é ,ch05.7955 Page 106 Friday, January 21, 2005 10:41 AM

CHAPTER 5

Concurrency and Race
Conditions

Thus far, we have paid little attention to the problem of concurrency—i.e., what
happens when the system tries to do more than one thing at once. The management
of concurrency is, however, one of the core problems in operating systems program-
ming. Concurrency-related bugs are some of the easiest to create and some of the
hardest to find. Even expert Linux kernel programmers end up creating concurrency-
related bugs on occasion.

In early Linux kernels, there were relatively few sources of concurrency. Symmetric
multiprocessing (SMP) systems were not supported by the kernel, and the only cause
of concurrent execution was the servicing of hardware interrupts. That approach
offers simplicity, but it no longer works in a world that prizes performance on sys-
tems with more and more processors, and that insists that the system respond to
events quickly. In response to the demands of modern hardware and applications,
the Linux kernel has evolved to a point where many more things are going on simul-
taneously. This evolution has resulted in far greater performance and scalability. It
has also, however, significantly complicated the task of kernel programming. Device
driver programmers must now factor concurrency into their designs from the begin-
ning, and they must have a strong understanding of the facilities provided by the ker-
nel for concurrency management.

The purpose of this chapter is to begin the process of creating that understanding.
To that end, we introduce facilities that are immediately applied to the scull driver
from Chapter 3. Other facilities presented here are not put to use for some time yet.
But first, we take a look at what could go wrong with our simple scull driver and how
to avoid these potential problems.

106




é ,ch05.7955 Page 107 Friday, January 21, 2005 10:41 AM

Pitfalls in scull

Let us take a quick look at a fragment of the scull memory management code. Deep
down inside the write logic, scull must decide whether the memory it requires has
been allocated yet or not. One piece of the code that handles this task is:
if (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
if (!dptr->data[s_pos])
goto out;
}
Suppose for a moment that two processes (we’ll call them “A” and “B”) are indepen-
dently attempting to write to the same offset within the same scull device. Each pro-
cess reaches the if test in the first line of the fragment above at the same time. If the
pointer in question is NULL, each process will decide to allocate memory, and each
will assign the resulting pointer to dptr->data[s_pos]. Since both processes are
assigning to the same location, clearly only one of the assignments will prevail.

What will happen, of course, is that the process that completes the assignment sec-
ond will “win.” If process A assigns first, its assignment will be overwritten by pro-
cess B. At that point, scull will forget entirely about the memory that A allocated; it
only has a pointer to B’s memory. The memory allocated by A, thus, will be dropped
and never returned to the system.

This sequence of events is a demonstration of a race condition. Race conditions are a
result of uncontrolled access to shared data. When the wrong access pattern hap-
pens, something unexpected results. For the race condition discussed here, the result
is a memory leak. That is bad enough, but race conditions can often lead to system
crashes, corrupted data, or security problems as well. Programmers can be tempted
to disregard race conditions as extremely low probability events. But, in the comput-
ing world, one-in-a-million events can happen every few seconds, and the conse-
quences can be grave.

We will eliminate race conditions from scull shortly, but first we need to take a more
general view of concurrency.

Concurrency and Its Management

In a modern Linux system, there are numerous sources of concurrency and, there-
fore, possible race conditions. Multiple user-space processes are running, and they
can access your code in surprising combinations of ways. SMP systems can be exe-
cuting your code simultaneously on different processors. Kernel code is preemptible;
your driver’s code can lose the processor at any time, and the process that replaces it
could also be running in your driver. Device interrupts are asynchronous events that
can cause concurrent execution of your code. The kernel also provides various mech-
anisms for delayed code execution, such as workqueues, tasklets, and timers, which

Concurrency and lts Management | 107

4~ ~4]e




é ,ch05.7955 Page 108 Friday, January 21, 2005 10:41 AM

can cause your code to run at any time in ways unrelated to what the current pro-
cess is doing. In the modern, hot-pluggable world, your device could simply disap-
pear while you are in the middle of working with it.

Avoidance of race conditions can be an intimidating task. In a world where anything
can happen at any time, how does a driver programmer avoid the creation of abso-
lute chaos? As it turns out, most race conditions can be avoided through some
thought, the kernel’s concurrency control primitives, and the application of a few
basic principles. We’ll start with the principles first, then get into the specifics of
how to apply them.

Race conditions come about as a result of shared access to resources. When two
threads of execution™ have a reason to work with the same data structures (or hard-
ware resources), the potential for mixups always exists. So the first rule of thumb to
keep in mind as you design your driver is to avoid shared resources whenever possi-
ble. If there is no concurrent access, there can be no race conditions. So carefully-
written kernel code should have a minimum of sharing. The most obvious applica-
tion of this idea is to avoid the use of global variables. If you put a resource in a place
where more than one thread of execution can find it, there should be a strong reason
for doing so.

The fact of the matter is, however, that such sharing is often required. Hardware
resources are, by their nature, shared, and software resources also must often be
available to more than one thread. Bear in mind as well that global variables are far
from the only way to share data; any time your code passes a pointer to some other
part of the kernel, it is potentially creating a new sharing situation. Sharing is a fact

of life.

Here is the hard rule of resource sharing: any time that a hardware or software
resource is shared beyond a single thread of execution, and the possibility exists that
one thread could encounter an inconsistent view of that resource, you must explic-
itly manage access to that resource. In the scull example above, process B’s view of
the situation is inconsistent; unaware that process A has already allocated memory
for the (shared) device, it performs its own allocation and overwrites A’s work. In
this case, we must control access to the scull data structure. We need to arrange
things so that the code either sees memory that has been allocated or knows that no
memory has been or will be allocated by anybody else. The usual technique for
access management is called locking or mutual exclusion—making sure that only one
thread of execution can manipulate a shared resource at any time. Much of the rest
of this chapter will be devoted to locking.

* For the purposes of this chapter, a “thread” of execution is any context that is running code. Each process is
clearly a thread of execution, but so is an interrupt handler or other code running in response to an asyn-
chronous kernel event.

108 | Chapter5: Concurrency and Race Conditions

4~ ~4]e




é ,ch05.7955 Page 109 Friday, January 21, 2005 10:41 AM

First, however, we must briefly consider one other important rule. When kernel code
creates an object that will be shared with any other part of the kernel, that object
must continue to exist (and function properly) until it is known that no outside refer-
ences to it exist. The instant that scull makes its devices available, it must be pre-
pared to handle requests on those devices. And scull must continue to be able to
handle requests on its devices until it knows that no reference (such as open user-
space files) to those devices exists. Two requirements come out of this rule: no object
can be made available to the kernel until it is in a state where it can function prop-
erly, and references to such objects must be tracked. In most cases, you’ll find that
the kernel handles reference counting for you, but there are always exceptions.

Following the above rules requires planning and careful attention to detail. It is easy
to be surprised by concurrent access to resources you hadn’t realized were shared.
With some effort, however, most race conditions can be headed off before they bite
yOu—oOr your users.

Semaphores and Mutexes

So let us look at how we can add locking to scull. Our goal is to make our operations
on the scull data structure atomic, meaning that the entire operation happens at once
as far as other threads of execution are concerned. For our memory leak example, we
need to ensure that if one thread finds that a particular chunk of memory must be
allocated, it has the opportunity to perform that allocation before any other thread
can make that test. To this end, we must set up critical sections: code that can be exe-
cuted by only one thread at any given time.

