_up_interruptible.

Ancient history: sleep_on

If you spend any time digging through the kernel source, you will likely encounter
two functions that we have neglected to discuss so far:

void sleep on(wait queue head t *queue);
void interruptible sleep on(wait queue_head t *queue);

As you might expect, these functions unconditionally put the current process to
sleep on the given queue. These functions are strongly deprecated, however, and you

Blocking1/0 | 161

4~ ~4]e

é ,ch06.8719 Page 162 Friday, January 21, 2005 10:44 AM

should never use them. The problem is obvious if you think about it: sleep_on offers
no way to protect against race conditions. There is always a window between when
your code decides it must sleep and when sleep_on actually effects that sleep. A
wakeup that arrives during that window is missed. For this reason, code that calls
sleep_on is never entirely safe.

Current plans call for sleep_on and its variants (there are a couple of time-out forms
we haven’t shown) to be removed from the kernel in the not-too-distant future.

Testing the Scullpipe Driver

We have seen how the scullpipe driver implements blocking I/O. If you wish to try it
out, the source to this driver can be found with the rest of the book examples. Blocking
I/O in action can be seen by opening two windows. The first can run a command such
as cat /dev/scullpipe. If you then, in another window, copy a file to /dev/scullpipe, you
should see that file’s contents appear in the first window.

Testing nonblocking activity is trickier, because the conventional programs available
to a shell don’t perform nonblocking operations. The misc-progs source directory
contains the following simple program, called nbtest, for testing nonblocking opera-
tions. All it does is copy its input to its output, using nonblocking I/O and delaying
between retries. The delay time is passed on the command line and is one second by
default.

int main(int argc, char **argv)
{

int delay = 1, n, m = 0;

if (argc > 1)

delay=atoi(argv[1]);
fcntl(o, F_SETFL, fcntl(o,F _GETFL) | O NONBLOCK); /* stdin */
fentl(1, F_SETFL, fentl(1,F GETFL) | O NONBLOCK); /* stdout */

while (1) {
n = read(0, buffer, 4096);
if (n >= 0)
m = write(1, buffer, n);
if ((n <0 || m<o0) & (errno != EAGAIN))
break;
sleep(delay);

perror(n < 0 ? "stdin" : "stdout");
exit(1);
}
If you run this program under a process tracing utility such as strace, you can see the
success or failure of each operation, depending on whether data is available when the
operation is tried.

162 | Chapter6: Advanced Char Driver Operations

4~ ~4]e

é ,ch06.8719 Page 163 Friday, January 21, 2005 10:44 AM

poll and select

Applications that use nonblocking I/O often use the poll, select, and epoll system
calls as well. poll, select, and epoll have essentially the same functionality: each allow
a process to determine whether it can read from or write to one or more open files
without blocking. These calls can also block a process until any of a given set of file
descriptors becomes available for reading or writing. Therefore, they are often used
in applications that must use multiple input or output streams without getting stuck
on any one of them. The same functionality is offered by multiple functions, because
two were implemented in Unix almost at the same time by two different groups:
select was introduced in BSD Unix, whereas poll was the System V solution. The epoll
call’ was added in 2.5.45 as a way of making the polling function scale to thousands
of file descriptors.

Support for any of these calls requires support from the device driver. This support
(for all three calls) is provided through the driver’s poll method. This method has the
following prototype:

unsigned int (*poll) (struct file *filp, poll table *wait);

The driver method is called whenever the user-space program performs a poll, select,
or epoll system call involving a file descriptor associated with the driver. The device
method is in charge of these two steps:

1. Call poll_wait on one or more wait queues that could indicate a change in the
poll status. If no file descriptors are currently available for I/O, the kernel causes
the process to wait on the wait queues for all file descriptors passed to the sys-
tem call.

2. Return a bit mask describing the operations (if any) that could be immediately
performed without blocking.

Both of these operations are usually straightforward and tend to look very similar
from one driver to the next. They rely, however, on information that only the driver
can provide and, therefore, must be implemented individually by each driver.

The poll table structure, the second argument to the poll method, is used within the
kernel to implement the poll, select, and epoll calls; it is declared in <linux/poll.h>,
which must be included by the driver source. Driver writers do not need to know
anything about its internals and must use it as an opaque object; it is passed to the
driver method so that the driver can load it with every wait queue that could wake
up the process and change the status of the poll operation. The driver adds a wait
queue to the poll table structure by calling the function poll_wait:

void poll wait (struct file *, wait queue head t *, poll table *);

* Actually, epoll is a set of three calls that together can be used to achieve the polling functionality. For our
purposes, though, we can think of it as a single call.

pollandselect | 163

4~ ~4]e

é ,ch06.8719 Page 164 Friday, January 21, 2005 10:44 AM

The second task performed by the poll method is returning the bit mask describing
which operations could be completed immediately; this is also straightforward. For
example, if the device has data available, a read would complete without sleeping;
the poll method should indicate this state of affairs. Several flags (defined via <linux/
poll.h>) are used to indicate the possible operations:

POLLIN
This bit must be set if the device can be read without blocking.

POLLRDNORM
This bit must be set if “normal” data is available for reading. A readable device
returns (POLLIN | POLLRDNORM).

