Textual Bloopers

Introduction
Uncommunicative text
Developer-centric text

Misleading text

151

152 Chapter 4 Textual Bloopers

Introduction

One irony of graphical user interfaces is that most aren’t very graphical. The
typical GUI contains a lot of text:

m The labels for commands in menus or on buttons are mostly text.
m Instructions are almost always text.

m Most user input consists of typing or selecting words and numbers.
m The labels on most controls and form fields are text.

m The names users assign to data files and other data objects are always tex-
tual.

m Error and warning messages are mainly textual, even if highlighted with a
color or a symbol.

Therefore, do not underestimate the importance of text in GUIs.

Software designers may try to minimize the use of text in software, but
many concepts simply cannot be expressed without text. The saying “A picture
is worth a thousand words” is an oversimplification: sometimes a few words
are worth more than any number of pictures.

For example, the designers of an interactive movie game wanted the
game’s navigation controls to be purely graphical, but found it necessary
to augment many symbols with text to clarify their meaning [Johnson,
1998].

Even in the most graphical of user interfaces, text usually plays a role.
Creative’s Surround Mixer application is more graphical than most (Figure 4.1).
Nonetheless, it makes use of text: the company logo, the application title, the
menus, and the tooltips for controls.

Textual usability problems are usually easy and cheap to correct. On the
other hand, they often have root causes in the development process or organi-
zation. Correcting those is, of course, not easy or cheap.

Because text plays an important role in user interfaces, there are many ways
to use it badly. These are textual bloopers. This chapter describes three catego-
ries of textual bloopers, explains why developers sometimes commit them, and
provides advice on how to avoid them.

Uncommunicative text

The first four textual bloopers are caused by poor writing. They often result
from assigning the writing of text in a GUI to people who are not skilled at
that.

Figure 4.1

Uncommunicative text 153

Blooper 22: Inconsistent terminology

One of the most common textual bloopers is to be haphazard and inconsist-
ent about which terms are used for what concepts. This makes software much
harder to learn.

Many development teams aren’t aware that inconsistent terminology is bad,
so they make no effort to ensure that their terminology is consistent. What
begins as a flaw in their development process turns into a flaw in their products:
many-to-one and one-to-many mappings between terms and concepts.

Eye-opener: List all the terms

It is useful to construct a table showing the terms used in an application and
its manuals for each concept user to see. The results are usually eye-opening
to development managers: “I had no idea! No wonder users are having trouble
learning to use our product!” Unfortunately, the typical reaction from program-
mers is “So what? We have more important problems to worry about than
whether we use the exact same term from one screen to the next.”

There are two different ways for terminology to be inconsistent.

Variation A: Different terms for the same concept

The more common variation is for software to use multiple terms for a single
concept. It might refer to “results” in one window and “output” in another,
even though the same thing is meant. If you were trying to confuse users, this
would be one of the best ways.

Eﬁum Miner S8 Busdigy 4 [BO00] - T |- i,
Erarsic Advarced
Master Control Sounce SREC
- ¥ ¢ Ay F @B FS ¥o
I Ay
Line-In 2
1 Dighal .
1 4 Al S
= $
- E £ = o =
§ . ﬁ - L] E 5 5 B|50%-3.048)
] i) ¥ £ 8] &) | ENET ¢

|__pefak ""__>J &I g,,"": g Lj CAREATIVE

Creative’'s Surround Mixer: highly graphical, but like most GUIs, includes text.

154

Chapter 4 Textual Bloopers

The following are samples of terms used interchangeably in real
applications:

m Properties, attributes, parameters, settings, resources
m Welcome window, Introduction window

m Version, revision

m FAQ (frequently asked questions), QNA (questions and answers)
m Find, search, query, inquiry

m Server, service

m Exit, quit

m Order size, order quantity

m Stock symbol, instrument ID, instrument, instr ID

m Task, step

m Specify goal, define goal

Inconsistent terminology can result from name changes during development
that were not corrected everywhere in the software and documentation. It can
also result from not creating and using a product lexicon during development.
Sometimes inconsistent terms are caused by a lack of communication or a
lack of agreement between programmers. Programmers also may not have
considered using consistent names important, given the time pressure they
were under. All of these causes come from Blooper 67: Anarchic development
(page 348).

A very common case of multiple terms for a concept is when error messages
use a form field’s internal name rather than its label on the form. Examples
come from CityCarShare.org, Evite.com, and UBS.com (Figure 4.2).

When different words are used to describe the same thing, users may not
realize that. Users think mainly about the goal they are trying to achieve and
the data they are creating and manipulating (Basic Principle 5, page 35). They
think hardly at all about the user interface, such as whether a “User ID” is the
same thing as an “Alias.” Inconsistent terminology causes users to either make
errors or spend mental effort figuring out how terms relate.

Variation B: The same term for different concepts

The opposite error is almost as common: using a single term for more than one
concept, also known as overloading a word. For example, here are the many
things “View” meant in one application:

m The data-display windows, e.g., Understanding View, Evaluation View,
Fields Ranking View

Figure 4.2

Uncommunicative text 155

* The username and password you entered do

not match.
Meenbar ID: | freaflirtizone
Paggwarg sasnans
(Logn)
A

oot e wrn Laer s

r v P e o R e L
FesLr BElP IR FEar LSAr UEma Bal AN UREnE B9 A58 tassilies Jnd maul b tpped 08
The names Py BALH DN Pt ey o Ecindiey apper aad lEver CavE |

C

User ID named differently in error messages. (A) CityCarShare.org. (B) Evite.com. (C) UBS.com.

m Different ways of filtering the Understanding View, e.g., Required View,
Specific View

m Actions that affect the data-flow diagram, e.g., Shrink View, Enlarge View
m The View menu, which controls display of other parts of the application

m Some items in the View menu treated “View” as a verb (e.g., “View —
Results”) while others treated it as a noun (e.g., “View — Enlarge”).

Using the same term for different things is usually not intentional; it happens
because developers don’t think about it. In normal conversation, people use
words that have multiple meanings, and listeners resolve ambiguity either from
the context in which the word is used or by asking the speaker to clarify.
Human-computer communication is less forgiving of ambiguity. It doesn’t pro-
vide much conversational context. Requests for clarification are one-way only:
software can ask its user to clarify an input, but the user cannot ask software to
clarify the meaning of a word. Therefore, overloaded words are less acceptable
in user interfaces than in communication between people.

Microsoft Word has overloaded terms. Word’s Insert menu includes both an
Insert Object... command and an Insert Picture... command (Figure 4.3). Insert
Object inserts many different types of objects, including Equations, Excel work-
sheets, Word documents, and Word pictures. Users might expect Insert Object
with Word Picture as the object type to do the same thing as Insert Picture.
Wrong! Inserting a Word Picture using Insert Object inserts a graphics frame
for creating line drawings. In contrast, Insert Picture displays a file chooser that
lets users import an externally created image file.

156 Chapter 4 Textual Bloopers

Figure 4.3

Object

Object type:

..P.-h(.rq.-:éﬁ tq;:anan

| Microsoft Excel Chart

| Microsoft Excel Worksheet

| Microsoft Graph Chart

Format Font Microsoft Organization Chart Display a< loon
Ereak * | Microsoft Word Document — ¥
Fage Numbers... Microsoft Word Picture
Date and Time... |
AutoText]
Fledd...
Symbod..
Camment
Fooinole... Result
Captian..,.
Cross-reference... Inperts a new Micresoft Weord Picture object into
Index ard Tables... your documen]
Picture E
HTML Object E
Text Box
Mgie..
File,
Eookmark... 5 Cancel -}
Hypeilink... XK
A B

Microsoft Word: overloaded term “Picture” means both image file and line-drawing area.

Often the same term means both an object and a part of the object. In an
e-mail program, the word “message” might sometimes mean the entire file
received from another user, including headers, message body, and attachments.
Other times, the word “message” might mean just the text content. The ambi-
guity would confuse new users, slowing their learning.

A commonly overloaded term is “select.” It often is used to mean both: (a)
clicking on an object to highlight it and (b) adding an object to a list. Consider,
for example, the Available Updates dialog box from Adobe Reader (Figure 4.4).
The list on the right is labeled “Selected.” The “Add” button adds an item from
the left list to the right list. The item it adds is the highlighted item in the left
list. What do we call that item? The selected item, of course.

When you assign extra meanings to “select,” you open the door to confus-
ing instructions such as:

To select the updates you want to install, first select them in the Available list
and click the “Add” button, which adds them to the Selected list.

The Print & Fax Preferences window in MacOS X also misuses “select”
(Figure 4.5). The first of two settings refers to the “selected” printer, mean-
ing the default printer. (We will save for later the blooper of exposing the GUI
toolkit term “dialog” to users.)

Uncommunicative text 157

Figure 4.4 Available Updares E'

A ndable: Snlacted

dudcbe dsrobat 6.0, % ared Reader 6.0, 4 Update hdobe Reader T0
Adobs forobat 6.0.5 snd Resdsr 6.0.5 Lpdate
Adobe Atmoaphere Player 1.0 for Sorobst and
Lokt Acobe Acrokat ared Adobe Reader 6.0.2

[emirgatn

‘Wahoo! Tooker lets oo seandh from arpmibene oo the web., Cusbomire and acoess your boobar From any P and enjoy one-chok socess bo
pour faworke skes.

S TLGE Total Dowriosd Sipe: 19U83HE

[upwe] [coen]

Adobe Reader: uses the reserved term “selected” incorrectly.