Not all critical sections are the same, so the kernel provides different primitives for
different needs. In this case, every access to the scull data structure happens in pro-
cess context as a result of a direct user request; no accesses will be made from inter-
rupt handlers or other asynchronous contexts. There are no particular latency
(response time) requirements; application programmers understand that I/O
requests are not usually satisfied immediately. Furthermore, the scull is not holding
any other critical system resource while it is accessing its own data structures. What
all this means is that if the scull driver goes to sleep while waiting for its turn to
access the data structure, nobody is going to mind.

“Go to sleep” is a well-defined term in this context. When a Linux process reaches a
point where it cannot make any further processes, it goes to sleep (or “blocks™),
yielding the processor to somebody else until some future time when it can get work
done again. Processes often sleep when waiting for I/O to complete. As we get
deeper into the kernel, we will encounter a number of situations where we cannot
sleep. The write method in scull is not one of those situations, however. So we can
use a locking mechanism that might cause the process to sleep while waiting for
access to the critical section.

Semaphores and Mutexes | 109

4~ ~4]e




é ,ch05.7955 Page 110 Friday, January 21, 2005 10:41 AM

Just as importantly, we will be performing an operation (memory allocation with
kmalloc) that could sleep—so sleeps are a possibility in any case. If our critical sec-
tions are to work properly, we must use a locking primitive that works when a thread
that owns the lock sleeps. Not all locking mechanisms can be used where sleeping is
a possibility (we’ll see some that don’t later in this chapter). For our present needs,
however, the mechanism that fits best is a semaphore.

Semaphores are a well-understood concept in computer science. At its core, a sema-
phore is a single integer value combined with a pair of functions that are typically
called P and V. A process wishing to enter a critical section will call P on the relevant
semaphore; if the semaphore’s value is greater than zero, that value is decremented
by one and the process continues. If, instead, the semaphore’s value is 0 (or less), the
process must wait until somebody else releases the semaphore. Unlocking a sema-
phore is accomplished by calling V; this function increments the value of the sema-
phore and, if necessary, wakes up processes that are waiting.

When semaphores are used for mutual exclusion—keeping multiple processes from
running within a critical section simultaneously—their value will be initially set to 1.
Such a semaphore can be held only by a single process or thread at any given time. A
semaphore used in this mode is sometimes called a mutex, which is, of course, an
abbreviation for “mutual exclusion.” Almost all semaphores found in the Linux ker-
nel are used for mutual exclusion.

The Linux Semaphore Implementation

The Linux kernel provides an implementation of semaphores that conforms to the
above semantics, although the terminology is a little different. To use semaphores,
kernel code must include <asm/semaphore.h>. The relevant type is struct semaphore;
actual semaphores can be declared and initialized in a few ways. One is to create a
semaphore directly, then set it up with sema_init:

void sema_init(struct semaphore *sem, int val);
where val is the initial value to assign to a semaphore.

Usually, however, semaphores are used in a mutex mode. To make this common
case a little easier, the kernel has provided a set of helper functions and macros.
Thus, a mutex can be declared and initialized with one of the following:

DECLARE_MUTEX (name) ;

DECLARE_MUTEX_LOCKED(name);
Here, the result is a semaphore variable (called name) that is initialized to 1 (with
DECLARE_MUTEX) or 0 (with DECLARE_MUTEX LOCKED). In the latter case, the mutex starts
out in a locked state; it will have to be explicitly unlocked before any thread will be
allowed access.

110 | Chapter5: Concurrency and Race Conditions

4~ ~4]e




é ,ch05.7955 Page 111 Friday, January 21, 2005 10:41 AM

If the mutex must be initialized at runtime (which is the case if it is allocated dynami-
cally, for example), use one of the following;:

void init MUTEX(struct semaphore *sem);

void init MUTEX LOCKED(struct semaphore *sem);
In the Linux world, the P function is called down—or some variation of that name.
Here, “down” refers to the fact that the function decrements the value of the sema-
phore and, perhaps after putting the caller to sleep for a while to wait for the sema-
phore to become available, grants access to the protected resources. There are three
versions of down:

void down(struct semaphore *sem);

int down_interruptible(struct semaphore *sem);

int down_trylock(struct semaphore *sem);
down decrements the value of the semaphore and waits as long as need be. down_
interruptible does the same, but the operation is interruptible. The interruptible ver-
sion is almost always the one you will want; it allows a user-space process that is
waiting on a semaphore to be interrupted by the user. You do not, as a general rule,
want to use noninterruptible operations unless there truly is no alternative. Non-
interruptible operations are a good way to create unkillable processes (the dreaded
“D state” seen in ps), and annoy your users. Using down_interruptible requires some
extra care, however, if the operation is interrupted, the function returns a nonzero
value, and the caller does not hold the semaphore. Proper use of down_interruptible
requires always checking the return value and responding accordingly.

The final version (down_trylock) never sleeps; if the semaphore is not available at the
time of the call, down_trylock returns immediately with a nonzero return value.

Once a thread has successfully called one of the versions of down, it is said to be
“holding” the semaphore (or to have “taken out” or “acquired” the semaphore).
That thread is now entitled to access the critical section protected by the semaphore.
When the operations requiring mutual exclusion are complete, the semaphore must
be returned. The Linux equivalent to Vis up:

void up(struct semaphore *sem);
Once up has been called, the caller no longer holds the semaphore.

As you would expect, any thread that takes out a semaphore is required to release it
with one (and only one) call to up. Special care is often required in error paths; if an
error is encountered while a semaphore is held, that semaphore must be released
before returning the error status to the caller. Failure to free a semaphore is an easy
error to make; the result (processes hanging in seemingly unrelated places) can be
hard to reproduce and track down.

Semaphores and Mutexes | 111




é ,ch05.7955 Page 112 Friday, January 21, 2005 10:41 AM

Using Semaphores in scull

The semaphore mechanism gives scull a tool that can be used to avoid race condi-
tions while accessing the scull dev data structure. But it is up to us to use that tool
correctly. The keys to proper use of locking primitives are to specify exactly which
resources are to be protected and to make sure that every access to those resources
uses the proper locking. In our example driver, everything of interest is contained
within the scull_dev structure, so that is the logical scope for our locking regime.

Let’s look again at that structure:

struct scull dev {
struct scull gset *data; /* Pointer to first quantum set */

int quantum; /* the current quantum size */

int gset; /* the current array size */
unsigned long size; /* amount of data stored here */
unsigned int access_key; /* used by sculluid and scullpriv */
struct semaphore sem; /* mutual exclusion semaphore */
struct cdev cdev; /* Char device structure */

1

Toward the bottom of the structure is a member called sem which is, of course, our
semaphore. We have chosen to use a separate semaphore for each virtual scull
device. It would have been equally correct to use a single, global semaphore. The var-
ious scull devices share no resources in common, however, and there is no reason to
make one process wait while another process is working with a different scull device.
Using a separate semaphore for each device allows operations on different devices to
proceed in parallel and, therefore, improves performance.

Semaphores must be initialized before use. scull performs this initialization at load
time in this loop:
for (i = 0; 1 < scull nr devs; i++) {
scull devices[i].quantum = scull quantum;
scull devices[i].gset = scull gset;
init MUTEX(&scull devices[i].sem);
scull setup cdev(8scull devices[i], i);

}
Note that the semaphore must be initialized before the scull device is made available
to the rest of the system. Therefore, init_ MUTEX is called before scull_setup_cdev.
Performing these operations in the opposite order would create a race condition
where the semaphore could be accessed before it is ready.

