Effective C++, 2E, 2E | Contents

Effective C++, Second Edition

Contents

Dedication

Preface

Acknowledgments

Introduction

Shifting from C to C++

Item 1:

Prefer const andi nl i ne to#def i ne.
Prefer <i ost r ean® to<st di 0. h>.
Prefer newand del et etonal | oc andfr ee.

Prefer C++-style comments.

Memory Management

ltem 5:
ltem 6:
ltem 7:

ltem 8:

[tem 9:

[tem 10:

Use the same form in corresponding uses of newand del et e.

Usedel et e on pointer membersin destructors.

Be prepared for out-of-memory conditions.

Adhere to convention when writing oper at or newand oper at or del et e.
Avoid hiding the "normal™ form of new.

Writeoper at or del et e if youwriteoper at or new.

Constructors, Destructors, and Assignment Operators

ltem 11:

[tem 12:
[tem 13:
ltem 14:

[tem 15:

Declare a copy constructor and an assignment operator for classes with dynamically
allocated memory.

Prefer initialization to assignment in constructors.
List membersin an initiaization list in the order in which they are declared.
Make sure base classes have virtual destructors.

Have oper at or = return areferenceto*t hi s.

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/TOC.HTM (1 / 3) [2003-6-11 20:01:49]

Effective C++, 2E, 2E | Contents

[tem 16:
ltem 17:

Assign to all datamembersin oper at or =.

Check for assignment to self inoper at or =.

Classes and Functions: Design and Declaration

Item 18:
Item 19:
Item 20
Item 21.
Item 22:
Item 23:
Item 24:
Item 25:
Item 26:
Item 27:
Item 28:

Strive for class interfaces that are complete and minimal.

Differentiate among member functions, non-member functions, and friend functions.
Avoid data membersin the public interface.

Useconst whenever possible.

Prefer pass-by-reference to pass-by-value.

Don't try to return a reference when you must return an object.

Choose carefully between function overloading and parameter defaulting.

Avoid overloading on a pointer and a numerical type.

Guard against potential ambiguity.

Explicitly disallow use of implicitly generated member functions you don't want.

Partition the global namespace.

Classes and Functions: Implementation

[tem 29:
I[tem 30:

[tem 31:

[tem 32:
[tem 33:
ltem 34:

Avoid returning "handles’ to internal data.

Avoid member functions that return non-const pointers or references to members
less accessible than themselves.

Never return areference to alocal object or to a dereferenced pointer initialized by
new within the function.

Postpone variable definitions as long as possible.
Useinlining judicioudly.

Minimize compilation dependencies between files.

Inheritance and Object-Oriented Design

ltem 35:
l[tem 36:

Make sure public inheritance models "isa."

Differentiate between inheritance of interface and inheritance of implementation.

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/TOC.HTM (2 / 3) [2003-6-11 20:01:49]

Effective C++, 2E, 2E | Contents

Item 37: Never redefine an inherited nonvirtual function.
Item 38: Never redefine an inherited default parameter value.
Item 39: Avoid casts down the inheritance hierarchy.
Item 40: Model "has-a" or "is-implemented-in-terms-of" through layering.
Iltem 41: Differentiate between inheritance and templ ates.
Item 42: Use private inheritance judicioudly.
Item 43: Use multiple inheritance judicioudly.
Item 44: Say what you mean; understand what you're saying.
Miscellany
Item 45: Know what functions C++ silently writes and calls.
Item 46: Prefer compile-time and link-time errors to runtime errors.
Iltem47: Ensure that non-local static objects are initialized before they're used.
Item 48: Pay attention to compiler warnings.
Item 49: Familiarize yourself with the standard library.
Item 50: Improve your understanding of C++.
Afterword
Index

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/TOC.HTM (3 / 3) [2003-6-11 20:01:49]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/BOOKINDX/INDEX.HTM

Effective C++, 2E

Dedication

For Nancy, without whom nothing would be much worth doing.

Back to Dedication
Continue to Acknowledgments

Preface

This book is adirect outgrowth of my experiences teaching C++ to professional programmers. I've found that most students,
after aweek of intensive instruction, feel comfortable with the basic constructs of the language, but they tend to be less
sanguine about their ability to put the constructs together in an effective manner. Thus began my attempt to formulate short,
specific, easy-to-remember guidelines for effective software development in C++: a summary of the things experienced C++
programmers almost always do or almost always avoid doing.

| was originally interested in rules that could be enforced by somekind of | i nt -like program. To that end, | led research into
the devel opment of tools to examine C++ source code for violations of user-specified conditions.t Unfortunately, the research
ended before a compl ete prototype could be developed. Fortunately, several commercial C++-checking products are now
available. (You'll find an overview of such productsin the article on static analysis tools by me and Martin Klaus.)