POLLRDBAND
This bit indicates that out-of-band data is available for reading from the device.
It is currently used only in one place in the Linux kernel (the DECnet code) and
is not generally applicable to device drivers.

POLLPRI
High-priority data (out-of-band) can be read without blocking. This bit causes
select to report that an exception condition occurred on the file, because select
reports out-of-band data as an exception condition.

POLLHUP
When a process reading this device sees end-of-file, the driver must set POLLHUP
(hang-up). A process calling select is told that the device is readable, as dictated
by the select functionality.

POLLERR
An error condition has occurred on the device. When poll is invoked, the device
is reported as both readable and writable, since both read and write return an
error code without blocking.

POLLOUT
This bit is set in the return value if the device can be written to without blocking.

POLLWRNORM
This bit has the same meaning as POLLOUT, and sometimes it actually is the same
number. A writable device returns (POLLOUT | POLLWRNORM).

POLLWRBAND
Like POLLRDBAND, this bit means that data with nonzero priority can be written to
the device. Only the datagram implementation of poll uses this bit, since a data-
gram can transmit out-of-band data.

It’s worth repeating that POLLRDBAND and POLLWRBAND are meaningful only with file
descriptors associated with sockets: device drivers won’t normally use these flags.

164 | Chapter6: Advanced Char Driver Operations

- ad

é ,ch06.8719 Page 165 Friday, January 21, 2005 10:44 AM

The description of poll takes up a lot of space for something that is relatively simple
to use in practice. Consider the scullpipe implementation of the poll method:

static unsigned int scull p poll(struct file *filp, poll table *wait)

{
struct scull pipe *dev = filp->private_ data;
unsigned int mask = 0;
/*
* The buffer is circular; it is considered full
* if "wp" is right behind "rp" and empty if the
* two are equal.
*/
down (&dev->sem);
poll wait(filp, &dev->ing, wait);
poll wait(filp, &dev->outq, wait);
if (dev->rp != dev->wp)
mask |= POLLIN | POLLRDNORM; /* readable */
if (spacefree(dev))
mask |= POLLOUT | POLLWRNORM; /* writable */
up(8dev->sem);
return mask;
}

This code simply adds the two scullpipe wait queues to the poll table, then sets the
appropriate mask bits depending on whether data can be read or written.

The poll code as shown is missing end-of-file support, because scullpipe does not
support an end-of-file condition. For most real devices, the poll method should
return POLLHUP if no more data is (or will become) available. If the caller used the
select system call, the file is reported as readable. Regardless of whether poll or select
is used, the application knows that it can call read without waiting forever, and the
read method returns, 0 to signal end-of-file.

With real FIFOs, for example, the reader sees an end-of-file when all the writers close
the file, whereas in scullpipe the reader never sees end-of-file. The behavior is differ-
ent because a FIFO is intended to be a communication channel between two pro-
cesses, while scullpipe is a trash can where everyone can put data as long as there’s at
least one reader. Moreover, it makes no sense to reimplement what is already avail-
able in the kernel, so we chose to implement a different behavior in our example.

Implementing end-of-file in the same way as FIFOs do would mean checking dev->
nwriters, both in read and in poll, and reporting end-of-file (as just described) if no
process has the device opened for writing. Unfortunately, though, with this imple-
mentation, if a reader opened the scullpipe device before the writer, it would see end-
of-file without having a chance to wait for data. The best way to fix this problem
would be to implement blocking within open like real FIFOs do; this task is left as an
exercise for the reader.

pollandselect | 165

é ,ch06.8719 Page 166 Friday, January 21, 2005 10:44 AM

Interaction with read and write

The purpose of the poll and select calls is to determine in advance if an I/O operation
will block. In that respect, they complement read and write. More important, poll
and select are useful, because they let the application wait simultaneously for several
data streams, although we are not exploiting this feature in the scull examples.

A correct implementation of the three calls is essential to make applications work
correctly: although the following rules have more or less already been stated, we
summarize them here.

Reading data from the device

If there is data in the input buffer, the read call should return immediately, with
no noticeable delay, even if less data is available than the application requested,
and the driver is sure the remaining data will arrive soon. You can always return
less data than you’re asked for if this is convenient for any reason (we did it in
scull), provided you return at least one byte. In this case, poll should return
POLLIN|POLLRDNORM.

If there is no data in the input buffer, by default read must block until at least
one byte is there. If 0 NONBLOCK is set, on the other hand, read returns immedi-
ately with a return value of -EAGAIN (although some old versions of System V
return 0 in this case). In these cases, poll must report that the device is unread-
able until at least one byte arrives. As soon as there is some data in the buffer, we
fall back to the previous case.

If we are at end-of-file, read should return immediately with a return value of 0,
independent of 0_NONBLOCK. poll should report POLLHUP in this case.

Writing to the device

If there is space in the output buffer, write should return without delay. It can
accept less data than the call requested, but it must accept at least one byte. In
this case, poll reports that the device is writable by returning POLLOUT | POLLWRNORM.

If the output buffer is full, by default write blocks until some space is freed. If
0_NONBLOCK is set, write returns immediately with a return value of -EAGAIN (older
System V Unices returned 0). In these cases, poll should report that the file is not
writable. If, on the other hand, the device is not able to accept any more data,
write returns -ENOSPC (“No space left on device”), independently of the setting of
0_NONBLOCK.