Next, we must go through the code and make sure that no accesses to the scull dev
data structure are made without holding the semaphore. Thus, for example, scull_write
begins with this code:

if (down_interruptible(8dev->sem))
return -ERESTARTSYS;

112 | Chapter5: Concurrency and Race Conditions

4~ ~4]e




é ,ch05.7955 Page 113 Friday, January 21, 2005 10:41 AM

Note the check on the return value of down_interruptible; if it returns nonzero, the oper-
ation was interrupted. The usual thing to do in this situation is to return -ERESTARTSYS.
Upon seeing this return code, the higher layers of the kernel will either restart the call
from the beginning or return the error to the user. If you return -ERESTARTSYS, you must
first undo any user-visible changes that might have been made, so that the right thing
happens when the system call is retried. If you cannot undo things in this manner, you
should return -EINTR instead.

scull_write must release the semaphore whether or not it was able to carry out its
other tasks successfully. If all goes well, execution falls into the final few lines of the
function:
out:

up(&dev->sem);

return retval;
This code frees the semaphore and returns whatever status is called for. There are
several places in scull_write where things can go wrong; these include memory allo-
cation failures or a fault while trying to copy data from user space. In those cases, the
code performs a goto out, ensuring that the proper cleanup is done.

Reader/Writer Semaphores

Semaphores perform mutual exclusion for all callers, regardless of what each thread
may want to do. Many tasks break down into two distinct types of work, however:
tasks that only need to read the protected data structures and those that must make
changes. It is often possible to allow multiple concurrent readers, as long as nobody
is trying to make any changes. Doing so can optimize performance significantly;
read-only tasks can get their work done in parallel without having to wait for other
readers to exit the critical section.

The Linux kernel provides a special type of semaphore called a rwsem (or “reader/writer
semaphore”) for this situation. The use of rwsems in drivers is relatively rare, but they
are occasionally useful.

Code using rwsems must include <linux/rwsem.h>. The relevant data type for
reader/writer semaphores is struct rw_semaphore; an rwsem must be explicitly initial-
ized at runtime with:

void init_rwsem(struct rw_semaphore *sem);

A newly initialized rwsem is available for the next task (reader or writer) that comes
along. The interface for code needing read-only access is:

void down_read(struct rw_semaphore *sem);

int down_read trylock(struct rw_semaphore *sem);

void up_read(struct rw_semaphore *sem);
A call to down_read provides read-only access to the protected resources, possibly
concurrently with other readers. Note that down_read may put the calling process

Semaphores and Mutexes | 113

4~ ~4]e




é ,ch05.7955 Page 114 Friday, January 21, 2005 10:41 AM

into an uninterruptible sleep. down_read_trylock will not wait if read access is
unavailable; it returns nonzero if access was granted, 0 otherwise. Note that the con-
vention for down_read_trylock differs from that of most kernel functions, where suc-
cess is indicated by a return value of 0. A rwsem obtained with down_read must
eventually be freed with up_read.

The interface for writers is similar:

void down write(struct rw _semaphore *sem);

int down write trylock(struct rw_semaphore *sem);

void up write(struct rw_semaphore *sem);

void downgrade write(struct rw_semaphore *sem);
down_write, down_write_trylock, and up_write all behave just like their reader coun-
terparts, except, of course, that they provide write access. If you have a situation
where a writer lock is needed for a quick change, followed by a longer period of read-
only access, you can use downgrade_write to allow other readers in once you have
finished making changes.

An rwsem allows either one writer or an unlimited number of readers to hold the
semaphore. Writers get priority; as soon as a writer tries to enter the critical section,
no readers will be allowed in until all writers have completed their work. This imple-
mentation can lead to reader starvation—where readers are denied access for a long
time—if you have a large number of writers contending for the semaphore. For this
reason, rwsems are best used when write access is required only rarely, and writer
access is held for short periods of time.

Completions

A common pattern in kernel programming involves initiating some activity outside of
the current thread, then waiting for that activity to complete. This activity can be the
creation of a new kernel thread or user-space process, a request to an existing pro-
cess, or some sort of hardware-based action. It such cases, it can be tempting to use a
semaphore for synchronization of the two tasks, with code such as:

struct semaphore sem;

init MUTEX LOCKED(&sem);
start_external task(&sem);
down(&sem);

The external task can then call up(&sem) when its work is done.

As is turns out, semaphores are not the best tool to use in this situation. In normal use,
code attempting to lock a semaphore finds that semaphore available almost all the
time; if there is significant contention for the semaphore, performance suffers and the
locking scheme needs to be reviewed. So semaphores have been heavily optimized for
the “available” case. When used to communicate task completion in the way shown
above, however, the thread calling down will almost always have to wait; performance

114 | Chapter5: Concurrency and Race Conditions

4~ ~4]e




é ,ch05.7955 Page 115 Friday, January 21, 2005 10:41 AM

will suffer accordingly. Semaphores can also be subject to a (difficult) race condition
when used in this way if they are declared as automatic variables. In some cases, the
semaphore could vanish before the process calling up is finished with it.

These concerns inspired the addition of the “completion” interface in the 2.4.7 ker-
nel. Completions are a lightweight mechanism with one task: allowing one thread to
tell another that the job is done. To use completions, your code must include <linux/
completion.h>. A completion can be created with:

DECLARE_COMPLETION(my_completion);
Or, if the completion must be created and initialized dynamically:
struct completion my completion;

/¥ o0 */
init_completion(8my completion);

Waiting for the completion is a simple matter of calling:
void wait for completion(struct completion *c);

Note that this function performs an uninterruptible wait. If your code calls wait_for_
completion and nobody ever completes the task, the result will be an unkillable
process.”

On the other side, the actual completion event may be signalled by calling one of the
following;:

void complete(struct completion *c);

void complete all(struct completion *c);
The two functions behave differently if more than one thread is waiting for the same
completion event. complete wakes up only one of the waiting threads while
complete_all allows all of them to proceed. In most cases, there is only one waiter,
and the two functions will produce an identical result.

A completion is normally a one-shot device; it is used once then discarded. It is pos-
sible, however, to reuse completion structures if proper care is taken. If complete_all
is not used, a completion structure can be reused without any problems as long as
there is no ambiguity about what event is being signalled. If you use complete_all,
however, you must reinitialize the completion structure before reusing it. The macro:

INIT COMPLETION(struct completion c);
can be used to quickly perform this reinitialization.

As an example of how completions may be used, consider the complete module, which
is included in the example source. This module defines a device with simple seman-
tics: any process trying to read from the device will wait (using wait_for_completion)

* As of this writing, patches adding interruptible versions were in circulation but had not been merged into
the mainline.

Completions | 115

4~ ~4]e




é ,ch05.7955 Page 116 Friday, January 21, 2005 10:41 AM

until some other process writes to the device. The code which implements this behav-
lor is:
DECLARE_COMPLETION(comp);

ssize t complete read (struct file *filp, char _ user *buf, size t count, loff t
*pos)
{

printk (KERN_DEBUG "process %i (%s) going to sleep\n",
current->pid, current->comm);
wait for completion(&comp);
printk (KERN_DEBUG "awoken %i (%s)\n", current->pid, current->comm);
return 0; /* EOF */

}

ssize t complete write (struct file *filp, const char _ user *buf, size t count,
loff t *pos)

{
printk (KERN_DEBUG "process %i (%s) awakening the readers...\n",
current->pid, current->comm);
complete(&comp);
return count; /* succeed, to avoid retrial */
}

It is possible to have multiple processes “reading” from this device at the same time.
Each write to the device will cause exactly one read operation to complete, but there
is no way to know which one it will be.