Though my initial interest was in programming rules that could be automatically enforced, | soon realized the limitations of that
approach. The magjority of guidelines used by good C++ programmers are too difficult to formalize or have too many important
exceptions to be blindly enforced by a program. | was thus led to the notion of something |ess precise than a computer program,
but still more focused and to-the-point than a general C++ textbook. The result you now hold in your hands: a book containing
50 specific suggestions on how to improve your C++ programs and designs.

In this book, you'll find advice on what you should do, and why, and what you should not do, and why not. Fundamentally, of
course, the whys are more important than the whats, but it's alot more convenient to refer to alist of guidelines than to
memorize a textbook or two.

Unlike most books on C++, my presentation here is not organized around particular language features. That is, | don't talk about
constructors in one place, about virtual functions in another, about inheritance in athird, etc. Instead, each discussion in the
book is tailored to the guideline it accompanies, and my coverage of the various aspects of a particular language feature may be
dispersed throughout the book.

The advantage of this approach isthat it better reflects the complexity of the software systems for which C++ is often chosen,
systems in which understanding individual language featuresis not enough. For example, experienced C++ developers know
that understanding inline functions and understanding virtual destructors does not necessarily mean you understand inline
virtual destructors. Such battle-scarred devel opers recognize that comprehending the interactions between the featuresin C++ is
of the greatest possible importance in using the language effectively. The organization of this book reflects that fundamental
truth.

The disadvantage of thisdesign is that you may have to look in more than one place to find everything | have to say about a
particular C++ construct. To minimize the inconvenience of this approach, | have sprinkled cross-references liberally
throughout the text, and a comprehensive index is provided at the end of the book.

In preparing this second edition, my ambition to improve the book has been tempered by fear. Tens of thousands of
programmers embraced the first edition of Effective C++, and | didn't want to destroy whatever characteristics attracted them to
it. However, in the six years since | wrote the book, C++ has changed, the C++ library has changed (see Item 49), my

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (1 /189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MAGAZINE/TO_FRAME.HTM

Effective C++, 2E

understanding of C++ has changed, and accepted usage of C++ has changed. That's alot of change, and it was important to me
that the technical material in Effective C++ be revised to reflect those changes. I'd done what | could by updating individual
pages between printings, but books and software are frighteningly similar — there comes a time when localized enhancements
fail to suffice, and the only recourse is a system-wide rewrite. This book is the result of that rewrite: Effective C++, Version
2.0.

Those familiar with the first edition may be interested to know that every Item in the book has been reworked. | believe the
overall structure of the book remains sound, however, so little there has changed. Of the 50 original Items, | retained 48, though
| tinkered with the wording of afew Item titles (in addition to revising the accompanying discussions). The retired Items (i.e.,
those replaced with completely new material) are numbers 32 and 49, though much of the information that used to bein Item 32
somehow found its way into the revamped Item 1. | swapped the order of Items 41 and 42, because that made it easier to present
the revised material they contain. Finally, | reversed the direction of my inheritance arrows. They now follow the almost-
universal convention of pointing from derived classes to base classes. Thisis the same convention | followed in my 1996 book,
More Effective C++.

The set of guidelinesin thisbook is far from exhaustive, but coming up with good rules — ones that are applicable to aimost all
applications almost all the time — is harder than it looks. Perhaps you know of additional guidelines, of more ways in which to
program effectively in C++. If so, | would be delighted to hear about them.

On the other hand, you may feel that some of the Itemsin this book are inappropriate as general advice; that there is a better
way to accomplish atask examined in the book; or that one or more of the technical discussionsis unclear, incomplete, or
misleading. | encourage you to let me know about these things, too.

°Donald Knuth has along history of offering asmall reward to people who notify him of errorsin his books. The quest for a
perfect book islaudable in any case, but in view of the number of bug-ridden C++ books that have been rushed to market, | feel
especialy strongly compelled to follow Knuth's example. Therefore, for each error in this book that is reported to me — be it
technical, grammatical, typographical, or otherwise — | will, in future printings, gladly add to the acknowledgments the name
of the first person to bring that error to my attention.