Figure 4.5 ‘ann Print & Fax

. 46 O
Shorm Al Diiplin Tound Wetworh SRafup Dk

'E'Fm'! Faning 1
{501 Up Prirmens .)

Selected prenter in Prnt Dislog: | HP Laterler 69

Delault paper size in Page Setup: | US Letter

5 &

| Share my pricters with ather compaters

1
]j Click the lock 1o prewent further changes.

MacOS X: “selected” misused for default.

Confusion between the terms “cursor,” “text insertion point,” and “screen
pointer” is another source of ambiguity. Before GUIs, there was no such thing
as a screen pointer, and the text insertion point and the cursor were the same
thing. Nowadays these are distinct concepts, but “cursor” sometimes means
the text insertion point and sometimes means the screen pointer.

158

Chapter 4 Textual Bloopers

Avoiding Blooper 22

1.

Software users are trying to find their way in an unfamiliar application.
They don’t know that the programmer of the main window calls searching
a database “making a query” while the programmer of most of the dialog
boxes calls it “specifying an inquiry.” They don’t know that an “employee”
and a “record” are the same thing or even that “record” is a noun in this
program.

Furthermore, computer users don’t want to know these things. They just
want to do their work. They are not interested in the computer and its software
per se. They don’t care how developers view the software. They are often so
focused on their work that if they are looking for a Search function but it’s
labeled “Query” here, they may miss it. Therefore, design the terminology in a
UI as if the users will interpret it extremely literally.

One name per concept

Caroline Jarrett, an authority on GUI and forms design, states this rule for ter-
minology in software and Web sites:

Same name, same thing; different name, different thing—Caroline Jarrett, www.
formsthatwork.com

Terms in software should map strictly 1:1 to concepts. Even terms that are
ambiguous in the real world should mean only one thing in the software.
Otherwise, the software’s usability will suffer.

Create a product lexicon

Early in development, you should specify the concepts the software will expose
to users. This is called developing a “conceptual model” (Basic Principle 2,
page 18). From that your team should develop a product “lexicon.”® It lists
a name and definition for each concept that will be exposed to users in the
product and its documentation. It should map terms 1:1 onto concepts. It
should not assign different terms to a single concept or a single term to dif-
ferent concepts.

Terms in the lexicon should come from the software’s supported tasks, not
its implementation. Terms should fit well into the users’ normal task vocabu-
lary, even if they are new. Typically, UI designers, developers, technical writers,
managers, and users all help create the lexicon.

Also called “nomenclature,” “vocabulary,” “dictionary,” “terminology standard.”

Figure 4.6

Uncommunicative text 159

Use industry-standard terms for common concepts

Certain concepts in GUIs have industry-standard names. These are the GUI
equivalents of “reserved words” in programming languages. If you rename
such concepts or assign new meanings to the standard names, you will con-
fuse users.

One reserved term is “select.” It means clicking on an object to highlight
it, marking it as the object for future actions. The word “select” should not be
used for any other purpose in a GUI, e.g., adding an item to a list or a collec-
tion. Adobe Reader could avoid the blooper by using the label “To Be Installed”
instead of misusing the word “select” (Figure 4.0).

Standard terms and their definitions are given in platform style guides, such
as the ones for Windows [Microsoft Corp., 2006], Macintosh [Apple Computer,
2006], and Java [Sun Microsystems, 2001]. You should use the industry-standard
GUI vocabulary for your target platform.

Enforce the lexicon

The product lexicon should be followed consistently throughout the software,
user manuals, and marketing literature. To ensure this, someone has to enforce
the lexicon. This can be either the project’s information architect or the head
technical writer. The enforcer reminds developers to either use the agreed-upon
term for a concept or petition to change the lexicon.

*

Available Updates

A el To Be Initalled

Sidobe Bcrobat 6,04 and Resder .04 Updats Adobe Besder T0
Bdobe Acrobat 6,0.5 and Resds 6.0.5 Updats
ijobe dtmogphene Plarrer 1.0 for dorobat and
Combared Adobe Adrobat ard Adcbe Reader 6.0.2

Periirgdon

‘Wabaoo! Tookur kets you seandh from arvpmbens 0m the weh. Cushomsne and socess pour koobar from sny PCand enjoy one-chik socecs bo
vour farvorke skes

Sre: THLEE Total Dowrioscd Sips: 15U50ME

(o]

Adobe Reader could avoid misusing “selected” by relabeling the right list “To Be Installed.”

160

Chapter 4 Textual Bloopers

“Enforcer” conjures up images of burly men carrying violin cases, but it
is better if the enforcer is friendly. Here’s one side of a phone conversation
between the lexicon enforcer and a programmer:

“Hey, Anoop, it’s Sergei. Got a minute? On your pages in our customer service
Web site, you use the term “bug report” for when customers submit a problem.
But our agreed-upon term is “action request,” remember? That’s what’s in the
lexicon. Where’s the lexicon? At the project’s Intranet Web site. Can you please
change “bugreport” to “action request” on all your pages? We’re running usability
tests on Thursday, so I'm hoping you can make these changes by Wednesday.
You will? Great, thanks!”

The lexicon should be treated as a living document: it changes as the product
evolves based on new design insights, changes in functionality, usability test
results, and market feedback.

Test the lexicon on users

As the lexicon is developed, it should be tested on people who are typical of
the software’s intended users to see if it matches the users’ vocabulary. If it
doesn’t, change it.

Terminology can be tested before the software is implemented or even
fully designed. Users can be shown terms and asked to explain what each
term means to them. They can also be asked to match terms with descrip-
tions by arranging 3 x 5 cards or by drawing lines between terms and
descriptions printed on paper. Finally, the terminology can be tested in early
mock-ups.

Use message files

Before release, a systematic review of all text can uncover both variations of
this blooper: different terms for the same concept and the same term for differ-
ent concepts. However, if the only way to review a program’s messages, labels,
and instructions is by operating the program or searching through its source
code, oversights are likely.

If the text displayed by a program is in a message file,? reviewing it and
checking it for conflicts and inconsistencies are much easier. That is only one
of the many advantages of using message files.

When different parts of the software need to refer to the same concept or
present the same message, they should simply reference the same text string
in the message file. That reduces the chances of committing Variation A of the
blooper: different terms for the same concept.

2. Often called a “resource file.”

Uncommunicative text 161

Message files also make it easier to avoid Variation B of the blooper: the
same term for different concepts. When the message file is reviewed, duplicate
text strings in it are one of two possibilities:

1. Redundant text strings that should be one: These are errors. Leaving them
separate makes it possible that someone will change one and neglect to
change the other, causing the software to manifest Variation A of the blooper.
All but one instance of the string should be deleted, and all references to
that string should point to that one instance.

2. Text strings for different situations that are the same: These are probably
errors, giving rise to Variation B of the blooper. They should be reworded
so that they differ (while staying true to the product lexicon). A few such
duplications might be legitimate homonyms or heteronyms, e.g., a program
might use both the verb “refuse,” meaning “decline,” and the noun “refuse,”
meaning “garbage.” In such a case, consider changing one of the terms, for
example, using the word “garbage” instead of the noun “refuse.” When trans-
lated to other languages, the words that are spelled alike would probably be
translated to different words anyway; for example, the verb “refuse” trans-
lated to German becomes “ablehnen,” whereas the noun “refuse” translates
to “Abfall.”

Using message files not only enhances textual consistency, it also provides
a single place for technical writers to check the text and greatly simplifies
translation to other languages.

Blooper 23: Unclear terminology

Even when software uses terms consistently, the terminology can still be unclear
and prone to misinterpretation. This can happen in three different ways.

Variation A: Ambiguous terms

Terms that mean only one thing in the software can still be ambiguous. A
term may have other meanings outside of the software. Users then have
to ignore what they know about the term and learn what it means in the
software.

“Enter” is often used in computer software to mean typing data into the
computer. However, “enter” also means “to go into.” In computer software and
especially in Web sites, that meaning of “enter” may make just as much sense
to users as the “type data” meaning. Designers are often so focused on their
own intended meaning of a term that they fail to realize that the term has other
equally appropriate meanings.

162

Chapter 4 Textual Bloopers

One application had a splash screen with a graphically labeled button that
on mouse-over displayed this tooltip text:

Click here to enter application.

Clicking the button displayed the application’s main window. However, nov-
ice users could misinterpret the tooltip as meaning that clicking the button
would display a text box in which they could enter the name of a software
application.

Textual ambiguity can be worse when verbs are used as nouns. A soft-
ware company developed an application development tool for C+ + pro-
grammers. The main menubar included the command Build Window. The
developers intended this to be a noun phrase: the window for building
a program—compiling and linking the various modules of the program
together—the Build Window. Unfortunately, users—hard-core C+ + pro-
grammers—persisted in reading the command as a verb phrase: Build
Window. This alternative interpretation—building a window—made at least
as much sense in the application development tool as the intended inter-
pretation did. It was a surprise to the designers that anyone would interpret
the command that way.

Problems caused by turning verbs into nouns are discussed more fully in
Blooper 26 (page 173).

Variation B: Terms for different concepts
overlap in meaning

Programmers sometimes use synonyms to name distinct concepts: for example,
“delete” for deleting text and “remove” for deleting files. When two different
functions have names that are usually synonyms, users have to learn which
synonym means which concept.

Apple’s MacOS uses the word “copy” for copying document content while
using “duplicate” for copying document files. Users have to learn this arbitrary
distinction.