A typical use of the completion mechanism is with kernel thread termination at mod-
ule exit time. In the prototypical case, some of the driver internal workings is per-
formed by a kernel thread in a while (1) loop. When the module is ready to be
cleaned up, the exit function tells the thread to exit and then waits for completion.
To this aim, the kernel includes a specific function to be used by the thread:

void complete and exit(struct completion *c, long retval);

Spinlocks

Semaphores are a useful tool for mutual exclusion, but they are not the only such
tool provided by the kernel. Instead, most locking is implemented with a mecha-
nism called a spinlock. Unlike semaphores, spinlocks may be used in code that can-
not sleep, such as interrupt handlers. When properly used, spinlocks offer higher
performance than semaphores in general. They do, however, bring a different set of
constraints on their use.

Spinlocks are simple in concept. A spinlock is a mutual exclusion device that can
have only two values: “locked” and “unlocked.” It is usually implemented as a single
bit in an integer value. Code wishing to take out a particular lock tests the relevant
bit. If the lock is available, the “locked” bit is set and the code continues into the crit-
ical section. If, instead, the lock has been taken by somebody else, the code goes into

116 | Chapter5: Concurrency and Race Conditions

4~ ~4]e




é ,ch05.7955 Page 117 Friday, January 21, 2005 10:41 AM

a tight loop where it repeatedly checks the lock until it becomes available. This loop
is the “spin” part of a spinlock.

Of course, the real implementation of a spinlock is a bit more complex than the
description above. The “test and set” operation must be done in an atomic manner
so that only one thread can obtain the lock, even if several are spinning at any given
time. Care must also be taken to avoid deadlocks on hyperthreaded processors—
chips that implement multiple, virtual CPUs sharing a single processor core and
cache. So the actual spinlock implementation is different for every architecture that
Linux supports. The core concept is the same on all systems, however, when there is
contention for a spinlock, the processors that are waiting execute a tight loop and
accomplish no useful work.

Spinlocks are, by their nature, intended for use on multiprocessor systems, although
a uniprocessor workstation running a preemptive kernel behaves like SMP, as far as
concurrency is concerned. If a nonpreemptive uniprocessor system ever went into a
spin on a lock, it would spin forever; no other thread would ever be able to obtain
the CPU to release the lock. For this reason, spinlock operations on uniprocessor sys-
tems without preemption enabled are optimized to do nothing, with the exception of
the ones that change the IRQ masking status. Because of preemption, even if you
never expect your code to run on an SMP system, you still need to implement proper
locking.

Introduction to the Spinlock API

The required include file for the spinlock primitives is <linux/spinlock.h>. An actual
lock has the type spinlock t. Like any other data structure, a spinlock must be ini-
tialized. This initialization may be done at compile time as follows:

spinlock t my lock = SPIN LOCK UNLOCKED;
or at runtime with:
void spin lock init(spinlock t *lock);
Before entering a critical section, your code must obtain the requisite lock with:
void spin_lock(spinlock t *lock);
Note that all spinlock waits are, by their nature, uninterruptible. Once you call
spin_lock, you will spin until the lock becomes available.
To release a lock that you have obtained, pass it to:
void spin_unlock(spinlock t *lock);
There are many other spinlock functions, and we will look at them all shortly. But

none of them depart from the core idea shown by the functions listed above. There is
very little that one can do with a lock, other than lock and release it. However, there

Spinlocks | 117

4~ ~4]e




é ,ch05.7955 Page 118 Friday, January 21, 2005 10:41 AM

are a few rules about how you must work with spinlocks. We will take a moment to
look at those before getting into the full spinlock interface.

Spinlocks and Atomic Context

Imagine for a moment that your driver acquires a spinlock and goes about its busi-
ness within its critical section. Somewhere in the middle, your driver loses the pro-
cessor. Perhaps it has called a function (copy_from_user, say) that puts the process to
sleep. Or, perhaps, kernel preemption kicks in, and a higher-priority process pushes
your code aside. Your code is now holding a lock that it will not release any time in
the foreseeable future. If some other thread tries to obtain the same lock, it will, in
the best case, wait (spinning in the processor) for a very long time. In the worst case,
the system could deadlock entirely.

Most readers would agree that this scenario is best avoided. Therefore, the core rule
that applies to spinlocks is that any code must, while holding a spinlock, be atomic.
It cannot sleep; in fact, it cannot relinquish the processor for any reason except to
service interrupts (and sometimes not even then).

The kernel preemption case is handled by the spinlock code itself. Any time kernel
code holds a spinlock, preemption is disabled on the relevant processor. Even uni-
processor systems must disable preemption in this way to avoid race conditions.
That is why proper locking is required even if you never expect your code to run on a
multiprocessor machine.

Avoiding sleep while holding a lock can be more difficult; many kernel functions can
sleep, and this behavior is not always well documented. Copying data to or from user
space is an obvious example: the required user-space page may need to be swapped
in from the disk before the copy can proceed, and that operation clearly requires a
sleep. Just about any operation that must allocate memory can sleep; kmalloc can
decide to give up the processor, and wait for more memory to become available
unless it is explicitly told not to. Sleeps can happen in surprising places; writing code
that will execute under a spinlock requires paying attention to every function that
you call.

Here’s another scenario: your driver is executing and has just taken out a lock that
controls access to its device. While the lock is held, the device issues an interrupt,
which causes your interrupt handler to run. The interrupt handler, before accessing
the device, must also obtain the lock. Taking out a spinlock in an interrupt handler is
a legitimate thing to doj; that is one of the reasons that spinlock operations do not
sleep. But what happens if the interrupt routine executes in the same processor as the
code that took out the lock originally? While the interrupt handler is spinning, the
noninterrupt code will not be able to run to release the lock. That processor will spin
forever.

118 | Chapter5: Concurrency and Race Conditions

4~ ~4]e




é ,ch05.7955 Page 119 Friday, January 21, 2005 10:41 AM

*

Avoiding this trap requires disabling interrupts (on the local CPU only) while the
spinlock is held. There are variants of the spinlock functions that will disable inter-
rupts for you (we’ll see them in the next section). However, a complete discussion of
interrupts must wait until Chapter 10.

The last important rule for spinlock usage is that spinlocks must always be held for
the minimum time possible. The longer you hold a lock, the longer another proces-
sor may have to spin waiting for you to release it, and the chance of it having to spin
at all is greater. Long lock hold times also keep the current processor from schedul-
ing, meaning that a higher priority process—which really should be able to get the
CPU—may have to wait. The kernel developers put a great deal of effort into reduc-
ing kernel latency (the time a process may have to wait to be scheduled) in the 2.5
development series. A poorly written driver can wipe out all that progress just by
holding a lock for too long. To avoid creating this sort of problem, make a point of
keeping your lock-hold times short.

The Spinlock Functions

We have already seen two functions, spin_lock and spin_unlock, that manipulate spin-
locks. There are several other functions, however, with similar names and purposes.
We will now present the full set. This discussion will take us into ground we will not
be able to cover properly for a few chapters yet; a complete understanding of the spin-
lock API requires an understanding of interrupt handling and related concepts.

There are actually four functions that can lock a spinlock:

void spin_lock(spinlock_t *1ock);

void spin_lock_irgsave(spinlock_t *1lock, unsigned long flags);

void spin lock irq(spinlock t *1ock);

void spin_lock_bh(spinlock_t *lock)
We have already seen how spin_lock works. spin_lock_irgsave disables interrupts (on
the local processor only) before taking the spinlock; the previous interrupt state is
stored in flags. If you are absolutely sure nothing else might have already disabled
interrupts on your processor (or, in other words, you are sure that you should enable
interrupts when you release your spinlock), you can use spin_lock_irq instead and
not have to keep track of the flags. Finally, spin_lock_bh disables software interrupts
before taking the lock, but leaves hardware interrupts enabled.