Never make a write call wait for data transmission before returning, even if
0_NONBLOCK is clear. This is because many applications use select to find out
whether a write will block. If the device is reported as writable, the call must not
block. If the program using the device wants to ensure that the data it enqueues

166

| Chapter6: Advanced Char Driver Operations

%

é ,ch06.8719 Page 167 Friday, January 21, 2005 10:44 AM

*

in the output buffer is actually transmitted, the driver must provide an fsync
method. For instance, a removable device should have an fsync entry point.

Although this is a good set of general rules, one should also recognize that each
device is unique and that sometimes the rules must be bent slightly. For example,
record-oriented devices (such as tape drives) cannot execute partial writes.

Flushing pending output

We've seen how the write method by itself doesn’t account for all data output needs.
The fsync function, invoked by the system call of the same name, fills the gap. This
method’s prototype is

int (*fsync) (struct file *file, struct dentry *dentry, int datasync);

If some application ever needs to be assured that data has been sent to the device, the
fsync method must be implemented regardless of whether 0_NONBLOCK is set. A call to
fsync should return only when the device has been completely flushed (i.e., the out-
put buffer is empty), even if that takes some time. The datasync argument is used to
distinguish between the fsync and fdatasync system calls; as such, it is only of inter-
est to filesystem code and can be ignored by drivers.

The fsync method has no unusual features. The call isn’t time critical, so every device
driver can implement it to the author’s taste. Most of the time, char drivers just have
a NULL pointer in their fops. Block devices, on the other hand, always implement the
method with the general-purpose block_fsync, which, in turn, flushes all the blocks
of the device, waiting for I/O to complete.

The Underlying Data Structure

The actual implementation of the poll and select system calls is reasonably simple, for
those who are interested in how it works; epoll is a bit more complex but is built on the
same mechanism. Whenever a user application calls poll, select, or epoll_ctl," the kernel
invokes the poll method of all files referenced by the system call, passing the same
poll table to each of them. The poll table structure is just a wrapper around a func-
tion that builds the actual data structure. That structure, for poll and select, is a linked
list of memory pages containing poll table entry structures. Each poll table entry
holds the struct file and wait_queue_head t pointers passed to poll_wait, along with
an associated wait queue entry. The call to poll_wait sometimes also adds the process
to the given wait queue. The whole structure must be maintained by the kernel so that
the process can be removed from all of those queues before poll or select returns.

If none of the drivers being polled indicates that I/O can occur without blocking, the
poll call simply sleeps until one of the (perhaps many) wait queues it is on wakes it up.

* This is the function that sets up the internal data structure for future calls to epoll_wait.

pollandselect | 167

%

ﬁ

*@%

é ,ch06.8719 Page 168 Friday, January 21, 2005 10:44 AM

What’s interesting in the implementation of poll is that the driver’s poll method may
be called with a NULL pointer as a poll table argument. This situation can come
about for a couple of reasons. If the application calling poll has provided a timeout
value of 0 (indicating that no wait should be done), there is no reason to accumulate
wait queues, and the system simply does not do it. The poll table pointer is also set
to NULL immediately after any driver being polled indicates that I/O is possible. Since
the kernel knows at that point that no wait will occur, it does not build up a list of
wait queues.

When the poll call completes, the poll table structure is deallocated, and all wait
queue entries previously added to the poll table (if any) are removed from the table
and their wait queues.

We tried to show the data structures involved in polling in Figure 6-1; the figure is
a simplified representation of the real data structures, because it ignores the mul-
tipage nature of a poll table and disregards the file pointer that is part of each
poll table entry. The reader interested in the actual implementation is urged to
look in <linux/poll.h> and fs/select.c.

The struct poll_table_struct A process calls poll for one device only

int error;
I —>
struct poll table page *tables; —

The struct poll_table_entry A
wait _queue_t wait; ;E'_]
wait_queue _head t *wait address;

|_ - A generic device structure A process calls poll (or select) on two devices

' with its
wait_queue_head_t L
|_ T
A process with an active poll () P
(I

C

(—V_‘ The struct]
poll_table_struct ! l e
Poll table entries r LT

Figure 6-1. The data structures behind poll

~—

168 | Chapter6: Advanced Char Driver Operations

4~ ~4]e

é ,ch06.8719 Page 169 Friday, January 21, 2005 10:44 AM

At this point, it is possible to understand the motivation behind the new epoll sys-
tem call. In a typical case, a call to poll or select involves only a handful of file
descriptors, so the cost of setting up the data structure is small. There are applica-
tions out there, however, that work with thousands of file descriptors. At that point,
setting up and tearing down this data structure between every I/O operation
becomes prohibitively expensive. The epoll system call family allows this sort of
application to set up the internal kernel data structure exactly once and to use it
many times.

Asynchronous Notification

Although the combination of blocking and nonblocking operations and the select
method are sufficient for querying the device most of the time, some situations aren’t
efficiently managed by the techniques we’ve seen so far.

Let’s imagine a process that executes a long computational loop at low priority but
needs to process incoming data as soon as possible. If this process is responding to
new observations available from some sort of data acquisition peripheral, it would
like to know immediately when new data is available. This application could be writ-
ten to call poll regularly to check for data, but, for many situations, there is a better
way. By enabling asynchronous notification, this application can receive a signal
whenever data becomes available and need not concern itself with polling.