The e-mail program Eudora (Figure 4.7) provides another example. The
“Special” menu (a vague, catch-all name) contains a Find cascading menu
with commands for searching stored e-mail messages. The Find menu has
the two commands Find and Search, which do different things. Find searches
the headers of messages in the currently open e-mail folder and highlights
the first matching message. Search searches one or more e-mail folders for
messages containing the specified text in any part and lists all matching
messages.

Here are two more real-world examples:

m An Intranet Web search facility provided two different functions for find-
ing information related to one’s previous search. One was Find Related

Figure 4.7

-

Uncommunicative text 163

EETl window welp
Filter Messages
Make Address Book Entry... XK
Make Filter...
T Y fin. xF
5-0'1 h 1 Fir A r
| Emter Splection M=
Senings...
Plug-in Settings * Search LEF
| Search Al
Change Password... Search Mallbox
Forget Password Search Malifolder
Empty Trash |
1
ESP Groups ;_Sur:h i

Eudora for Mac: users must learn arbitrary distinction between Find and Search.

Concepts; the other was Find Related Terms. Many users did not under-
stand the difference between these two functions, and some did not even
realize that they were different.

m A company developed a Web site for people seeking to buy a home in the
United States. Logged-in users could keep two types of notes for future use:
(1) preferences for a home, such as price range, size, number of rooms, and
(2) an annotated list of homes they were considering. These two types of
notes were separate, but had similar names: notes on home-buying goals
were in a “Personal Planner,” while notes on appealing homes were in
a “Personal Journal.” Not surprisingly, testing found that users confused
these two.

Variation C: Concepts too similar

In Variation B, it is hard to say whether the terms were too similar, the concepts
were too similar, or both. Sometimes, concepts in an application are so similar
that users confuse them no matter what they are called. This is not a nam-
ing problem, but rather a deeper, conceptual design problem. Therefore, it is
discussed fully in Chapter 6, Interaction Bloopers (Blooper 42, page 246). For
now, it is enough to say that overlapping concepts make an application hard
to learn.

Avoiding Blooper 23
This blooper results from perceiving a Ul from the designers’ perspective—

which is biased by knowing what everything in the Ul means—rather than
from the users’ perspective (Basic Principle 3, page 26). The terminology for a

164 Chapter 4 Textual Bloopers

Figure 4.8

D

software product should reflect the users’ perspective and should be designed
to be easy to learn and remember (Basic Principle 6, page 37). Three rules will
help you achieve that.

Avoid synonyms

Don’t use words that are normally synonyms to mean different things in the
software. Make sure the software’s terms for its various concepts are clearly
distinguishable from one another. Google’s GMail application, in contrast with
Eudora, uses only one term for searching: “search” (Figure 4.8).

Avoid ambiguous terms

Avoid using terms that are ambiguous in the real world or that have real-world
meanings that could be confused with their meanings in the software. Don’t
assume that just because you’ve defined a word to have a certain meaning,
users will interpret it the same way. Consider how users will interpret the words
you’ve chosen.

Test the terminology on users

Software developers sometime say: “That term isn’t confusing. It’s obvious
what it means!” Whether a term is confusing is not for software developers
to judge on their own; it must be determined by observing and asking users.
Therefore, it is not enough to produce a conceptual model and product lexicon.
The lexicon must be tested on representative users, as was explained under
how to avoid Blooper 22. If testing identifies terms that users confuse with one
another, change them.

L]

GM A Il ([Search mai) fnm

talkC) BETA
Sompoee M R Boma from ary RSS or Al food right have. Cusiomize Cipa
ey schive | _Ragon Spam | _Ovtt | viore scvams T3] Bk
Chats 5 Bedect AL Norw, Riead, Unreadt, Stamed, Unstarred
Sont Myl 0 tizzie [SFFN] TAKEN: Wine glasses (lower pac helghts] - Origr
Draty 157 nexie [SFFN] TAKEM: Assorted Hair Stuff [lower pac heights)
mm O texie [SFFN] TAKEN: Sparkiers and srops (lawss pac heights]
Trash O lizzhs [SFFH] TAKENM: Photoshop Elamants (lower pac helghts
Contacts 1 lizzie [SFFN] TAKEM: © {lower pac holghts) - Crignal 4

Gmail: one term for searching: “search.”

Uncommunicative text 165

If users misinterpret the terminology used in your software, it’s not their
problem; it’s your problem. They’ll use something else that doesn’t mislead or
confuse them. Therefore, try hard to find terminology that does not mislead or
confuse your users.

Blooper 24: Bad writing

Even if software uses terms consistently, doesn’t redefine common words, and
avoids programmer jargon, code terms, and ambiguous words, the writing can
still be inadequate for the commercial marketplace. It can vary in style from
one label to another. It can use bad spelling and grammar. It can be incorrectly
capitalized. In short, it can be bad writing.

Even if it doesn’t hurt usability, poor writing tells customers: “We are ama-
teurs! We don’t know how to produce polished products!” This blooper occurs
in two variations.

Variation A: Inconsistent writing style

Many applications exhibit stylistic inconsistencies in the text of built-in instruc-
tions, command names (in menus and on buttons), setting labels, window
titles, and so on. Common inconsistencies include:

m naming some commands after actions (verbs) but others after objects
(nouns), e.g., Show Details vs. Properties;

m using terse, “telegraphic” language for some setting labels or messages (e.g.,
“Enter send date”) but wordy language for others (e.g., “Please specify the
date on which the message is to be sent”);

m using title capitalization (e.g., Database Security) for some headings but
sentence capitalization (e.g., Database security) for others;

m ending some but not all sentences (e.g., in instructions or error messages)
with periods.

Here are some examples from software I've reviewed:

m In the Startup dialogue box, two choices were labeled “Create New Study”
and “Open An Existing Study.” Only the second includes the article “An.”

m Some fields for entering names were labeled “X Name” while others were
labeled “X”, e.g., “Table Name:” vs. “File:”. Both should include the word
“Name” or neither should.

m The Graph menu on the menubar contained the inconsistently capitalized
commands: “Add Meter ...,” “Print meter ...,” “Add Graph ...,” and “Print
graph” Probably different programmers implemented the Add and Print
functions, and no manager or technical writer checked their command
labels for consistency.

166 Chapter 4 Textual Bloopers

Figure 4.9

The “Search” page of the Web site of the Association for Computing Machinery
(ACM.org) has an example of inconsistent writing style. It offers five different
searches. Three say they search “now” (Figure 4.9). Users may wonder if this
means the other two search later. Three of the links mention ACM. Users could
assume this means the others are for other organizations. In fact, all five links
are for ACM, and all five search now. The options are labeled inconsistently.
This conveys a lack of standards and therefore amateurishness. It can also cause
confusion.

Variation B: Poor diction, grammar, spelling,
and punctuation

Many software applications suffer from poor spelling and writing. Although
user documentation is usually written by technical writers, text that appears
in the software is usually written by programmers. Programmers are trained to
write code, not prose text, and it shows in the quality of the writing in many
programs.

Two costly examples of poor writing in software are provided by two
medium-sized Silicon Valley software companies that shall remain nameless.
Each had a team developing a large desktop application for the Microsoft
Windows operating system. On both projects, the engineers were responsible

« Search the ACM Digital Library Now
Bibliographical references and
full-text articles from ACM.

« Search the Guide to Computing Literature Now
A substantive bibliographic database
from the key publishers in computing
including books, journals, proceedings
and theses.

+« Search the ACM Portal Now
Comprised of the ACM Guide and the
ACM Digital Library woven together
with a set of internal and external
reference and citation links, affording
access to current research and an
extensive archive.

+ Search the Calendar of Events
to find computer science and
industry events.

» Search ACH's LISTSERV Archives

ACM.org: inconsistent language. Some links include ACM, others don’t. Some end with
“now”; others don't.

Figure 4.10

v

Uncommunicative text 167

for all text displayed by the software, none of which was reviewed by technical
writers. In fact, one of the two teams didn’t even have any technical writers.

Although the software was intended for English-speaking customers, none
of the developers on either team were native speakers of English. Both of these
companies hired most of their programmers from overseas, mainly India,
Taiwan, and Russia. While the engineers on both teams were highly compe-
tent programmers, their attempts to write command names, setting labels,
error messages, and instructions bordered on amusing. However, potential
customers were not amused. Management at each of these two companies
probably thought that their hiring practices provided skilled programmers at a
discount, but they failed to anticipate that those practices would also either add
reviewing and rewriting costs or reduce the sales of the product.

Recent examples of poorly written text are provided by Adobe Reader and
UBS.com (Figure 4.10). Odds are that neither error message was written by a
trained writer of English or even by someone fluent in English.

Not all examples of poor writing are serious enough to impair understand-
ing. Sometimes they are just simple typographical errors that were not caught.
Typographical errors in software give users an impression of careless workman-
ship and amateurishness. An example of such an error occurs in the Web site
of B&H Photo/Video/Audio. The order form (Figure 4.11) has a typographical
error. Can you spot it? It should have been caught before release.

Update E|

i f) Adobe Reader has been updated, Pleasa restart before continue,
h -

A
- https:/ /onlineservices.ubs.com
The following errors have occurred:
PIN - must use i.\'.l'.tp'!imt characters such as
numeric
QK
B

Poor English. (A) Adobe Reader. (B) UBS.com.

168

Figure 4.11

¢

Figure 4.12

Chapter 4 Textual Bloopers

B&H Photo-Video-Pro Audio
Please provide your order infomation:

Purchasing Role: -]
Manth Day Year
Last oroer date Fel e

BandHPhotoVideo.com: typographical error in e-commerce Web site.

Avoiding Blooper 24

By following these rules, software developers can ensure that the text displayed
by their software conveys an impression of professionalism and care.