If you have a spinlock that can be taken by code that runs in (hardware or software)
interrupt context, you must use one of the forms of spin_lock that disables inter-
rupts. Doing otherwise can deadlock the system, sooner or later. If you do not access
your lock in a hardware interrupt handler, but you do via software interrupts (in
code that runs out of a tasklet, for example, a topic covered in Chapter 7), you can
use spin_lock_bh to safely avoid deadlocks while still allowing hardware interrupts to
be serviced.

Spinlocks | 119

%

ﬁ

*@%



é ,ch05.7955 Page 120 Friday, January 21, 2005 10:41 AM

There are also four ways to release a spinlock; the one you use must correspond to
the function you used to take the lock:

void spin_unlock(spinlock t *lock);

void spin_unlock irqrestore(spinlock t *lock, unsigned long flags);

void spin_unlock_irq(spinlock t *lock);

void spin_unlock bh(spinlock t *lock);
Each spin_unlock variant undoes the work performed by the corresponding spin_lock
function. The flags argument passed to spin_unlock_irqrestore must be the same
variable passed to spin_lock_irgsave. You must also call spin_lock_irqsave and spin_
unlock_irgrestore in the same function; otherwise, your code may break on some
architectures.

There is also a set of nonblocking spinlock operations:

int spin_trylock(spinlock t *lock);

int spin_trylock_bh(spinlock_t *lock);
These functions return nonzero on success (the lock was obtained), 0 otherwise.
There is no “try” version that disables interrupts.

Reader/Writer Spinlocks

The kernel provides a reader/writer form of spinlocks that is directly analogous to
the reader/writer semaphores we saw earlier in this chapter. These locks allow any
number of readers into a critical section simultaneously, but writers must have exclu-
sive access. Reader/writer locks have a type of rwlock_t, defined in <linux/spinlock.h>.
They can be declared and initialized in two ways:

rwlock_t my_rwlock = RW_LOCK_UNLOCKED; /* Static way */

rwlock t my rwlock;

rwlock_init(&my_rwlock); /* Dynamic way */
The list of functions available should look reasonably familiar by now. For readers,
the following functions are available:

void read lock(rwlock t *lock);

void read lock irgsave(rwlock t *lock, unsigned long flags);
void read lock_irq(rwlock_t *1ock);

void read lock bh(rwlock t *lock);

void read_unlock(rwlock_t *lock);

void read unlock irqrestore(rwlock t *lock, unsigned long flags);
void read unlock irq(rwlock t *lock);

void read_unlock_bh(rwlock_t *lock);

Interestingly, there is no read_trylock.
The functions for write access are similar:

void write lock(rwlock t *lock);
void write lock_irgsave(rwlock_t *lock, unsigned long flags);

120 | Chapter5: Concurrency and Race Conditions

4~ ~4]e




é ,ch05.7955 Page 121 Friday, January 21, 2005 10:41 AM

void write lock irq(rwlock t *lock);
void write lock bh(rwlock t *lock);
int write_trylock(rwlock_t *1lock);

void write unlock(rwlock t *lock);

void write unlock irgrestore(rwlock t *lock, unsigned long flags);

void write unlock irq(rwlock t *lock);

void write unlock bh(rwlock t *lock);
Reader/writer locks can starve readers just as rwsems can. This behavior is rarely a
problem; however, if there is enough lock contention to bring about starvation, per-
formance is poor anyway.

Locking Traps

Many years of experience with locks—experience that predates Linux—have shown
that locking can be very hard to get right. Managing concurrency is an inherently
tricky undertaking, and there are many ways of making mistakes. In this section, we
take a quick look at things that can go wrong.

Ambiguous Rules

As has already been said above, a proper locking scheme requires clear and explicit
rules. When you create a resource that can be accessed concurrently, you should
define which lock will control that access. Locking should really be laid out at the
beginning; it can be a hard thing to retrofit in afterward. Time taken at the outset
usually is paid back generously at debugging time.

As you write your code, you will doubtless encounter several functions that all
require access to structures protected by a specific lock. At this point, you must be
careful: if one function acquires a lock and then calls another function that also
attempts to acquire the lock, your code deadlocks. Neither semaphores nor spin-
locks allow a lock holder to acquire the lock a second time; should you attempt to do
so, things simply hang.

To make your locking work properly, you have to write some functions with the
assumption that their caller has already acquired the relevant lock(s). Usually, only
your internal, static functions can be written in this way; functions called from out-
side must handle locking explicitly. When you write internal functions that make
assumptions about locking, do yourself (and anybody else who works with your
code) a favor and document those assumptions explicitly. It can be very hard to
come back months later and figure out whether you need to hold a lock to call a par-
ticular function or not.

In the case of scull, the design decision taken was to require all functions invoked
directly from system calls to acquire the semaphore applying to the device structure

Locking Traps | 121

4~ ~4]e




é ,ch05.7955 Page 122 Friday, January 21, 2005 10:41 AM

*

that is accessed. All internal functions, which are only called from other scull func-
tions, can then assume that the semaphore has been properly acquired.

Lock Ordering Rules

In systems with a large number of locks (and the kernel is becoming such a system),
it is not unusual for code to need to hold more than one lock at once. If some sort of
computation must be performed using two different resources, each of which has its
own lock, there is often no alternative to acquiring both locks.

Taking multiple locks can be dangerous, however. If you have two locks, called
Lockl and Lock2, and code needs to acquire both at the same time, you have a
potential deadlock. Just imagine one thread locking Lockl while another simulta-
neously takes Lock2. Then each thread tries to get the one it doesn’t have. Both
threads will deadlock.

The solution to this problem is usually simple: when multiple locks must be
acquired, they should always be acquired in the same order. As long as this conven-
tion is followed, simple deadlocks like the one described above can be avoided.
However, following lock ordering rules can be easier said than done. It is very rare
that such rules are actually written down anywhere. Often the best you can do is to
see what other code does.

A couple of rules of thumb can help. If you must obtain a lock that is local to your
code (a device lock, say) along with a lock belonging to a more central part of the
kernel, take your lock first. If you have a combination of semaphores and spinlocks,
you must, of course, obtain the semaphore(s) first; calling down (which can sleep)
while holding a spinlock is a serious error. But most of all, try to avoid situations
where you need more than one lock.

Fine- Versus Coarse-Grained Locking

The first Linux kernel that supported multiprocessor systems was 2.0; it contained
exactly one spinlock. The big kernel lock turned the entire kernel into one large criti-
cal section; only one CPU could be executing kernel code at any given time. This
lock solved the concurrency problem well enough to allow the kernel developers to
address all of the other issues involved in supporting SMP. But it did not scale very
well. Even a two-processor system could spend a significant amount of time simply
waiting for the big kernel lock. The performance of a four-processor system was not
even close to that of four independent machines.

So, subsequent kernel releases have included finer-grained locking. In 2.2, one spin-
lock controlled access to the block I/O subsystem; another worked for networking,
and so on. A modern kernel can contain thousands of locks, each protecting one
small resource. This sort of fine-grained locking can be good for scalability; it allows

122 | Chapter5: Concurrency and Race Conditions

%

ﬁ

*@%



é ,ch05.7955 Page 123 Friday, January 21, 2005 10:41 AM

each processor to work on its specific task without contending for locks used by
other processors. Very few people miss the big kernel lock.”