User programs have to execute two steps to enable asynchronous notification from
an input file. First, they specify a process as the “owner” of the file. When a process
invokes the F_SETOWN command using the fcntl system call, the process ID of the
owner process is saved in filp->f owner for later use. This step is necessary for the
kernel to know just whom to notify. In order to actually enable asynchronous notifi-
cation, the user programs must set the FASYNC flag in the device by means of the
F_SETFL fentl command.

After these two calls have been executed, the input file can request delivery of a SIGIO
signal whenever new data arrives. The signal is sent to the process (or process group,
if the value is negative) stored in filp->f_owner.

For example, the following lines of code in a user program enable asynchronous
notification to the current process for the stdin input file:

signal(SIGIO, &input_handler); /* dummy sample; sigaction() is better */

fent1(STDIN_FILENO, F_SETOWN, getpid());

oflags = fcnt1(STDIN_FILENO, F_GETFL);

fcnt1(STDIN_FILENO, F_SETFL, oflags | FASYNC);
The program named asynctest in the sources is a simple program that reads stdin as
shown. It can be used to test the asynchronous capabilities of scullpipe. The program
is similar to cat but doesn’t terminate on end-of-file; it responds only to input, not to
the absence of input.

Asynchronous Notification | 169

4~ ~4]e

é ,ch06.8719 Page 170 Friday, January 21, 2005 10:44 AM

Note, however, that not all the devices support asynchronous notification, and you
can choose not to offer it. Applications usually assume that the asynchronous capa-
bility is available only for sockets and ttys.

There is one remaining problem with input notification. When a process receives a
SIGIO, it doesn’t know which input file has new input to offer. If more than one file is
enabled to asynchronously notify the process of pending input, the application must
still resort to poll or select to find out what happened.

The Driver’s Point of View

A more relevant topic for us is how the device driver can implement asynchronous
signaling. The following list details the sequence of operations from the kernel’s
point of view:

1. When F_SETOWN is invoked, nothing happens, except that a value is assigned to
filp->f owner.

2. When F_SETFL is executed to turn on FASYNC, the driver’s fasync method is called.
This method is called whenever the value of FASYNC is changed in filp->f flags
to notify the driver of the change, so it can respond properly. The flag is cleared
by default when the file is opened. We’ll look at the standard implementation of
the driver method later in this section.

3. When data arrives, all the processes registered for asynchronous notification
must be sent a SIGIO signal.

While implementing the first step is trivial—there’s nothing to do on the driver’s
part—the other steps involve maintaining a dynamic data structure to keep track of
the different asynchronous readers; there might be several. This dynamic data struc-
ture, however, doesn’t depend on the particular device involved, and the kernel
offers a suitable general-purpose implementation so that you don’t have to rewrite
the same code in every driver.

The general implementation offered by Linux is based on one data structure and two
functions (which are called in the second and third steps described earlier). The
header that declares related material is <linux/fs.h> (nothing new here), and the data
structure is called struct fasync_struct. As with wait queues, we need to insert a
pointer to the structure in the device-specific data structure.

The two functions that the driver calls correspond to the following prototypes:

int fasync_helper(int fd, struct file *filp,
int mode, struct fasync_struct **fa);
void kill fasync(struct fasync_struct **fa, int sig, int band);
fasync_helper is invoked to add or remove entries from the list of interested processes
when the FASYNC flag changes for an open file. All of its arguments except the last are
provided to the fasync method and can be passed through directly. kill fasync is used

170 | Chapter6: Advanced Char Driver Operations

- ad

é ,ch06.8719 Page 171 Friday, January 21, 2005 10:44 AM

to signal the interested processes when data arrives. Its arguments are the signal to
send (usually SIGIO) and the band, which is almost always POLL_IN" (but that may be
used to send “urgent” or out-of-band data in the networking code).

Here’s how scullpipe implements the fasync method:

static int scull p_fasync(int fd, struct file *filp, int mode)
{

struct scull pipe *dev = filp->private_ data;

return fasync_helper(fd, filp, mode, &dev->async_queue);
}
It’s clear that all the work is performed by fasync_helper. It wouldn’t be possible,
however, to implement the functionality without a method in the driver, because the
helper function needs to access the correct pointer to struct fasync_struct * (here
&dev->async_queue), and only the driver can provide the information.

When data arrives, then, the following statement must be executed to signal asyn-
chronous readers. Since new data for the scullpipe reader is generated by a process
issuing a write, the statement appears in the write method of scullpipe.
if (dev->async_queue)
kill fasync(8dev->async_queue, SIGIO, POLL_IN);
Note that some devices also implement asynchronous notification to indicate when

the device can be written; in this case, of course, kill_fasync must be called with a
mode of POLL_OUT.

It might appear that we’re done, but there’s still one thing missing. We must invoke
our fasync method when the file is closed to remove the file from the list of active
asynchronous readers. Although this call is required only if filp->f flags has FASYNC
set, calling the function anyway doesn’t hurt and is the usual implementation. The
following lines, for example, are part of the release method for scullpipe:

/* remove this filp from the asynchronously notified filp's */

scull_p_fasync(-1, filp, 0);
The data structure underlying asynchronous notification is almost identical to the
structure struct wait_queue, because both situations involve waiting on an event.
The difference is that struct file is used in place of struct task_struct. The struct
file in the queue is then used to retrieve f_owner, in order to signal the process.