Use people who are skilled at writing

If software developers want their products and services to be professional, they
need to get professionals for all of the jobs involved with software development.
Programmers are professionals at writing code. They are amateurs at writing prose.
Programmers should not write the text that appears in software. Information archi-
tects and technical writers are the right professionals for that job.

All text in an application—instructions, warnings, error messages, setting
labels, button labels—should be reviewed by the information architect,
technical editors, and technical writers. Not only does this improve the quality
of text displayed by software, it helps ensure consistency with user manuals.

Until recently, the Web site FinancialEngines.com provided a example of
inconsistent writing style. The site’s customer registration form asked for three
pieces of information—name, postal zip code, and e-mail address—using three
different label forms: question, one-word label, and command (Figure 4.12A).
Recently, the page was revised to correct the inconsistency (Figure 4.12B) and
so now conveys a more professional impression.

Wihal i your fest nama? r— First Fsmg

‘What i your last namaT I— Lasi names

Fip code |— Zip code

Tal us your e-mall address I— E-mail address
A B

v

FinancialEngines.com. (A) Inconsistent form labels. (B) Consistent.

Figure 4.13

v

Uncommunicative text 169

Spell-check all text

All text appearing in an application should be spell-checked. The first pass
would be with spell-checking software. Ingenuity may be required to get
spell-check software to check message files. The text should also be checked
by human technical editors or writers.

Blooper 25: Too much text

An important type of bad writing is too much text. Needless text is bad
anytime [Strunk and White, 1999], but especially bad in software. When
navigating to what they want, software users don’t read; they scan for any-
thing that matches their goals [Krug, 2005]. Unfortunately, unnecessary text
is very common on the Web and fairly common in desktop applications.

Verbose instructions and labels

Verbose labels and instructions, when not ignored, “bury” important infor-
mation and slow users down. Imagine yourself trying to set the drawing
application SmartDraw’s Text Entry Properties (Figure 4.13).

Text Entry Properties ﬁ-'
Shapes change size when you add lesdl l._ﬁ_K.._
Thiz dalog controls the may shapes change size 3 pou 54 and reimoye - I

fesd The chioices pou make apply only 1o the shapes thal ans cumertly Carcal
sedached. Press heip lor mose nfoemation

Select & nizng nde il
Shape: change size n both deections, manianng thes shape. I
" Change honzontaly

Shapes change size horzontaly s you add test. and vertically anly i [
ol lype & catiage etumn (Enlen

™ Changs yertically
Shape: changs size veiically a2 pou add teut

Al bed Lo sheik

¥ Aloweihe sge of tet to shenk fo (8 poents,
bafore forcrg the shape bo meresss in tize

Text Margia

Sell the gap behveen the text and the inside edge of the shape 1o ITI_
screen poosds [1/1007) 1

Alicrw Teodt Ediing of & Shape with &
= Doublechck SngleCick ¢ Dionot allow te editing

Typing the Enter key.
¥ Insedls anew ine. Tabt o the necd shaps oo cell [CieEnter inserts a lnaj

= - —

SmartDraw: overly wordy instructions and labels.

170 Chapter 4 Textual Bloopers

Figure 4.14

SERVICE REQUESTE 311
st = Gt e 17

Service Requests/311

Tl ira Sarvoa Regquesans

The City of Columibia is plased 0 announcs T Sl soiity Of Bl W B80S 1D DU
=L g

H you live of work in Columbis of st et BRRG. 5° you hawe & Meguses, nesd an
U PeRalvig, O ol S 1 VOICE B CONDT, YOU Sl U8 M nirw SHrioE
Bl tyatem 1o noly s of B peolinm of concerm. The Mdussl ulsmaSeily
g mulsd 10 e sopropnate ity depariment for sclion

Bry CPedn] W rainaaming your own "Pangongl Profig” wthin e Servos Request
Sy, you Ci vinh P e i emTadainty chack on the it of any feguees
O Pl BT EYRRE T I pla) DR et BT BOOTRER, Wl well RO e
shpcTonicaly of Tul feduaa creaBon. and Mol BcnIceone I B Byelem

To gl s5aried, folow Tie links on Tie el menu DAY 0 CTR8W B DEW SO o D
v your ‘Banoal Protiy”

S aieg mmtag e ine” and el DL ine” inneadi

A
Service Requests/311

Your Personal Page

Wlonme & your vy own porson of e City of Columbia’s Online Servioe
Reguast websie. By snabiing an onling acoount, you will e abls i personalizy
FOUT SEITANCE 3N SIS Bme cndine. A parsonal account allows you D Eeoep Tk
of il of your onling City MequUESss and IMNSACEONS in one place. “rour Parsonal
Page” confains only P infrmation fat you want i see. Mo mons ssanching for
your informagon every Bme you visit S0 siop wasting in Bne, and get onling insiesad.

S how do you gat your ovwn “Personal Page 77 Essyl! Just click below i creats
i raew piadlie

Logis ks “Your Personal Page™. ¥ yow siready have o Tersoral
Page™ paams Lgr oo wit paT UIrETE B paanwerd

Lisar Marma.
Password

B

ColumbiaSC.net: wordy instructions. (A) “Service Requests” page. (B) Login/registration
page.

Similarly, unneeded “welcome” text and overly wordy instructions just get
in the way of users of the Columbia, South Carolina, city government Web site
(Figure 4.14).

Lengthy links

Textual links in Web sites, when too long and especially when in lists, are
hard to scan. If text is repeated between links, scannability and legibility suf-
fer even more. A long list of links from the California Department of Motor
Vehicles” Web site shows this (Figure 4.15). Headings are also too wordy, e.g.,
the first duplicates “Driver License Information” from the title just above it.

Figure 4.15

Uncommunicative text 171

Drivar Licansa Information

Driver License Information for Persons Over 18

» How to apply for a driver license if you are over 18

Provisional Driver Permit and License Information for Persons Under 18
MMMOLMMMLEEIBMUMLLE
E'd]!]mkﬁ!ﬂ ;!EI'I ona ﬂ[;& u‘ a '[!El[uﬁml‘l |m! [!'l

il - ng lEability for a min

= How to rengw your driver licanse in person

» How r driver lican il

« How 1o renew vour driver licenss by Internel

» How naw rin ion parm

How for i river lican r idantification

= How to change your name on your driver license andfor identification (1D} card
« How to notify DMV of my change of addrass

+ How ster for the organ r gift of lif m

DMV.ca.gov: wordy and repetitious text links are hard to scan.

Avoiding Blooper 25
Use no more text than is necessary to convey the intended information.

m Avoid long prose paragraphs.

m Use headings, short phrases, bullet points.

m Keep links short, one to three words; explain with nonlink text.

m Avoid repetition in link lists; cut repeated text or move it into headings.

Usability authors Jakob Nielsen [1999d], Steve Krug [2005], and Ginny Redish

[2007] all advocate brevity. Krug warns that long prose passages won’t be read

and suggests:

Get rid of half of the words on each page, then get rid of half of what’s left.

172 Chapter 4 Textual Bloopers

Example of cutting needless text

Jeep.com shows how text can be cut. In late 2002, they simplified their verbose
“Find A Dealer” page (Figure 4.16A): a long paragraph was cut to one sentence
and three bulleted steps (Figure 4.16B). They also realized they didn’t need
both zip code and state. More recently, they simplified it further, to six words,
including the labels (Figure 4.16C).

FIND A DEALER

Ity wagy te locats & deslar. 1. Click and hsld baw numbar 1 o seleact your
search by Zip Code, City, Dealership Mame or Stite. 2, Enter the Zip Code,
City, or Daalarahip Hame in tha bost marked numbar 2. 2, If saarching by Stata
only, select the state from the pull-down mena in bow number 3, **If choosing
ta gearch by city or srate, type the city in bow 2 then select & state in the bou
murked numbar 3 to make your gearch complete, 4, Once finighad, simply click
the "Search® button,

Soarch by: or Deatership name:
& | Zip Code] 8|

Select a State:
&) | thoose One 2] € = sEarcH Fom A DEALER

If you are a mambar of the U5, Military, an axacutive, or a diplomat living
outside the LS., click here for special options.

A

FIND A DEALER

Iv's masy to locate a Jesp Daaler mear you,

& Select le-:vm:ll. City ar Deslership Mame

(IF yow choare to saarch by oy, pou will be prompesd to prosice che st)
® Provide the Zip Code, City or Da alership Hame
& Click an Search

Search by:
n ElpC[ﬂE‘ =|

or Beatership name:
n | FIND A DEALER =
& T SEARCH FOR A DEALER]
B c

Jeep.com: wordy instructions cut to a few bullets, then to six words. (A) Early 2002. (B)
Late 2002. (C) 2007.

Developer-centric text 173

The goals: scannability, clarity, simplicity

Brevity is only a means to the true goal: ease of comprehension and navigation,
scannability, clarity, simplicity. Users don’t read; they scan. Brevity helps them
comprehend and navigate by scanning.

If you forget this and strive for brevity for its own sake, usability can suffer
[Raskin, 2000]. Needlessly limiting button or link labels to one word can seem
to users like cryptic codes they must learn.

Developer-centric text

The next three bloopers are cases of text using computer jargon and presenting
the developers’ point of view.

Blooper 26: Speaking Geek

Suppose you installed some new software on your computer, but when you tried
to use it, you discovered that you had somehow obtained a foreign-language ver-
sion of the software. You would discard it and try to get the version that was in
your own language.