Fine-grained locking comes at a cost, however. In a kernel with thousands of locks, it
can be very hard to know which locks you need—and in which order you should
acquire them—to perform a specific operation. Remember that locking bugs can be
very difficult to find; more locks provide more opportunities for truly nasty locking
bugs to creep into the kernel. Fine-grained locking can bring a level of complexity
that, over the long term, can have a large, adverse effect on the maintainability of the
kernel.

Locking in a device driver is usually relatively straightforward; you can have a single
lock that covers everything you do, or you can create one lock for every device you
manage. As a general rule, you should start with relatively coarse locking unless you
have a real reason to believe that contention could be a problem. Resist the urge to
optimize prematurely; the real performance constraints often show up in unex-
pected places.

If you do suspect that lock contention is hurting performance, you may find the lock-
meter tool useful. This patch (available at http://oss.sgi.com/projects/lockmeter/)
instruments the kernel to measure time spent waiting in locks. By looking at the
report, you are able to determine quickly whether lock contention is truly the prob-
lem or not.

Alternatives to Locking

The Linux kernel provides a number of powerful locking primitives that can be used
to keep the kernel from tripping over its own feet. But, as we have seen, the design
and implementation of a locking scheme is not without its pitfalls. Often there is no
alternative to semaphores and spinlocks; they may be the only way to get the job
done properly. There are situations, however, where atomic access can be set up
without the need for full locking. This section looks at other ways of doing things.

Lock-Free Algorithms

Sometimes, you can recast your algorithms to avoid the need for locking altogether.
A number of reader/writer situations—if there is only one writer—can often work in
this manner. If the writer takes care that the view of the data structure, as seen by the
reader, is always consistent, it may be possible to create a lock-free data structure.

A data structure that can often be useful for lockless producer/consumer tasks is the
circular buffer. This algorithm involves a producer placing data into one end of an

* This lock still exists in 2.6, though it covers very little of the kernel now. If you stumble across a lock_kernel
call, you have found the big kernel lock. Do not even think about using it in any new code, however.

Alternatives to Locking | 123

4~ ~4]e




é ,ch05.7955 Page 124 Friday, January 21, 2005 10:41 AM

array, while the consumer removes data from the other. When the end of the array is
reached, the producer wraps back around to the beginning. So a circular buffer
requires an array and two index values to track where the next new value goes and
which value should be removed from the buffer next.

When carefully implemented, a circular buffer requires no locking in the absence of
multiple producers or consumers. The producer is the only thread that is allowed to
modify the write index and the array location it points to. As long as the writer stores
a new value into the buffer before updating the write index, the reader will always
see a consistent view. The reader, in turn, is the only thread that can access the read
index and the value it points to. With a bit of care to ensure that the two pointers do
not overrun each other, the producer and the consumer can access the buffer concur-
rently with no race conditions.

Figure 5-1 shows circular buffer in several states of fill. This buffer has been defined
such that an empty condition is indicated by the read and write pointers being equal,
while a full condition happens whenever the write pointer is immediately behind the
read pointer (being careful to account for a wrap!). When carefully programmed, this
buffer can be used without locks.

Write—»
Read—> Read—»
Write —»
Read
Write—»
Circular buffer Full buffer Empty buffer

Figure 5-1. A circular buffer

Circular buffers show up reasonably often in device drivers. Networking adaptors, in
particular, often use circular buffers to exchange data (packets) with the processor.
Note that, as of 2.6.10, there is a generic circular buffer implementation available in
the kernel; see <linux/kfifo.h> for information on how to use it.

Atomic Variables

Sometimes, a shared resource is a simple integer value. Suppose your driver main-
tains a shared variable n_op that tells how many device operations are currently out-
standing. Normally, even a simple operation such as:

n_op++;

124 | Chapter5: Concurrency and Race Conditions

4~ ~4]e




é ,ch05.7955 Page 125 Friday, January 21, 2005 10:41 AM

would require locking. Some processors might perform that sort of increment in an
atomic manner, but you can’t count on it. But a full locking regime seems like over-
head for a simple integer value. For cases like this, the kernel provides an atomic
integer type called atomic_t, defined in <asm/atomic.h>.

An atomic_t holds an int value on all supported architectures. Because of the way
this type works on some processors, however, the full integer range may not be avail-
able; thus, you should not count on an atomic_t holding more than 24 bits. The fol-
lowing operations are defined for the type and are guaranteed to be atomic with
respect to all processors of an SMP computer. The operations are very fast, because
they compile to a single machine instruction whenever possible.

void atomic_set(atomic_t *v, int i);

atomic_t v = ATOMIC_INIT(0);
Set the atomic variable v to the integer value i. You can also initialize atomic val-
ues at compile time with the ATOMIC_INIT macro.

int atomic_read(atomic_t *v);
Return the current value of v.

void atomic_add(int i, atomic_t *v);
Add 1 to the atomic variable pointed to by v. The return value is void, because
there is an extra cost to returning the new value, and most of the time there’s no
need to know it.

void atomic_sub(int i, atomic_t *v);
Subtract i from *v.

void atomic_inc(atomic_t *v);

void atomic_dec(atomic_t *v);
Increment or decrement an atomic variable.

int atomic_inc_and test(atomic_t *v);

int atomic_dec_and test(atomic_t *v);

int atomic_sub and test(int i, atomic_t *v);
Perform the specified operation and test the result; if, after the operation, the
atomic value is 0, then the return value is true; otherwise, it is false. Note that
there is no atomic_add_and_test.

int atomic_add negative(int i, atomic_t *v);
Add the integer variable i to v. The return value is true if the result is negative,
false otherwise.

int atomic_add return(int i, atomic_t *v);

int atomic_sub return(int i, atomic_t *v);

int atomic_inc_return(atomic_t *v);

int atomic_dec_return(atomic_t *v);
Behave just like atomic_add and friends, with the exception that they return the
new value of the atomic variable to the caller.

Alternatives to Locking | 125

4~ ~4]e




é ,ch05.7955 Page 126 Friday, January 21, 2005 10:41 AM

As stated earlier, atomic_t data items must be accessed only through these functions.
If you pass an atomic item to a function that expects an integer argument, you’ll get
a compiler error.

You should also bear in mind that atomic_t values work only when the quantity in
question is truly atomic. Operations requiring multiple atomic_t variables still
require some other sort of locking. Consider the following code:

atomic_sub(amount, &first atomic);

atomic_add(amount, &second atomic);
There is a period of time where the amount has been subtracted from the first atomic
value but not yet added to the second. If that state of affairs could create trouble for
code that might run between the two operations, some form of locking must be
employed.

Bit Operations

The atomic_t type is good for performing integer arithmetic. It doesn’t work as well,
however, when you need to manipulate individual bits in an atomic manner. For that
purpose, instead, the kernel offers a set of functions that modify or test single bits
atomically. Because the whole operation happens in a single step, no interrupt (or
other processor) can interfere.

Atomic bit operations are very fast, since they perform the operation using a single
machine instruction without disabling interrupts whenever the underlying platform
can do that. The functions are architecture dependent and are declared in <asm/
bitops.h>. They are guaranteed to be atomic even on SMP computers and are useful
to keep coherence across processors.

Unfortunately, data typing in these functions is architecture dependent as well. The
nr argument (describing which bit to manipulate) is usually defined as int but is
unsigned long for a few architectures. The address to be modified is usually a pointer
to unsigned long, but a few architectures use void * instead.

The available bit operations are:
void set bit(nr, void *addr);
Sets bit number nr in the data item pointed to by addr.
void clear bit(nr, void *addr);
Clears the specified bit in the unsigned long datum that lives at addr. Its seman-
tics are otherwise the same as set_bit.
void change bit(nr, void *addr);
Toggles the bit.