Seeking a Device

One of the last things we need to cover in this chapter is the llseek method, which is
useful (for some devices) and easy to implement.

* POLL_IN is a symbol used in the asynchronous notification code; it is equivalent to POLLIN|POLLRDNORM.

Seekinga Device | 171

4~ ~4]e

é ,ch06.8719 Page 172 Friday, January 21, 2005 10:44 AM

The llseek Implementation

The llseek method implements the Iseek and llseek system calls. We have already
stated that if the llseek method is missing from the device’s operations, the default
implementation in the kernel performs seeks by modifying filp->f pos, the current
reading/writing position within the file. Please note that for the Iseck system call to
work correctly, the read and write methods must cooperate by using and updating
the offset item they receive as an argument.

You may need to provide your own llseeck method if the seek operation corresponds
to a physical operation on the device. A simple example can be seen in the scull
driver:

loff t scull 1lseek(struct file *filp, loff t off, int whence)
{

struct scull dev *dev = filp->private_data;
loff_t newpos;

switch(whence) {
case 0: /* SEEK SET */
newpos = off;
break;

case 1: /* SEEK CUR */
newpos = filp->f pos + off;
break;

case 2: /* SEEK_END */
newpos = dev->size + off;
break;

default: /* can't happen */
return -EINVAL;

if (newpos < 0) return -EINVAL;
filp->f pos = newpos;
return newpos;
}
The only device-specific operation here is retrieving the file length from the device. In
scull the read and write methods cooperate as needed, as shown in Chapter 3.

Although the implementation just shown makes sense for scull, which handles a well-
defined data area, most devices offer a data flow rather than a data area (just think
about the serial ports or the keyboard), and seeking those devices does not make
sense. If this is the case for your device, you can’t just refrain from declaring the llseck
operation, because the default method allows seeking. Instead, you should inform the
kernel that your device does not support llseek by calling nonseekable_open in your
open method:

int nonseekable open(struct inode *inode; struct file *filp);

172 | Chapter6: Advanced Char Driver Operations

4~ ~4]e

é ,ch06.8719 Page 173 Friday, January 21, 2005 10:44 AM

This call marks the given filp as being nonseekable; the kernel never allows an Iseek
call on such a file to succeed. By marking the file in this way, you can also be assured
that no attempts will be made to seek the file by way of the pread and pwrite system
calls.

For completeness, you should also set the llseek method in your file operations
structure to the special helper function no_Ilseek, which is defined in <linux/fs.h>.

Access Control on a Device File

Offering access control is sometimes vital for the reliability of a device node. Not
only should unauthorized users not be permitted to use the device (a restriction is
enforced by the filesystem permission bits), but sometimes only one authorized user
should be allowed to open the device at a time.

The problem is similar to that of using ttys. In that case, the login process changes
the ownership of the device node whenever a user logs into the system, in order to
prevent other users from interfering with or sniffing the tty data flow. However, it’s
impractical to use a privileged program to change the ownership of a device every
time it is opened just to grant unique access to it.

None of the code shown up to now implements any access control beyond the file-
system permission bits. If the open system call forwards the request to the driver,
open succeeds. We now introduce a few techniques for implementing some addi-
tional checks.

Every device shown in this section has the same behavior as the bare scull device
(that is, it implements a persistent memory area) but differs from scull in access con-
trol, which is implemented in the open and release operations.

Single-Open Devices

The brute-force way to provide access control is to permit a device to be opened by
only one process at a time (single openness). This technique is best avoided because it
inhibits user ingenuity. A user might want to run different processes on the same
device, one reading status information while the other is writing data. In some cases,
users can get a lot done by running a few simple programs through a shell script, as
long as they can access the device concurrently. In other words, implementing a single-
open behavior amounts to creating policy, which may get in the way of what your
users want to do.

Allowing only a single process to open a device has undesirable properties, but it is
also the easiest access control to implement for a device driver, so it’s shown here.
The source code is extracted from a device called scullsingle.

Access Control on a DeviceFile | 173

4~ ~4]e

é ,ch06.8719 Page 174 Friday, January 21, 2005 10:44 AM

The scullsingle device maintains an atomic_t variable called scull s available; that
variable is initialized to a value of one, indicating that the device is indeed available.
The open call decrements and tests scull s available and refuses access if some-
body else already has the device open:

static atomic_t scull s available = ATOMIC INIT(1);

static int scull_s open(struct inode *inode, struct file *filp)

{
struct scull dev *dev = &scull s _device; /* device information */
if (! atomic_dec_and test (&scull s available)) {
atomic_inc(&scull s available);
return -EBUSY; /* already open */
}
/* then, everything else is copied from the bare scull device */
if ((filp->f_flags & O_ACCMODE) == O_WRONLY)
scull trim(dev);
filp->private data = dev;
return 0; /* success */
}

The release call, on the other hand, marks the device as no longer busy:

static int scull s release(struct inode *inode, struct file *filp)

{
atomic_inc(&scull s available); /* release the device */
return 0;

}
Normally, we recommend that you put the open flag scull s available within the
device structure (Scull Dev here) because, conceptually, it belongs to the device. The
scull driver, however, uses standalone variables to hold the flag so it can use the same
device structure and methods as the bare scull device and minimize code duplication.