For many people, the “foreign” language their software displays is technobab-
ble, also known as Geek. However, people whose software speaks Geek are worse
off than those whose software uses a foreign language because they can’t get
replacement versions in a language they understand. There are several different
ways to speak Geek.

BEETLE BAILEY Morr Walker
THIS COMPUTER ITS SORT OF LIKE

nta I'M LEARKMING
STUFF IS 80 . LEARNING A FOREIGH @ LT "%’ﬁ:‘,’: SOME NEW
FRUSTRATING ! Mz, | -Ef;,-t;ﬁ; sy . LANGUASE, TOO

3
(O 5

e e by ¥ e b S S 9 e

BEETLE BAILEY © KING FEATURES SYNDICATE

Variation A: Using programmer jargon

Most professions and hobbies have a jargon—a specialized vocabulary that
allows practitioners to communicate more precisely and efficiently. Using spe-
cialized jargon is good when you are communicating with others who share
your specialty: it enhances efficiency and clarity. However, using specialized
jargon when communicating with people who do not share the specialty is
bad: it hinders efficiency and clarity. When communicating with people out-
side of your area of expertise, you should switch off the jargon.

174 Chapter 4 Textual Bloopers

Figure 4.17

Many software developers don’t switch off their jargon when writing text
that appears in software intended for nonprogrammers. Why?

m A lack of awareness that they are using jargon

m An inability to switch the jargon off even though they are aware that they
use it

m A belief that if people want to use a computer, they need to understand
computer jargon

m A tight deadline and insufficient writer support, coupled with an assump-
tion that someone will check and improve the wording later

m A design that exposes technical concepts and implementation details that
are irrelevant to users’ tasks (Blooper 40, page 241)

For these reasons, a lot of software uses acronyms such as “USB” and “PDF,”
pure computerese such as “device drivers” and “flash memory,” words that
are rarely used in standard English such as “mode” and “buffer,” phrases that
turn verbs into nouns such as “do a compare” and “finish an edit,” and terms
that reflect the developer’s point of view rather than the user’s such as “user
defaults.” The effect on users is reduced understanding and slowed learning.
Many error messages displayed by the e-mail program Eudora are in Geek.
When a user logs in with an invalid password, Eudora pops up an error message
that describes the communications protocol between Eudora and the e-mail server
(Figure 4.17A). Blooper! Maybe Eudora’s developers and network administrators
care about the client-server communication, but most Eudora users do not.
Eudora displays an even more geeky error message when an attempt to fetch
new mail fails because the domain-name server did not respond (Figure 4.17B). This
message is cryptic even for Eudora users who know what a domain-name server is.

; ane Task Progress

I Error while checking mail for «Dominants:
1 | said: PASS

And then the POP server said: - ERR bad paxswort Helo)
I ST A \ 1
| - .
_E!:Last Check: 6:02 PM hext Checle Not scheduled

A

(806 Task Progress

Error while checking mail for « Dominanta:
Erirar i iwodvi i Dol &5 Wamne Syatenm, -3 1 70; The domain

I name does not exisl. [37:428) Help)

|8t |Last Chect: 6:00 PM Mext Check: Net scheduled
B

Eudora: technobabble error messages. (A) Invalid password. (B) Server didn’t respond.

éﬁ/‘

Developer-centric text 175

Examples of software speaking Geek

Example 1: AWeb applicationrequired users to login, but called it “authenticating.”
The login page was labeled “User Authentication” This was bad because: (1)
users don't know what “authentication” means and (2) the word “user” is
software developer jargon; users don't identify with that term. Worse, if a user
left the application unused for more than 15 minutes, the application’s back-end
logged the user off, but the application in the user's Web browser continued to
appear as the user left it. Users who had interrupted their use of the applica-
tion to do something else would often return to the application, find it as they
expected, try to do something, and suddenly get the following message:

Your session has expired.

Please reauthenticate.

[OK]

When users clicked “OK,” they were taken to the “User Authentication” page.
| suggested getting rid of the word “user," replacing “authenticate” with “login,”
and increasing the auto-logoff timeout (since they couldn’t eliminate it).

Example 2: A company developed an e-commerce application for networked
PCs. The application let users create and save templates for common transac-
tions. It gave users the option of saving templates either on their own PC or
on a network server. Templates stored on the server were accessible by other
users; templates stored on the PC were private. The problem was that the soft-
ware referred to the two storage options as “database” and “local” The devel-
opers used “database” for templates on the server because the they were kept
in a database. The developers used “local” for templates on the users’ own
PC because that's what “local” meant to them. | recommended that they use
“shared” or “public” instead of “database” and “private” instead of “local.”

Some software applications and Web sites include the GUI toolkit name of
a control in its label or instructions. Two examples come from the Web sites of
the State of California’s Employment Development Department and Northwest
Airlines (Figure 4.18).

One business application displayed the structure of the application’s data using
a Windows tree control. The problem was that the application called it a “tree
control.” Not surprisingly, testing showed that many users didn’t know what the
term meant. Some probably wondered what the software had to do with trees.

Also common are error messages that contain actual bits of software code.
Most computer users have seen error messages like one displayed by Intuit.com
(Figure 4.19), which mixes code excerpts with information users can under-
stand: “There was an error in processing your request.” The code excerpts
may have been useful to programmers while the site was being debugged, but
should have been removed before the site went live.

176 Chapter 4 Textual Bloopers

Figure 4.18

Figure 4.19

T oo 2 o o it PG, Pasaat Gt T Sy 1o workod ot Lnges by belecing B o Tty Bl
(Emptiryes egemm Halp |m:-w| :%1 Eamirgn Homw Prad
o . E
r:.. J
A
Traveler(s)
Please select the traveler(s) from the@rop-down BoXr enter the first and last name in he fields
provided,
Full First Name ML LastName

* Adult | Select raveler or -> b8 -of-
B
Exposing GUI toolkit control names. (A) EDD.ca.gov. (B) NWA.com.

Error

Thera was an error in processing your request.
Plaase refry the query.

Specific Ermor Message:
java.util. MissingResourceException: Can't find bundle for base name NavigationMenu, locale en

at com.kanisa ar:tmn Naulgatlnnﬁenuﬁctmn Iu-gF_\lerlt{HawgatlnnMEﬂuActmn java:72
i

Intuit.com: exposes code in error message.

Sometimes users are exposed to implementation terms because the operating
system displays error messages on its own instead of passing them to the application.
For a more complete discussion of such situations, see Blooper 28 (page 184).

Variation B: Turning common words into
programmer jargon

Programmers often redefine common words to have specific meanings in
software. If you redefine common words and expect the users to adapt to them,
you are putting an extra load onto the users and committing a blooper.

In common English “dialog” means a conversation, but in GUI-program-
mer jargon it is shorthand for “dialog box.” Programmers and Ul designers

Figure 4.20

Figure 4.21

Developer-centric text 177

forget that “dialog” has a common meaning and that, even in GUI jargon, it is
shorthand. When software exposes the jargon meaning to users, as in Adobe
InDesign (Figure 4.20), it’s a blooper.

To programmers, the word “string” means textual data in software. To
nonprogrammers, string is for tying things together. Examples of exposing the
software jargon meaning to users come from the desktop software Clock and
Track and the publisher Web site Elsevier.com (Figure 4.21). This use of “string”
should never appear in a Ul intended for nonprogrammers.

To most English speakers, an argument is a verbal dispute. To programmers,
arguments are input to software functions. Some of CorporateExpress.com’s
users might like to have an argument with the designers of the site’s Search
function (Figure 4.22).

Cannot handle the request because a modal dialog or
alert is active.

- € ox)

Adobe InDesign: exposes the GUI jargon term “dialog.”

Clock And Track

Client rate string is not of the form; #2288 where #

is a digit!

We are soiry, but we are unable 1o process your request
« Title must be a string between | and 20 characters

Please go back and conect the enor and try agam

Go Back

B

Error messages expose the software term “string.” (A) Clock and Track application. (B)
Elsevier.com.

178 Chapter 4 Textual Bloopers

Figure 4.22

Search
Product Code:

Go

CorporateExpress.com: exposes the software jargon word “arguments” in instructions.

é{\)/: She did what it said

Figure 4.23

A secretary called the Compuserve customer support hotline to say that even
though she did what the software told her to do, it didnt seem to work. Comp-
userve's software had displayed an error dialog box containing the message:
Type mismatch
The secretary said that when she saw this message, she typed “mismatch”
several times, but it didn't help. [From Interface Hall of Shame, http://nomepage.

mac.com/bradster/iarchitect/shame.htm]
@
Other often-redefined words are “resources,” “object,” and “client.” One
Web application had a login page titled “Thin-Client Login.” Some users were
probably surprised and pleased that it offered them the login page for thin
clients instead of the alternative.

Variation C: Turning verbs into nouns

Another sort of jargon is verbs used as nouns. This is not restricted to compu-
ter software; it happens in many fields. Stockbrokers use “buys” and “sells” as
nouns when discussing stock transactions, airplane pilots refer to “takeoffs,”
fishermen talk about the day’s “catch,” and book reviewers describe books they
like as “a worthwhile read.” Programmers say “the compile failed,” “start the
build,” “do a compare,” “finish an edit.” This is fine when communicating with
other programmers, but bad when communicating with nonprogrammers.

National Geographic Trip Planner includes a guidebook with information
about routes and destinations. The guidebook has a Find function so users can
search it. Users can set preferences for how Find works. The command to do
that is Find Preferences (Figure 4.23).

Find Preferences...

View Guidebook
View Cuidebocok Search Results

View Gudebook Key...