126 | Chapter5: Concurrency and Race Conditions

4~ ~4]e




é ,ch05.7955 Page 127 Friday, January 21, 2005 10:41 AM

test_bit(nr, void *addr);
This function is the only bit operation that doesn’t need to be atomic; it simply
returns the current value of the bit.

int test and _set bit(nr, void *addr);

int test and _clear bit(nr, void *addr);

int test_and_change bit(nr, void *addr);
Behave atomically like those listed previously, except that they also return the
previous value of the bit.

When these functions are used to access and modify a shared flag, you don’t have to
do anything except call them; they perform their operations in an atomic manner.
Using bit operations to manage a lock variable that controls access to a shared vari-
able, on the other hand, is a little more complicated and deserves an example. Most
modern code does not use bit operations in this way, but code like the following still
exists in the kernel.

A code segment that needs to access a shared data item tries to atomically acquire a
lock using either test_and_set_bit or test_and_clear_bit. The usual implementation is
shown here; it assumes that the lock lives at bit nr of address addr. It also assumes
that the bit is 0 when the lock is free or nonzero when the lock is busy.

/* try to set lock */

while (test and set bit(nr, addr) != 0)
wait for a while();

/* do your work */

/* release lock, and check... */
if (test_and_clear_bit(nr, addr) == 0)
something went_wrong(); /* already released: error */
If you read through the kernel source, you find code that works like this example. It
is, however, far better to use spinlocks in new code; spinlocks are well debugged,
they handle issues like interrupts and kernel preemption, and others reading your
code do not have to work to understand what you are doing.

seqlocks

The 2.6 kernel contains a couple of new mechanisms that are intended to provide
fast, lockless access to a shared resource. Seqlocks work in situations where the
resource to be protected is small, simple, and frequently accessed, and where write
access is rare but must be fast. Essentially, they work by allowing readers free access
to the resource but requiring those readers to check for collisions with writers and,
when such a collision happens, retry their access. Seqlocks generally cannot be used
to protect data structures involving pointers, because the reader may be following a
pointer that is invalid while the writer is changing the data structure.

Alternatives to Locking | 127

4~ ~4]e




é ,ch05.7955 Page 128 Friday, January 21, 2005 10:41 AM

Seqlocks are defined in <linux/seqlock.h>. There are the two usual methods for ini-
tializing a seqlock (which has type seqlock_t):

seqlock t lock1 = SEQLOCK UNLOCKED;

seqlock_t lock2;

seqlock init(&lock2);
Read access works by obtaining an (unsigned) integer sequence value on entry into
the critical section. On exit, that sequence value is compared with the current value;
if there is a mismatch, the read access must be retried. As a result, reader code has a
form like the following:

unsigned int seg;

do
{seq = read_segbegin(&the lock);
/* Do what you need to do */
} while read_seqretry(8the_lock, seq);
This sort of lock is usually used to protect some sort of simple computation that
requires multiple, consistent values. If the test at the end of the computation shows
that a concurrent write occurred, the results can be simply discarded and recomputed.

If your seqlock might be accessed from an interrupt handler, you should use the
IRQ-safe versions instead:

unsigned int read segbegin irgsave(seqlock t *lock,

unsigned long flags);
int read seqretry irqrestore(seqlock t *lock, unsigned int seq,
unsigned long flags);

Writers must obtain an exclusive lock to enter the critical section protected by a
seqlock. To do so, call:

void write_seqlock(seqlock_t *lock);

The write lock is implemented with a spinlock, so all the usual constraints apply.
Make a call to:

void write sequnlock(seqlock t *lock);

to release the lock. Since spinlocks are used to control write access, all of the usual
variants are available:

void write_seqlock_irgsave(seqlock_t *lock, unsigned long flags);

void write seqlock irq(seqlock t *lock);

void write seqlock bh(seqlock t *lock);

void write sequnlock irqrestore(seqlock t *lock, unsigned long flags);
void write sequnlock irq(seqlock t *lock);
void write_sequnlock_bh(seqlock_t *lock);

There is also a write_tryseqlock that returns nonzero if it was able to obtain the lock.

128 | (Chapter5: Concurrency and Race Conditions

4~ ~4]e




é ,ch05.7955 Page 129 Friday, January 21, 2005 10:41 AM

Read-Copy-Update

Read-copy-update (RCU) is an advanced mutual exclusion scheme that can yield
high performance in the right conditions. Its use in drivers is rare but not unknown,
so it is worth a quick overview here. Those who are interested in the full details of
the RCU algorithm can find them in the white paper published by its creator (http:/
www.rdrop.com/users/paulmck/rclock/intro/rclock_intro.himl).

RCU places a number of constraints on the sort of data structure that it can protect.
It is optimized for situations where reads are common and writes are rare. The
resources being protected should be accessed via pointers, and all references to those
resources must be held only by atomic code. When the data structure needs to be
changed, the writing thread makes a copy, changes the copy, then aims the relevant
pointer at the new version—thus, the name of the algorithm. When the kernel is sure
that no references to the old version remain, it can be freed.

As an example of real-world use of RCU, consider the network routing tables. Every
outgoing packet requires a check of the routing tables to determine which interface
should be used. The check is fast, and, once the kernel has found the target inter-
face, it no longer needs the routing table entry. RCU allows route lookups to be per-
formed without locking, with significant performance benefits. The Starmode radio
IP driver in the kernel also uses RCU to keep track of its list of devices.

Code using RCU should include <linux/rcupdate.h>.

On the read side, code using an RCU-protected data structure should bracket its ref-
erences with calls to rcu_read _lock and rcu_read_unlock. As a result, RCU code
tends to look like:

struct my stuff *stuff;

rcu_read lock();

stuff = find_the_stuff(args...);

do_something with(stuff);

rcu_read_unlock();
The rcu_read_lock call is fast; it disables kernel preemption but does not wait for
anything. The code that executes while the read “lock” is held must be atomic. No
reference to the protected resource may be used after the call to rcu_read_unlock.

Code that needs to change the protected structure has to carry out a few steps. The
first part is easy; it allocates a new structure, copies data from the old one if need be,
then replaces the pointer that is seen by the read code. At this point, for the pur-
poses of the read side, the change is complete; any code entering the critical section
sees the new version of the data.

All that remains is to free the old version. The problem, of course, is that code running
on other processors may still have a reference to the older data, so it cannot be freed
immediately. Instead, the write code must wait until it knows that no such reference

Alternatives to Locking | 129

4~ ~4]e




é ,ch05.7955 Page 130 Friday, January 21, 2005 10:41 AM

can exist. Since all code holding references to this data structure must (by the rules) be
atomic, we know that once every processor on the system has been scheduled at least
once, all references must be gone. So that is what RCU does; it sets aside a callback
that waits until all processors have scheduled; that callback is then run to perform the
cleanup work.

Code that changes an RCU-protected data structure must get its cleanup callback by
allocating a struct rcu_head, although it doesn’t need to initialize that structure in
any way. Often, that structure is simply embedded within the larger resource that is
protected by RCU. After the change to that resource is complete, a call should be
made to:

void call rcu(struct rcu_head *head, void (*func)(void *arg), void *arg);

The given func is called when it is safe to free the resource; it is passed to the same
arg that was passed to call_rcu. Usually, the only thing func needs to do is to call

kfree.

The full RCU interface is more complex than we have seen here; it includes, for
example, utility functions for working with protected linked lists. See the relevant
header files for the full story.

Quick Reference

This chapter has introduced a substantial set of symbols for the management of con-
currency. The most important of these are summarized here:

#include <asm/semaphore.h>
The include file that defines semaphores and the operations on them.