Send your suggested guidelines, your comments, your criticisms, and — sigh — your bug reports to:

Scott Meyers

c/o Publisher, Corporate and Professional Publishing
Addison Wesley Longman, Inc.

1 Jacob Way

Reading, MA 01867

U.S A.

Alternatively, you may send electronic mail to ec++@awl.com.

I maintain alist of changes to this book since its first printing, including bug-fixes, clarifications, and technical updates. This
list isavailable at the °Effective C++ World Wide Web site. If you would like a copy of thislist, but you lack access to the

World Wide Web, please send a request to one of the addresses above, and | will see that thelist is sent to you.

-Scott Douglas Meyers Stafford, Oregon
% July 1997
____._ﬁ
Back to Preface

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (2 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/INDEX.HTM
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=dknuth
mailto:ec++@awl.com
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=booke
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=smeyers

Effective C++, 2E

Continue to Introduction

Acknowledgments

Some three decades have elapsed since Kathy Reed taught me what a computer was and how to program one, so | suppose this
isrealy all her fault. In 1989, Donald French asked me to develop C++ training materials for the Institute for Advanced
Professional Studies, so perhaps he should shoulder some blame. The studentsin my class at Stratus Computer the week of June
3, 1991, were not the first to suggest | write abook summarizing the pearls of alleged wisdom that tumble forth when | teach,
but they were the ones who finally convinced me to do it, so they bear some of the responsibility. I'm grateful to them all.

Many of the Items and examplesin this book have no particular source, at least not one | can remember. Instead, they grew out
of acombination of my own experiences using and teaching C++, those of my colleagues, and opinions expressed by
contributors to the Usenet C++ newsgroups. Many examples that are now standard in the C++ teaching community — notably
strings — can be traced back to theinitial edition of Bjarne Stroustrup's °The C++ Programming Language (Addison-Wesley,

1986). Severa of the Items found here (e.g., Item 17) can also be found in that seminal work.

Item 8 includes an implementation idea from Steve Clamage's May 1993 °C++ Report article, "Implementing new and

del et e." [tem 9 was motivated by commentary in °The Annotated C++ Reference Manual (see Item 50), and Items 10 and 13
were suggested by John Shewchuk. The implementation of oper at or newin Item 10 is based on presentations in the second
edition of Stroustrup's °The C++ Programming Language (Addison-Wesley, 1991) and Jim Coplien's *Advanced C++:
Programming Styles and Idioms (Addison-Wesley, 1992). Dietmar Ktihl pointed out the undefined behavior | describein Iltem
14. Doug Lea provided the aliasing examples at the end of Item 17. Theidea of using OL for NULL in Item 25 came from Jack
Reevess March 1996 °C++ Report article, "Coping with Exceptions.” Several members of various Usenet C++ newsgroups

helped refine that Item's class for implementing NUL L-based pointer conversions via member templates. A newsgroup posting
by Steve Clamage tempered my enthusiasm for references to functionsin Item 28. Item 33 incorporates observations from Tom

Cargill's°C++ Programming Style (Addison-Wesley, 1992), Martin Carroll's and Margaret Ellis's °Designing and Coding
Reusable C++ (Addison-Wesley, 1995), -Taligent's Guide to Designing Programs (Addison-Wesley, 1994), Rob Murray's
°C++ Strategies and Tactics (Addison-Wesley, 1993), as well as information from publications and newsgroup postings by
Steve Clamage. The material in Item 34 benefited from my discussions with John Lakos and from reading his book,
°Large-Scale C++ Software Design (Addison-Wesley, 1996). The envel ope/letter terminology in that Item comes from Jim
Coplien's ‘Advanced C++: Programming Styles and Idioms; John Carolan coined the delightful term, "Cheshire Cat class." The
rectangle/square example of Item 35 is taken from Robert Martin's March 1996 -C++ Report column, "The Liskov Substitution
Principle." A long-ago conp. | ang. c++ posting by Mark Linton set me straight in my thinking about grasshoppers and
cricketsin Item 43. My traits examplesin Item 49 are taken from Nathan Myers's June 1995 -C++ Report article, <"A New and
Useful Template Technique: Traits," and Pete Becker's "C/C++ Q&A™ column in the November 1996 -C/C++ User's Journal;
my summary of C++'s internationalization support is based on a pre-publication book draft by Angelika Langer and Klaus
Kreft. Of course, "Hello world" comes from The C Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-
Hall, first publish in 1978).