National GeographicTrip Planner: Find Preferences command is a noun phrase.

Developer-centric text 179

@/A Verbs to nouns

Here are two more examples of programmers turning verbs into nouns:

In a data-mining application, one function was called "“Explore Data.” The
programmers called using that function “doing an Explore.” An auxiliary
function predicted the time and resources needed to “do an Explore” It was
named “Explore Prediction,” a noun phrase. Another function compared two
data files. Using it was called “doing a Compare.” An auxiliary function defined
comparisons that could be run repeatedly on different data. It was called
"Compare Definition,” another noun phrase.

An application provided a “wizard” (multistep dialog box) for creating data
objects. The button that started this wizard was labeled “Create Object
Wizard.” The developers meant for this label to mean “start the (Create
Object) wizard.” However, users read it as a verb phrase, “create the (Object)
wizard,” and wondered what an “Object” wizard was and why they would

want to create one. S
N

Avoiding Blooper 26

Geek-speak must go.

When commercial automobiles were first introduced and for about 40 years
afterward, operating one required mastering a lot of automotive technical
jargon: choke, RPMs, oil pressure, generator voltage. Now most of that jargon
is gone. Computer applications began to appear in the late 1970s. Thirty years
have passed since then. In 10 more years, will your software’s users still have
to be aware of modems, startup files, device drivers, and RAM? Hopefully not.
Let’s not wait 10 more years; let’s achieve that goal now.

How can developers avoid Geek-speak? By following these steps.

Know thy users

Learn about your users. Visit them, observe them, interview them, invite them
to focus groups. Ask them to describe how they work, what they like and
don’t like about their current tools, and what their most serious problems are.
Get their ideas about how their work might be improved. Compile a list of all
the concepts the intended users mentioned in their descriptions of their work.
Pay special attention to the objects (nouns), actions on objects (verbs), and
attributes of objects (adjectives) they mention.

Develop a product lexicon based on users’
task vocabulary

Use the information gathered from intended users to develop a conceptual
model for the planned software product or service (Basic Principle 2, page 18).

180 Chapter 4 Textual Bloopers

Figure 4.24

&«

The conceptual model will include an object/action analysis and a lexicon. The
lexicon should list all the concepts (objects, actions, attributes) that the soft-
ware exposes to users and indicate the name for each concept. When possible,
use industry-standard names.

The goal is that the user interface and documentation use a vocabulary
that is consistent, both internally to the software and with industry standards
for the platform, and also grounded firmly in the tasks and vocabulary of the
intended users (Basic Principle 3, page 26). Toward that end, develop and
maintain a product lexicon and enforce adherence to it. All text displayed
in the software should be written or at least reviewed by a technical writer,
and any Geek-speak should be filtered out. Labels and messages should be
in message files, separated from the program code, to facilitate review and
translation.

Some have argued that the Ul and the terms it uses should match
the implementation, so the UI does not mislead users about how the applica-
tion works. Yes, but the right way to accomplish that is to design the UI first
and then match the implementation—structure, concepts, and terminology—to
that.

Leave GUI component names out of the GUI

Don’t include the GUI toolkit name of controls in the title or label for a control.
Figure 4.24A shows examples of geeky labels: they include GUI toolkit jargon.
Figure 4.24B shows good labels for the same settings. The good labels eliminate
needless words as well as Geek-speak.

Print Dialog
Name String: |:| Font Menu: | Helvetica |V|
A
Print
Name: I:l Font: | Helvetica |V|
B

(A) Labels that include GUI toolkit jargon. (B) Improved labels.

Figure 4.25

v

Developer-centric text 181

Blooper 27: Calling users “user” to their face

Related to speaking Geek is the blooper of callin g your users “user” in the UL

“Users” is what we—software and Web developers—call people who use
our systems. It’s a fine term to use when we are talking with other designers
and developers. It’s part of our professional jargon—our way of communicating
succinctly with peers. But “users” is not what people who use computer-based
products and services call themselves.

Only two industries call their customers “users.” One such industry is ours:
computer software. Do you know what the other industry is??

Software applications, Web sites, and electronic devices should be designed
from the point of view of the people who use them, not the point of view of the
system’s designers or developers. The people who use computer-based prod-
ucts and services see themselves as customers, site visitors, members, guests,
etc.—not “users.” Therefore, interactive systems that call users “user” to their
face are committing a blooper.

National Geographic Trip Planner allows users to annotate and high-
light locations on the program’s maps that interest them, but uses the terms
“User Label” and “User Highlight” (Figure 4.25A). Microsoft Windows XP’s
“Accessibility” control panel exhibits two points of view simultaneously: it calls
a user-specified style sheet “User style sheet” in one label and “my style sheet”
in another (Figure 4.25B).

FinancialEngines.com and LinkedIn.com not only call users “user”; they
make users call themselves that (Figure 4.20).

Show/Hide Scenic Drives
Meazure Distance
#void Roads

Map Preferences...

View Map Legend...

Microsoft calling users “user!” (A) National GeographicTrip Planner. (B) Windows XP.

(Continued)

3. Hint: heroin, cocaine, methamphetamines.

Figure 4.25
(Continued)

Figure 4.26

T T ——)

[Tlignore colors spedified on webpages!
["Iignore font gtyles specfied on webpages
[1gnare font siges specfied on webpages

User style sheet
|| Format documents using my style sheet

Style chast

L | [growse... |

Welcome to Advice! -@-

We can help you bulld a new Investment strategy
in just 15 minutes.

We can help you explore the benefits of diversifying
your retirement portfolio and help you figure out
how much to save each year.

Select what kind of user you are and click Next
You are: | An individual user i+

A

What you get when you join Nancy's network on Linkedin

Once you join, you will be able to access Nancy's network of 816,000+ professionals to:
+ hire employees or locate industry experts
+ find jobs, clients or business partners
+ reconnect with former colleagues

Linkedin accelerates your career and advances your business by allowing you to receive and
seek out opportunities through the pecple you know and the peopls your connactions know.,

Are you already a Linkedlin user, maybe with a different email address?

(¥es.lam alreadya user | [Mo, 1am not a user |

Relect this invitation

B

Making users call themselves “user.” (A) FinancialEngines.com. (B) LinkedIn.com.

Developer-centric text 183

Figure 4_27 Returning User

PAMFOnline ID

Password

Signin)

Forgot your password or ID?

First Time User
Access Code Get Access Code

L]

PAMForg: buttons on “Accept/Reject Link” page force users to call themselves “user””

A potentially ambiguous case occurs at PAMF.org (Figure 4.27), a medical
clinic. In that context, “user” could be interpreted to mean “drug user.”

Calling users “user” to their face is an easy mistake to make: “user” is
developers’ jargon for people who use the Web site. If a development team
doesn’t explicitly think about this and choose a more appropriate word, “user”
is the word that will be used. That’s why this blooper is so common.

Avoiding Blooper 27

As easy as it is to make this blooper, it’s just as easy to avoid it. Using a non-
developer-centric term like “visitor,” “customer,” or “member” instead of “user”
costs next to nothing. It just takes awareness and a few moments’ thought.
Three Web sites that show evidence of such awareness and thought are Yale
AlumniConnections.org, Fedex.com, and Apple Mac.com (Figure 4.28).

Figure 4.28

.Mac login

Mac Members
Enter youwr Mac i imembernameiimat. comi and paseord
0o s i B
FE i ' L)
¥ x KII’"IkCiS. t Member name
julinjokrdonlmas con
e Products [
Welcome Canter
Hirw Cusiomae? Foegol your passwosd?
Welcoma jo FedEx Mnkos!
Clheln baicay I
- Vigw Frequantly e

Asked Quesbons
= ol of wale ey wll your
g iGNy Of COmMmanis

- Lgarn gt our Commasncial
Arcourd Card

- G ug for exchmive ofsrs
B de count by 6l

Not calling users “user” (A)Yale AlumniConnections.org. (B) Fedex.com. (C) Apple Mac.com.

184 Chapter 4 Textual Bloopers

Figure 4.29

v

Blooper 28: Vague error messages

A blooper related to speaking Geek is displaying error messages that announce a
vague, generic error condition instead of giving users helpful, task-oriented informa-
tion about what happened and what to do about it. This happens for three reasons.

Variation A: Message displayed by low-level code

Sometimes low-level service functions detect errors and display error messages
themselves. Task-level functions the user explicitly executes—e.g., Save—can
express errors in task-related terms, but low-level service functions—e.g., file.
Open()—cannot.

In Apple’s Safari Web browser, suppose a user tries to visit a florist’s Web
page. If the page has buggy JavaScript code that tries to assign a null value to
a variable, Safari’s JavaScript interpreter displays an error: “TypeError—Null
value” (Figure 4.29).

The user’s reaction would probably be something like: “Huh? I just want to
send some flowers to my mom. What’s this about JavaScript, type errors, and
null values?” If the user is more computer savvy, she might say: “You stupid
browser—I didn’t write the faulty JavaScript code. Show the error to the site’s
developers, not to its users!”

Error message displayed by low-level code

A top-notch programmer had emigrated to the United States. His poor English
was not a problem because he wrote low-level device-driver code that had no
Ul. He was asked to write a driver for a new display. No one checked his work
because the driver was supposedly invisible to users. And it was ... almost. It had
a bug that occasionally caused it to hit a memory limit and display this message:

Nesting level too dip.

This error message and the code that displayed it had already been burned
onto ROM and shipped with thousands of consoles worldwide. The main problem
with the error message was not the misspelling of the word “deep,” but that it
was displayed by the display’s firmware. Users of the display would have no idea
what the message was about or what to do about it.