Restricting Access to a Single User at a Time

The next step beyond a single-open device is to let a single user open a device in mul-
tiple processes but allow only one user to have the device open at a time. This solu-
tion makes it easy to test the device, since the user can read and write from several
processes at once, but assumes that the user takes some responsibility for maintain-
ing the integrity of the data during multiple accesses. This is accomplished by add-
ing checks in the open method; such checks are performed after the normal
permission checking and can only make access more restrictive than that specified by
the owner and group permission bits. This is the same access policy as that used for
ttys, but it doesn’t resort to an external privileged program.

Those access policies are a little trickier to implement than single-open policies. In
this case, two items are needed: an open count and the uid of the “owner” of the

174 | Chapter6: Advanced Char Driver Operations

4~ ~4]e

é ,ch06.8719 Page 175 Friday, January 21, 2005 10:44 AM

device. Once again, the best place for such items is within the device structure; our
example uses global variables instead, for the reason explained earlier for scullsingle.
The name of the device is sculluid.

The open call grants access on first open but remembers the owner of the device.
This means that a user can open the device multiple times, thus allowing cooperat-
ing processes to work concurrently on the device. At the same time, no other user
can open it, thus avoiding external interference. Since this version of the function is
almost identical to the preceding one, only the relevant part is reproduced here:
spin_lock(&scull u lock);
if (scull u count &&
(scull u owner != current->uid) & /* allow user */
(scull u owner != current->euid) &% /* allow whoever did su */
Icapable(CAP_DAC OVERRIDE)) { /* still allow root */
spin_unlock(&scull u lock);
return -EBUSY; /* -EPERM would confuse the user */

}

if (scull u count == 0)
scull u_owner = current->uid; /* grab it */

scull u_count++;

spin_unlock(&scull u lock);
Note that the sculluid code has two variables (scull u owner and scull u count)
that control access to the device and that could be accessed concurrently by multi-
ple processes. To make these variables safe, we control access to them with a spin-
lock (scull u_lock). Without that locking, two (or more) processes could test
scull u_count at the same time, and both could conclude that they were entitled to
take ownership of the device. A spinlock is indicated here, because the lock is held
for a very short time, and the driver does nothing that could sleep while holding the
lock.

We chose to return -EBUSY and not -EPERM, even though the code is performing a per-
mission check, in order to point a user who is denied access in the right direction.
The reaction to “Permission denied” is usually to check the mode and owner of the
/dev file, while “Device busy” correctly suggests that the user should look for a pro-
cess already using the device.

This code also checks to see if the process attempting the open has the ability to
override file access permissions; if so, the open is allowed even if the opening pro-
cess is not the owner of the device. The CAP_DAC_OVERRIDE capability fits the task well
in this case.

The release method looks like the following:

static int scull u release(struct inode *inode, struct file *filp)

{
spin_lock(&scull u lock);
scull u_count--; /* nothing else */

Access Control on a Device File | 175

4~ ~4]e

é ,ch06.8719 Page 176 Friday, January 21, 2005 10:44 AM

spin_unlock(&scull u lock);
return 0;
}
Once again, we must obtain the lock prior to modifying the count to ensure that we
do not race with another process.

Blocking open as an Alternative to EBUSY

When the device isn’t accessible, returning an error is usually the most sensible
approach, but there are situations in which the user would prefer to wait for the
device.

For example, if a data communication channel is used both to transmit reports on a
regular, scheduled basis (using crontab) and for casual usage according to people’s
needs, it’s much better for the scheduled operation to be slightly delayed rather than
fail just because the channel is currently busy.

This is one of the choices that the programmer must make when designing a device
driver, and the right answer depends on the particular problem being solved.

The alternative to EBUSY, as you may have guessed, is to implement blocking open.
The scullwuid device is a version of sculluid that waits for the device on open instead
of returning -EBUSY. It differs from sculluid only in the following part of the open
operation:

spin_lock(&scull w lock);
while (! scull w_available()) {
spin_unlock(&scull w lock);
if (filp->f flags & O NONBLOCK) return -EAGAIN;
if (wait_event_interruptible (scull_w wait, scull w_available()))
return -ERESTARTSYS; /* tell the fs layer to handle it */
spin_lock(&scull w lock);

if (scull w count == 0)

scull w owner = current->uid; /* grab it */
scull_w_count++;
spin_unlock(8scull w_lock);

The implementation is based once again on a wait queue. If the device is not cur-

rently available, the process attempting to open it is placed on the wait queue until
the owning process closes the device.

The release method, then, is in charge of awakening any pending process:

static int scull w release(struct inode *inode, struct file *filp)

{

int temp;

spin_lock(&scull w lock);
scull w_count--;

temp = scull w_count;
spin_unlock(&scull w lock);

176 | Chapter6: Advanced Char Driver Operations

- ad

é ,ch06.8719 Page 177 Friday, January 21, 2005 10:44 AM

if (temp == 0)
wake_up_interruptible sync(&scull w wait); /* awake other uid's */
return 0;

}

Here is an example of where calling wake_up_interruptible_sync makes sense. When
we do the wakeup, we are just about to return to user space, which is a natural
scheduling point for the system. Rather than potentially reschedule when we do the
wakeup, it is better to just call the “sync” version and finish our job.