Many readers of the first edition sent suggestions | was unable to incorporate in that version of the book, but that I've adopted in
one form or another for this new edition. Otherstook advantage of Usenet C++ newsgroups to post insightful remarks about the
material in the book. I'm grateful to each of the following individuals, and I've noted where | took advantage of their ideas:

Mike Kaelbling and Julio Kuplinsky (Introduction); a person my notes identify only as"aguy at Claris'2 (Item 5); Joel Regen
and Chris Treichel (Item 7); Tom Cargill, Larry Gajdos, Doug Morgan, and Uwe Steinmiller (Item 10); Roger Scott and Steve
Burkett (Item 12); David Papurt (Item 13); Alexander Gootman (Item 14); David Bern (Item 16); Tom Cargill, Tom Chappell,
Dan Franklin, and Jerry Liebelson (Item 17); John "Eljay" Love-Jensen (Item 19); Eric Nagler (Item 22); Roger Eastman, Doug
Moore, and Aaron Naiman (Item 23); Dat Thuc Nguyen (Item 25); Tony Hansen, Natrg Kini, and Roger Scott (Item 33); John
Harrington, Read Fleming, and Dave Smallberg (Item 34); Johan Bengtsson (Item 36); Rene Rodoni (Item 39); Paul

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (3 /189) [2003-6-11 20:02:42]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cpl
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cppreport
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=anncrm
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cpl
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=apsi
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cppreport
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MAGAZINE/RE_FRAME.HTM
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cps
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=dcr
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=talgdp
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cstrtac
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=lscs
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=apsi
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cppreport
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cppreport
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=ttt
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cuj
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=c2pl

Effective C++, 2E

Blankenbaker and Mark Somer (Item 40); Tom Cargill and John Lakos (Item 41); Frieder Knauss and Roger Scott (Item 42);
David Braunegg, Steve Clamage, and Dawn Koffman (Item 45); Tom Cargill (Item 46); Wesley Munsil (Item 47); Randy
Mangoba (most class definitions); and John "Eljay" Love-Jensen (many placeswherel uset ype doubl e).

Partial and/or complete drafts of the manuscript for the first edition were reviewed by Tom Cargill, Glenn Carroll, Tony Davis,
Brian Kernighan, Jak Kirman, Doug Lea, Moises Lejter, Eugene Santos, Jr., John Shewchuk, John Stasko, Bjarne Stroustrup,
Barbara Tilly, and Nancy L. Urbano. In addition, | received suggestions for improvements that | was able to incorporate in later
printings from the following alert readers, whom I've listed in the order in which | received their reports: Nancy L. Urbano,
Chris Treichel, David Corbin, Paul Gibson, Steve Vinoski, Tom Cargill, Neil Rhodes, David Bern, Russ Williams, Robert
Brazile, Doug Morgan, Uwe Steinmuller, Mark Somer, Doug Moore, Dave Smallberg, Seth Meltzer, Oleg Shteynbuk, David
Papurt, Tony Hansen, Peter McCluskey, Stefan Kuhlins, David Braunegg, Paul Chisholm, Adam Zell, Clovis Tondo, Mike
Kaelbling, Natrg] Kini, Lars Nyman, Greg Lutz, Tim Johnson, John Lakos, Roger Scott, Scott Frohman, Alan Rooks, Robert
Poor, Eric Nagler, Antoine Trux, Cade Roux, Chandrika Gokul, Randy Mangoba, and Glenn Teitelbaum. Each of these people
was instrumental in improving the book you now hold.

Drafts of the second edition were reviewed by Derek Bosch, Tim Johnson, Brian Kernighan, Junichi Kimura, Scott
Lewandowski, Laura Michaels, Dave Smallberg, Clovis Tondo, Chris Van Wyk, and Oleg Zabluda. | am grateful to all these
people, but especially to Tim Johnson, whose detailed review influenced the final manuscript in dozens of ways. | am also
grateful to Jill Huchital and Steve Reiss for their assistance in finding good reviewers, atask of crucial importance and
increasing difficulty. Dawn Koffman and Dave Smallberg suggested improvements to the °C++ training materials derived from
my books, and many of their ideas have found their way into thisrevision. Finally, | received comments from the following
readers of earlier printings of this book, and I've modified this current printing to take their suggestions into account: Daniel
Steinberg, Arunprasad Marathe, Doug Stapp, Robert Hall, Cheryl Ferguson, Gary Bartlett, Michael Tamm, Kendall Beaman,
Eric Nagler, Max Hailperin, Joe Gottman, Richard Weeks, Valentin Bonnard, Jun He, Tim King, Don Maier, Ted Hill, Mark
Harrison, Michael Rubenstein, Mark Rodgers, David Goh, Brenton Cooper, and Andy Thomas-Cramer.