Javascript
@ TypeErmor = Mull value

Apple Safari browser: error message from JavaScript interpreter.

o

Figure 4.30

ﬁ

Developer-centric text 185

This variation of Blooper 27 is often difficult to correct. The low-level code
that detects the error and displays an unhelpful error message may not be in
the application itself, but in the operating system on which the application is
running. If your application calls an operating system utility function and the
function sometimes displays a poor error message, you probably won’t be able
to fix the message because it isn’t from your code. Nonetheless, your users will
see the message as coming from your application. If the message is seriously
misleading, you have no choice other than changing the code so that it does not
use the operating system utility function.

Variation B: Reason for error not given to
higher level code

Sometimes applications display vague error messages because of poor com-
munication between low-level service functions and the task-level function the
user executed. For example, when a user tries to open a PowerPoint presentation
but PowerPoint can’t open it, an error message pops up listing three possible
reasons for the failure (Figure 4.30). The service functions PowerPoint calls to
open and load the presentation apparently don’t give PowerPoint enough detail
about why they failed to allow it to identify the exact cause of the failure.

Users are left not knowing what to do, because the remedies for these three
possible causes are quite different.

One application displayed this error message when a user tried to load a
nonexistent data file:

Error parsing datafile. Data not parsed.

The message was true—no data was parsed—but it was misleading. The real prob-
lem was that the data file was not found. After trying to load the file, the code did
not check whether the load operation succeeded; it just passed an empty data buffer
to the parsing procedure, which duly reported that it couldn’t parse the data.

Variation C: Generic message components

Another common cause of vague error messages is generic error message
components. To save development effort, developers sometimes create generic
messages to cover whole categories of errors and use them even when the
software could give users more specific feedback.

e PowerPoint cannot open the file Mac G4
i} HxProfessional ActivityZGLUI
i- = Bloopers: TutoriakTutorial Slides:GU Bloopers-
EM copy.ppt. The file may be corrupt, in use, or
of a type not recognized by PowerPaini.

o)

Microsoft PowerPoint: error message lists three possible problems.

186 Chapter 4 Textual Bloopers

Figure 4.31

B’ﬁ L Support Center
4 & .i- [,| + | £7 g/ fsupportsarthlink.net B0/ support MYACCT (forms ferror, jspirype=fislds_missing

MYy EorthLink
i P R0

Welcome to M}f Account

| Consctus _________
) Chat
Oinling Bl in an INSTANT
~ Y Emas
Gt & responss TODAY Pleass cick ha back bufion o Iny again

Phons
Tak 1o a bve person

There Was an error procossing your request

Earthlink.net: vague error message. Specifics in URL, where few users will look.

Earthlink.net displays a vague error message when a user updates his/her con-
tact information but omits a phone number (Figure 4.31). It actually “knows” that
the problem is a missing phone number; you can see that in the URL—but normal
consumer users won’t look there. Yet the error message it displays is generic.

One stock investment application allows investors to buy or sell stocks.
Users often get this error message when they place orders:

Order size not multiple of trading unit.

The number of shares bought or sold must be a multiple of the “trading unit.”
The trading unit differs for each stock, but the error message does not say what
the trading unit is. The trading unit is also not shown anywhere on the ordering
screen. Users just have to know, or guess, what the trading unit is for the stock
they want to buy or sell. Users not only waste time trying to find the trading
unit for a stock, they sometimes start transactions they don’t want.

Examples of generic error messages

The following are examples of software that displayed generic, uninformative
error messages.
Example 1: User tried to give a data object a name containing characters not
allowed in names:
Name contains invalid characters.
Wonderful. Pray tell, which characters might those be? The software knows,
but won't say.
Example 2: Error message displayed when user tried to import a data file:
File missing or you don’t have access.
This message is vague: it doesn't say which of two quite different problems

has occurred. The message doesn't name the file it is talking about. S
\%4

Figure 4.32

Developer-centric text 187

'r'B‘L-"C! Winciowss Misdia Player £ |

Windows Media Player (for Mac): vague error message.

And the winner is ...

The mother of all generic, uninformative error messages—the message that,
if there were a prize for vagueness, would be the winner—has to be the error
message displayed by Windows Media Player for Mac (Figure 4.32). What are
users supposed to do with this?

Avoiding Blooper 28

Express the error in terms of the task

A good error message describes the problem in terms related to the task the
user was trying to do. If the user has just given the command to paste an image
into a document and the software encounters an error, the message should be
expressed in terms of pasting images, not in terms of operating system func-
tions, implementation data types, program exception codes, or irrelevant appli-
cation concepts.

Don't just identify the problem; suggest a solution

A good error message also provides enough information that the user can see how
to correct the error. That means providing enough detail that a user can determine
what he or she did to cause the problem or, if the problem wasn’t the user’s fault,
what did cause it and why. A programmer friend of mine put it this way:

“Error messages should focus on the solution. Geeks love to describe the problem.”

188 Chapter 4 Textual Bloopers

To counter that tendency, error messages should always contain the following:

Error symbol; Problem: Solution

An example of software that follows this guideline is SWA.com, the Web site of
Southwest Airlines (Figure 4.33).

Table 4.1 shows suggested improvements for poor error messages discussed
above.

Figure 4.33

WHAT HAPPENED?

The deparhire date for the rehorn fTight ir prior to the depariire date
for the owtbound fTight.

WHAT YOU NEED TO DO:

Go back 1o the previous page and modify youw sslscton

www.southwest.com

SWA.com (Southwest Airlines): excellent error message.

Table 4.1 Poor and improved error messages

Poor error message Improved error message
File.Move() failed. [User tried Messages cannot be saved
to save e-mail message, but into the Sent folder. Please
specified Sent folder as try Saving to a different folder.
destination by mistake.]
JavaScript TypeError: Warning: Page contains coding
Null value errors. Content may not display
as intended [or no message].
Nesting level too dip. [No message. Console just restarts
if necessary.]
Name contains invalid < Object-type > names may not
characters. contain -, /), ‘@’, ‘#’,
or ‘& characters.
File missing or you don’t [Separate messages for the two
have access. error types:] File < filename>

not found. You don’t have
access to file < filename> .

Order size not multiple Sorry: < stockname> stock must
of trading unit. be traded in multiples of
< trading unit > shares.

Misleading text 189

Pass errors up to code that can translate them for users

Low-level service routines and application software platforms should never dis-
play error messages directly. They should always pass errors to the application
so that it can handle them in an appropriate way.

When an application receives an error notification from a lower level proce-
dure, it should pass the error up the call stack to code that can handle the error
in a task-relevant way. That code should either:

m translate the error into terms that are meaningful to users and display the
translation with advice on how to correct the problem or

m assume that the cause of the error was temporary and try the operation again.

Design messages and message-bearing components
to accept details at runtime

Error messages and error dialog box components that cover many situations
should be designed to allow details—object names, constraints, data field
names, etc.—to be inserted into them. This would, for example, allow an error
message to say which file could not be read, show which characters are not
allowed, or indicate which required data was not given.

Different types of messages have different audiences

Finally, recognize that error messages displayed by software have three pos-
sible functions, each having a different audience:

m Indicating user errors: for end users
m Logging activity: for system administrators at users’ site
m Facilitating debugging and tracing: for developers

By the time software is ready to ship, developers should make sure that each
type of message is seen only by its intended audience.

Misleading text

The last three textual bloopers concern error messages and labels that mislead
users.

Blooper 29: Erroneous messages

Nothing confuses and angers software users more than instructions and error
messages that are wrong. They waste time and effort by leading users down
wrong paths, perhaps leading to costly mistakes.

190 Chapter 4 Textual Bloopers Developer-centric text 190

Figure 4.34

United Airline customers, when reviewing their frequent-flier mileage account
on United.com, can ask the site to list account activity that occurred between
specified dates. If a user specifies a date that is in the future, the site could gently
say that, or just overlook the error and use today as the upper date limit. Instead,
United.com harshly informs users that they have made an “Invalid Date Entry”
and tells them to check whether they entered nonexistent dates, such as June 31
(Figure 4.34). The suggested remedy is unrelated to the user’s actual error.

Worse are false error messages when a user hasn’t even made an error. If
an Earthlink Web-mail customer tries to login at a time when the company’s
domain-name servers are down, Earthlink Web mail displays an error message
telling the user that the specified domain name is “invalid” (Figure 4.35). The
domain name is not invalid; the server just cannot authenticate any domain
names at the moment. This message will cause Earthlink customers to waste
time checking and retyping their e-mail address in vain.

You may viw your aceount activity for thi enting provicus calendar year and your
curren! program balance. Pleass enter e Jesined range.

Dates Show
FI'QI'I'I g;‘:m
r Al
an) (1 W8 [z00s E’Ml.a.-m:n:m
To 4 _ . . W Hatal
&S &N =N il e
A
United Airlines —
ERR MNO: ENG-ALLD14
Invalid Date Entry

You have entered an invalid date. Double-check your entry
for calendar errors such as February 29 on a non-leap year, or
June 31, which does not exist.

It is also possible that you entered extra digits into one or
more of the date ficlds.

{ Back)

B

United.com: incorrect error message. User entered future date, but message misleads.

Figure 4.35

Misleading text 191

[Earthiinic Sl mEsink we ual (Search| Google

irvalid domain. Please see the link on the sign in page for supported domains.

Eﬂhmﬂd m mtl Betal Emall Address: jeffjohnson@igc.org

+ Easler than Ever (8. your_address® earthininet)
Smart addresses - auto-fills and

saves your contacts Password: [...