The problem with a blocking-open implementation is that it is really unpleasant for the
interactive user, who has to keep guessing what is going wrong. The interactive user
usually invokes standard commands, such as c¢p and tar, and can’t just add 0_NONBLOCK
to the open call. Someone who’s making a backup using the tape drive in the next
room would prefer to get a plain “device or resource busy” message instead of being
left to guess why the hard drive is so silent today, while tar should be scanning it.

This kind of problem (a need for different, incompatible policies for the same device)
is often best solved by implementing one device node for each access policy. An
example of this practice can be found in the Linux tape driver, which provides multi-
ple device files for the same device. Different device files will, for example, cause the
drive to record with or without compression, or to automatically rewind the tape
when the device is closed.

Cloning the Device on open

Another technique to manage access control is to create different private copies of
the device, depending on the process opening it.

Clearly, this is possible only if the device is not bound to a hardware object; scull is
an example of such a “software” device. The internals of /dev/ity use a similar tech-
nique in order to give its process a different “view” of what the /dev entry point rep-
resents. When copies of the device are created by the software driver, we call them
virtual devices—just as virtual consoles use a single physical tty device.

Although this kind of access control is rarely needed, the implementation can be
enlightening in showing how easily kernel code can change the application’s perspec-
tive of the surrounding world (i.e., the computer).

The /dev/scullpriv device node implements virtual devices within the scull package.
The scullpriv implementation uses the device number of the process’s controlling tty
as a key to access the virtual device. Nonetheless, you can easily modify the sources to
use any integer value for the key; each choice leads to a different policy. For example,
using the uid leads to a different virtual device for each user, while using a pid key cre-
ates a new device for each process accessing it.

The decision to use the controlling terminal is meant to enable easy testing of the
device using 1/0 redirection: the device is shared by all commands run on the same

Access Control on a Device File | 177

4~ ~4]e

é ,ch06.8719 Page 178 Friday, January 21, 2005 10:44 AM

virtual terminal and is kept separate from the one seen by commands run on another
terminal.

The open method looks like the following code. It must look for the right virtual
device and possibly create one. The final part of the function is not shown because it
is copied from the bare scull, which we’ve already seen.

/* The clone-specific data structure includes a key field */

struct scull listitem {
struct scull_dev device;
dev_t key;
struct list head list;

};

/* The list of devices, and a lock to protect it */
static LIST HEAD(scull c list);
static spinlock t scull c lock = SPIN_LOCK UNLOCKED;

/* Look for a device or create one if missing */
static struct scull dev *scull c lookfor device(dev t key)

{
struct scull listitem *1ptr;

list_for_each_entry(lptr, &scull_c_list, list) {
if (lptr->key == key)
return &(1lptr->device);

}

/* not found */
lptr = kmalloc(sizeof(struct scull listitem), GFP_KERNEL);
if (11lptr)

return NULL;

/* initialize the device */

memset(lptr, 0, sizeof(struct scull listitem));
Iptr->key = key;

scull trim(&(lptr->device)); /* initialize it */
init MUTEX(8(lptr->device.sem));

/* place it in the list */
list add(&lptr->list, &scull c list);

return &(lptr->device);

}

static int scull c_open(struct inode *inode, struct file *filp)

{

struct scull _dev *dev;

178 | Chapter6: Advanced Char Driver Operations

%

é ,ch06.8719 Page 179 Friday, January 21, 2005 10:44 AM

dev_t key;

if (lcurrent->signal->tty) {
PDEBUG("Process \"%s\" has no ctl tty\n", current->comm);
return -EINVAL;

}
key = tty_devnum(current->signal->tty);

/* look for a scullc device in the list */
spin_lock(&scull c lock);

dev = scull c lookfor device(key);
spin_unlock(8scull c lock);

if (!dev)
return -ENOMEM;

/* then, everything else is copied from the bare scull device */

The release method does nothing special. It would normally release the device on last
close, but we chose not to maintain an open count in order to simplify the testing of
the driver. If the device were released on last close, you wouldn’t be able to read the
same data after writing to the device, unless a background process were to keep it
open. The sample driver takes the easier approach of keeping the data, so that at the
next open, you’'ll find it there. The devices are released when scull_cleanup is called.

This code uses the generic Linux linked list mechanism in preference to reimple-
menting the same capability from scratch. Linux lists are discussed in Chapter 11.

Here’s the release implementation for /dev/scullpriv, which closes the discussion of
device methods.

static int scull c_release(struct inode *inode, struct file *filp)

{
/*
* Nothing to do, because the device is persistent.
* A “real' cloned device should be freed on last close
*/
return 0;

}

Quick Reference

This chapter introduced the following symbols and header files:

#include <linux/ioctl.h>
Declares all the macros used to define ioctl commands. It is currently included
by <linux/fs.h>.