DECLARE_MUTEX(name);

DECLARE_MUTEX_LOCKED(name);
Two macros for declaring and initializing a semaphore used in mutual exclusion
mode.

void init MUTEX(struct semaphore *sem);
void init MUTEX LOCKED(struct semaphore *sem);
These two functions can be used to initialize a semaphore at runtime.

void down(struct semaphore *sem);

int down_interruptible(struct semaphore *sem);

int down_trylock(struct semaphore *sem);

void up(struct semaphore *sem);
Lock and unlock a semaphore. down puts the calling process into an uninter-
ruptible sleep if need be; down_interruptible, instead, can be interrupted by a sig-
nal. down_trylock does not sleep; instead, it returns immediately if the
semaphore is unavailable. Code that locks a semaphore must eventually unlock
it with up.

130 | Chapter5: Concurrency and Race Conditions

- ad




é ,ch05.7955 Page 131 Friday, January 21, 2005 10:41 AM

struct rw_semaphore;
init rwsem(struct rw_semaphore *sem);
The reader/writer version of semaphores and the function that initializes it.

void down_read(struct rw_semaphore *sem);
int down_read trylock(struct rw_semaphore *sem);
void up_read(struct rw_semaphore *sem);
Functions for obtaining and releasing read access to a reader/writer semaphore.

void down write(struct rw_semaphore *sem)
int down write trylock(struct rw_semaphore *sem)
void up write(struct rw_semaphore *sem)
void downgrade write(struct rw_semaphore *sem)
Functions for managing write access to a reader/writer semaphore.

#include <linux/completion.h>

DECLARE_COMPLETION(name);

init completion(struct completion *c);

INIT COMPLETION(struct completion c);
The include file describing the Linux completion mechanism, and the normal
methods for initializing completions. INIT_COMPLETION should be used only to
reinitialize a completion that has been previously used.

void wait for completion(struct completion *c);
Wait for a completion event to be signalled.

void complete(struct completion *c);

void complete all(struct completion *c);
Signal a completion event. complete wakes, at most, one waiting thread, while
complete_all wakes all waiters.

void complete and exit(struct completion *c, long retval);
Signals a completion event by calling complete and calls exit for the current

thread.

#include <linux/spinlock.h>

spinlock_t lock = SPIN_LOCK_UNLOCKED;

spin_lock init(spinlock_t *1lock);
The include file defining the spinlock interface and the two ways of initializing
locks.

void spin_lock(spinlock t *lock);

void spin lock irgsave(spinlock t *lock, unsigned long flags);

void spin_lock irq(spinlock_t *lock);

void spin lock bh(spinlock t *lock);
The various ways of locking a spinlock and, possibly, disabling interrupts.

Quick Reference | 131




é ,ch05.7955 Page 132 Friday, January 21, 2005 10:41 AM
int spin_trylock(spinlock t *lock);
int spin_trylock bh(spinlock t *lock);
Nonspinning versions of the above functions; these return 0 in case of failure to
obtain the lock, nonzero otherwise.
void spin_unlock(spinlock t *lock);
void spin_unlock irqgrestore(spinlock t *lock, unsigned long flags);
void spin_unlock irq(spinlock t *lock);
void spin_unlock bh(spinlock t *1lock);
The corresponding ways of releasing a spinlock.
rwlock t lock = RW_LOCK_UNLOCKED

rwlock_init(xwlock t *lock);
The two ways of initializing reader/writer locks.

void read lock(rwlock t *lock);
void read lock irgsave(rwlock t *lock, unsigned long flags);
void read lock irqg(rwlock t *lock);
void read lock bh(rwlock t *lock);
Functions for obtaining read access to a reader/writer lock.

void read unlock(rwlock t *lock);
void read unlock irqrestore(rwlock t *lock, unsigned long flags);
void read unlock irq(rwlock t *lock);
void read unlock bh(rwlock t *lock);
Functions for releasing read access to a reader/writer spinlock.

void write lock(rwlock t *lock);
void write lock irgsave(rwlock t *lock, unsigned long flags);
void write lock irq(rwlock t *lock);
void write lock bh(rwlock t *lock);
Functions for obtaining write access to a reader/writer lock.

void write unlock(xwlock t *1ock);
void write unlock irqrestore(rwlock t *lock, unsigned long flags);
void write unlock irq(rwlock t *lock);
void write unlock bh(rwlock t *lock);
Functions for releasing write access to a reader/writer spinlock.

132 | Chapter5: Concurrency and Race Conditions

%

.

ﬁ

*@%



é ,ch05.7955 Page 133 Friday, January 21, 2005 10:41 AM

#include <asm/atomic.h>

atomic_t v = ATOMIC INIT(value);

void atomic_set(atomic_t *v, int i);

int atomic_read(atomic t *v);

void atomic_add(int i, atomic_t *v);

void atomic_sub(int i, atomic_t *v);

void atomic_inc(atomic_t *v);

void atomic_dec(atomic_t *v);

int atomic_inc_and test(atomic_t *v);

int atomic_dec_and test(atomic_t *v);

int atomic_sub_and test(int i, atomic_t *v);

int atomic_add negative(int i, atomic_t *v);

int atomic_add return(int i, atomic_t *v);

int atomic_sub return(int i, atomic_t *v);

int atomic_inc_return(atomic_t *v);

int atomic_dec_return(atomic_t *v);
Atomically access integer variables. The atomic_t variables must be accessed
only through these functions.

#include <asm/bitops.h>

void set bit(nr, void *addr);

void clear bit(nr, void *addr);

void change bit(nr, void *addr);

test bit(nr, void *addr);

int test and set bit(nr, void *addr);

int test and clear bit(nr, void *addr);

int test and change bit(nr, void *addr);
Atomically access bit values; they can be used for flags or lock variables. Using
these functions prevents any race condition related to concurrent access to the
bit.

#include <linux/seqglock.h>

seqlock t lock = SEQLOCK UNLOCKED;

seqlock init(seqlock t *lock);
The include file defining seqlocks and the two ways of initializing them.

unsigned int read segbegin(seqlock t *lock);

unsigned int read seqbegin irqgsave(seqlock t *lock, unsigned long flags);

int read seqretry(seqlock t *lock, unsigned int seq);

int read seqretry irqrestore(seqlock t *lock, unsigned int seq, unsigned long

flags);

Functions for obtaining read access to a seqlock-protected resources.

Quick Reference | 133




é ,ch05.7955 Page 134 Friday, January 21, 2005 10:41 AM

*

.

void write seqlock(seqlock t *lock);
void write seqlock irgsave(seqlock t *lock, unsigned long flags);
void write seqlock irq(seqlock t *lock);
void write seqlock bh(seqlock t *lock);
int write tryseqlock(seqlock t *lock);

Functions for obtaining write access to a seqlock-protected resource.
void write sequnlock(seglock t *1lock);
void write sequnlock irgrestore(seqlock t *lock, unsigned long flags);
void write sequnlock irg(seqlock t *lock);
void write sequnlock bh(seqlock t *lock);

Functions for releasing write access to a seqlock-protected resource.

#include <linux/rcupdate.h>
The include file required to use the read-copy-update (RCU) mechanism.

void rcu_read lock;
void rcu_read unlock;
Macros for obtaining atomic read access to a resource protected by RCU.

void call rcu(struct rcu head *head, void (*func)(void *arg), void *arg);
Arranges for a callback to run after all processors have been scheduled and an
RCU-protected resource can be safely freed.

134 | Chapter5: Concurrency and Race Conditions

%

ﬁ

*@%