* No Delays!
Check, view, & send email Sign in 1a Stondard Web Mail
st anthy

Sign in o HEW Enhonced Wab Mail Beta
& FII.I Drlﬂ a Brw L A — S —

Move and organize messages ! Remember my email login on this computer.
easly -

Earthlink.net: incorrect error message. Domain name is valid, but name server is down.

Even worse are error messages that scare users needlessly by announcing
something awful when nothing is wrong. Microsoft Windows for the Pocket
PC sometimes inexplicably displays a truly frightening system error mes-
sage (Figure 4.36). The error dialog box commits another blooper as well,
trapping users by presenting unclear options (Blooper 50, page 281), but
this message’s main fault is that it is wrong. Regardless of whether the user
clicks Yes or No, the Pocket PC continues operating normally and nothing
is erased.

Finally, we have text that is wrong due to carelessness. This problem can
often be seen in Web sites in which prices, events, or product catalogues are
not kept up to date or in other ways don’t match reality.

Erroneous text can also be found in desktop software. The Web-based
e-mail program TrueDesk allows its users to create lists of “Safe Senders”—
e-mail addresses from which e-mail is trusted—and “Blocked Senders”—e-mail
addresses from which e-mail is blocked. However, the “Blocked Senders”
description says that blocked e-mail will go exactly where trusted e-mail goes:
into the users’ Inbox (Figure 4.37). This must be wrong. Whoever created this
page apparently copied the text from the “Safe Senders” description to that of
the “Blocked Senders” and failed to edit it. But users may not figure this out
right away.

192 Chapter 4 Textual Bloopers

Figure 4.36 -
Connection Flash Manager
n Saved data is comupted,
Systemn will erase al data
to fix this emor
Yes
Figure 4.37

1 “)"."::‘;‘"‘" Seitrgs | Doy | Ml | Debey | AntiSpam | Secuky | HemPag |
"
B b Truesh can aubomstaly cusaly Junk e-mad using an inteligant fibes that ke from you what is SPaM and what & et
£ pealt
S Sompranthon: & iy el el pratecnen.
- Ot " Lows protection, Sehect obvious funk. e-maf ard move 1 1o the Jurk E-mad foider,
&' Defebed Mev T igh protection, debect moit of jurk s-mall, This opbion recuess b of the e clastfrng
ol ek sl g,
[Treem € Oriy o-rmunls fremm pecpls ltecd on your Safe Sercen List i delvrec] b B b fokder,
T vt
(- [T Teunt paophe It o oy private Addres Bodk.
= oumal
L otes afe Tarcders
¥ - Sy Mirisagec froen E-mesl ackdnesses. and domsrs kst hers il b delvered drectly bo your Inbe
° Pl Safe Seners
i P
Mok Serers
gm.m Messages fom £l esses d o bt b debred drecty s e)
et
» Beded Sardeis |
= I Greup Pekdeny
et Feiders g 5w | I carcel

B e Pt

TrueDesk: Anti-Spam tab has labels that are wrong.

Avoiding Blooper 29

It is very bad for software to lie to its users. It can waste users’ valuable time
and effort as well as cause them to make unrecoverable errors.

Error messages that scold users for the wrong error or for errors they did not
commit, and instructions that are false, are software flaws—bugs. They should be
checked for during software quality-assurance testing and reported and tracked
with bug management mechanisms. They should have a high priority for correc-
tion, because their impact on users is high: they divert users from achieving their
goals, they sometimes cause data loss (or, in the case of mission-critical systems,
other types of loss), and they really decrease customer satisfaction.

Misleading text 193

Blooper 30: Text makes sense in isolation but is
misleading in the GUI

Jakob Nielsen has pointed out (at Uselt.com) that software and Web developers
often write labels, headings, descriptions, and instructions without considering
how users might interpret the text in the context of all the other information
the system displays. This often results in text that may make sense in isolation
but isn’t as clear in the GUIL.

Most Web shoppers have been stymied by e-commerce Web sites that dis-
play similar descriptions for different items. Imagine a printer vendor Web
site on which four different printers are described as “perfect for your small
business” or an online catalogue of PhotoShop plug-in filters that all promise
to “help you create professional-looking images.” The marketing manager
in charge of each product naturally wants to make it sound as appealing as
possible, but that can make it difficult for customers to choose.

Just as unplanned similarity between item labels can sow confusion, so can
unintended differences. One company’s customer support Web site included a
page of software patches that customers could download and install to correct
known bugs in the company’s software. A section of the “Patch” page high-
lighted patches that the company was strongly recommending that customers
install. That section was labeled:

Recommended Patches

These patches have been tested and will keep your Company X workstation running
smoothly.

This might suggest to some customers that the other patches had not been
tested and were not recommended. The person who wrote the section label had
considered only how the label fit its own section, not what it implied about the
rest of the page on which it appeared.

Avoiding Blooper 30

When writing text describing an item, consider how people who aren’t intimately
familiar with the item will interpret it. Also, don’t simply consider each piece of
text in isolation. Look at it in all contexts where it will appear, and make sure
it conveys its intended meaning in each such place. When in doubt, test it on
users.

Blooper 31: Misuse (or honuse) of “..."” on command labels

In the early 1980s, the designers of Apple’s Lisa computer (a predecessor of the
Macintosh) devised a way to distinguish commands that execute immediately
from ones that first prompt for more information. Commands that need more

194 Chapter 4 Textual Bloopers

Figure 4.38

-

information had “...” (ellipsis) on the end of the command label, for example,
“Save As...” Commands that execute immediately don’t end with “...”. This con-
vention is for command labels, whether they appear in menus or on buttons.

The ellipsis became a standard

It is helpful for users to know in advance whether a command executes
immediately or prompts for more information. It is safer to click on unfamiliar
commands if users know they just bring up a dialog box.

Over time, the convention spread beyond the Macintosh to other computer
platforms, such as Microsoft Windows and various Unix-based desktop
operating systems. Today, it is so pervasive that software not following this
convention risks misleading users.

Some developers don’t know the standard

Alas, violations of this convention are becoming more common. Some devel-
opers are just unaware of it. Others know there is a convention but misunder-
stand it.

Variation A: Omitting “..."

The most common error is to omit the “...” on commands that need it: no
commands have “...”. Users guess or learn from experience which com-
mands need more input and which don’t. Microsoft Outlook’s “Change
Password” button displays a dialog box to check the user’s current pass-
word and get a new one (Figure 4.38). The button’s label should end with
“...”, but does not.

Identity Praperties ?.E

Bdenitty

ﬁ Type your pame: | IS

Pagzwenid i
Pl e THe b = Change [dentity Password
moderste kevel of ssourty, Fowever, other users may 3ol be sbis o
s your dats. For information sbout security, chck el Qi Passwoed:
[l Bieguine & pasoved " Gurge Pasped I ek

I—LI Corfamm Maw Padivecnd:
=] e]
A B

Microsoft Outlook: missing “...” on “Change Password” button.

Misleading text 195

Figure 4.39 S —
Adobe Reader: 7.0

Wty 7.0, 0

5o HesmTa, ¥
Aedcka B pader ek Fi

Bpent Bl Bmackes 710,
dbwin Raditet Phs st

frstem Info
ekl Eigpert Sappert.
‘rirm Sugport..

hanth Row gmiati v
P s Aodeh dovolad
Acomubllty Jriormation Onlre Copyright 1 984-2004 Sdobe Sirstems. Incorporated and it koenson, Al rghts riereed

Eghact arnd Bapas r.i" "
Acrenidsity Selup AsiniLart. .. | Paterd and Logal Hotioe “ Crpclibi [T

A B

Adobe Reader: About Adobe Reader 7.0... command wrongly includes “..."

Variation B: Overusing “..."

The next most common error is to append the ellipsis to command labels that should
not have it. Designers who commit this variation of the blooper have overgeneralized
the convention. They think “...” is for any command that opens a new window. If a
Show Graph... command just displays a graph and doesn’t need more information
before it does that, the command label should not end with “...”.

In Adobe Reader’s Help menu, the About Adobe Reader 7.0... command dis-
plays a splash screen showing the program version and other information (Figure
4.39). It needs no additional input from the user. The “...” is misleading.

Avoiding Blooper 31

The ellipsis shows that the command brings up a dialog box before executing.
It shows that there will be an opportunity to cancel.

Not for any command that opens a window

The “...” is not for commands that just open a window. For example, Show
Network might open a window to display the status of a computer network.
Such a command should not have “...” at the end of its label.

Mozilla Firefox uses “...” correctly in its Help menu and elsewhere. The
Help and Release Notes commands open windows that display information

196 Chapter 4 Textual Bloopers

Figure 4.40

D

Firefox Help =7
Release Notes
Report Broken Web Site...

Check for Updates...

Mozilla Firefox: correct use—and nonuse—of “..."

and so do not end with “...”. The Report Broken Web Site... and Check for
Updates... commands open dialog boxes that prompt for user input needed to
complete the command and so do end with “...” (Figure 4.40).

Standard across all platforms

All the major GUI platform style guides state the same rule:

m Java Look and Feel Guidelines [Sun Microsystems, 2001]
m Windows Vista User Experience Guidelines [Microsoft Corp., 2006]
m Apple Human Interface Guidelines [Apple Computer, 2006]

What about graphical button labels?

Many buttons are labeled graphically rather than textually. The ellipsis mark
doesn’t work for graphical labels. A solution is to include the ellipsis on the
button’s tooltip text, which appears when the screen pointer is held over the
button.