Quick Reference | 179

é ,ch06.8719 Page 180 Friday, January 21, 2005 10:44 AM

_I0C_NRBITS

_10C_TYPEBITS

_10C_SIZEBITS

_10C_DIRBITS
The number of bits available for the different bitfields of ioctl commands. There
are also four macros that specify the MASKs and four that specify the SHIFTs, but
they’re mainly for internal use. I0C_SIZEBITS is an important value to check,
because it changes across architectures.

_T0C_NONE

_I0C_READ

_I0C_WRITE
The possible values for the “direction” bitfield. “Read” and “write” are different
bits and can be ORed to specify read/write. The values are 0-based.

_I0C(dir,type,nr,size)

_T0(type,nr)

_IOR(type,nr,size)

_TOW(type,nr,size)

_TOWR(type,nr,size)
Macros used to create an ioctl command.

_T0C DIR(nr)

_10C_TYPE(nr)

_IOC_NR(nr)

_I0C SIZE(n1)
Macros used to decode a command. In particular, I0C_TYPE(nr) is an OR com-
bination of I0C READ and IOC WRITE.

#include <asm/uaccess.h>

int access ok(int type, const void *addr, unsigned long size);
Checks that a pointer to user space is actually usable. access_ok returns a non-
zero value if the access should be allowed.

VERIFY_READ

VERIFY_WRITE
The possible values for the type argument in access_ok. VERIFY_WRITE is a super-
set of VERIFY_READ.

#include <asm/uaccess.h>

int put_user(datum,ptr);

int get_user(local,ptr);

int _ put user(datum,ptr);

int _ get user(local,ptr);
Macros used to store or retrieve a datum to or from user space. The number of
bytes being transferred depends on sizeof(*ptr). The regular versions call

180 | Chapter6: Advanced Char Driver Operations

- ad

é ,ch06.8719 Page 181 Friday, January 21, 2005 10:44 AM

access_ok first, while the qualified versions (__put_user and __get_user) assume
that access_ok has already been called.

#include <linux/capability.h>
Defines the various CAP_ symbols describing the capabilities a user-space process
may have.

int capable(int capability);
Returns nonzero if the process has the given capability.

#include <linux/wait.h>

typedef struct { /* ... */ } wait_queue head t;

void init waitqueue head(wait queue head t *queue);

DECLARE_WAIT QUEUE HEAD(queue);
The defined type for Linux wait queues. A wait_queue_head_t must be explicitly
initialized with either init_waitqueue_head at runtime or DECLARE_WAIT_
QUEUE_HEAD at compile time.

void wait_event(wait queue head t q, int condition);
int wait_event interruptible(wait queue head t g, int condition);
int wait_event timeout(wait queue head t g, int condition, int time);
int wait event interruptible timeout(wait queue head t g, int condition,
int time);
Cause the process to sleep on the given queue until the given condition evalu-
ates to a true value.

void wake up(struct wait queue **q);

void wake up interruptible(struct wait queue **q);

void wake up nr(struct wait queue **qg, int nr);

void wake up interruptible nr(struct wait queue **q, int nr);

void wake up all(struct wait queue **q);

void wake up interruptible all(struct wait queue **q);

void wake up interruptible sync(struct wait queue **q);
Wake processes that are sleeping on the queue q. The _interruptible form wakes
only interruptible processes. Normally, only one exclusive waiter is awakened,
but that behavior can be changed with the _nr or _all forms. The _sync version
does not reschedule the CPU before returning.

#include <linux/sched.h>

set_current state(int state);
Sets the execution state of the current process. TASK_RUNNING means it is ready to
run, while the sleep states are TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE.

void schedule(void);
Selects a runnable process from the run queue. The chosen process can be
current or a different one.

Quick Reference | 181

é ,ch06.8719 Page 182 Friday, January 21, 2005 10:44 AM

typedef struct { /* ... */ } wait_queue_t;
init waitqueue entry(wait queue t *entry, struct task struct *task);
The wait_queue_t type is used to place a process onto a wait queue.
void prepare to wait(wait queue_head t *queue, wait queue t *wait, int state);
void prepare to wait exclusive(wait queue head t *queue, wait queue t *wait,
int state);
void finish wait(wait queue_head t *queue, wait queue t *wait);
Helper functions that can be used to code a manual sleep.
void sleep on(wiat queue head t *queue);
void interruptible sleep on(wiat queue head t *queue);
Obsolete and deprecated functions that unconditionally put the current process
to sleep.

#include <linux/poll.h>

void poll wait(struct file *filp, wait queue head t *q, poll table *p)
Places the current process into a wait queue without scheduling immediately. It
is designed to be used by the poll method of device drivers.

int fasync_helper(struct inode *inode, struct file *filp, int mode, struct
fasync_struct **fa);
A “helper” for implementing the fasync device method. The mode argument is the
same value that is passed to the method, while fa points to a device-specific
fasync_struct *.

void kill fasync(struct fasync_struct *fa, int sig, int band);
If the driver supports asynchronous notification, this function can be used to
send a signal to processes registered in fa.

int nonseekable open(struct inode *inode, struct file *filp);

loff t no 1lseek(struct file *file, loff t offset, int whence);
nonseekable_open should be called in the open method of any device that does
not support seeking. Such devices should also use no_llseek as their llseck
method.

182 | Chapter6: Advanced Char Driver Operations

- ad