Evi Nemeth (with the cooperation of -Addison-Wesley, the
*USENIX Association, and °The Internet Engineering Task Force) has agreed to see to it that leftover copies of the first edition

are delivered to computer science laboratories at universities in Eastern Europe; these universities would otherwise find it
difficult to acquire such books. Evi voluntarily performsthis service for several authors and publishers, and I'm happy to be able
to help in some small way. If you'd like more information on this program, contact Evi.

Sometimes it seems that the players in publishing change nearly as frequently as the trends in programming, so |I'm pleased that
my editor, John Wait, my marketing director, Kim Dawley, and my production director, Marty Rabinowitz, continue to play the
roles they did in those innocent days of 1991 when | first started this whole authoring thing. Sarah Weaver was my project
manager for this book, Rosemary Smpson provided advice on indexing, and Lana Langlois acted as my primary contact and all-
around Ubercoordinator at Addison-Wesley until she left for greener —or at least different — pastures. | thank them and their
colleagues for helping with the thousand tasks that separate simple writing from actual publishing.

Kathy Wright had nothing to do with the book, but she'd like to be acknowledged.

For the first edition, | am grateful for the enthusiastic and unflagging encouragement provided by my wife, Nancy L. Urbano,
and by my family and hers. Although writing a book was the last thing | was supposed to be doing, and doing so reduced my
free time from merely little to effectively none, they made it clear that the effort was worth it if, in the end, the result was an
author in the family.

That author has been in the family six years now, yet Nancy continues to tolerate my hours, put up with my technochatter, and
encourage my writing. She also has a knack for knowing just the right word when | can't think of it. The Nancyless life is not
worth living.

Our dog, °Persephone, never lets me confuse my priorities. Deadline or no deadline, the time for a walk is always now.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (4 / 189) [2003-6-11 20:02:42]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=training
http://www.awl.com/
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=usenix
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=ietf
mailto:evi@cs.colorado.edu
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=pers

Effective C++, 2E

Back to Acknowl edgments
Continue to Shifting from C to C++

Introduction

Learning the fundamentals of a programming language is one thing; learning how to design and implement effective programs
in that language is something else entirely. Thisis especially true of C++, a language boasting an uncommon range of power
and expressiveness. Built atop a full-featured conventional language (C), it also offers a wide range of object-oriented features,
aswell as support for templates and exceptions.

Properly used, C++ can be a joy to work with. An enormous variety of designs, both object-oriented and conventional, can be
expressed directly and implemented efficiently. You can define new data types that are all but indistinguishable from their built-
in counter parts, yet are substantially more flexible. A judiciously chosen and carefully crafted set of classes — one that
automatically handles memory management, aliasing, initialization and clean-up, type conversions, and all the other
conundrums that are the bane of software devel opers — can make application programming easy, intuitive, efficient, and nearly
error-free. It isn't unduly difficult to write effective C++ programs, if you know how to do it.

Used without discipline, C++ can lead to code that isincomprehensible, unmaintainable, inextensible, inefficient, and just
plain wrong.

Thetrick isto discover those aspects of C++ that are likely to trip you up and to learn how to avoid them. That is the purpose
of this book. | assume you already know C++ as a language and that you have some experience in its use. What | provide here
isa guide to using the language effectively, so that your software is comprehensible, maintainable, extensible, efficient, and
likely to behave as you expect.

The advice | proffer fallsinto two broad categories. general design strategies, and the nuts and bolts of specific language
features.

The design discussions concentrate on how to choose between different approaches to accomplishing something in C++. How
do you choose between inheritance and templates? Between templates and generic pointers? Between public and private
inheritance? Between private inheritance and layering? Between function overloading and parameter defaulting? Between
virtual and nonvirtual functions? Between pass-by-value and pass-by-reference? It isimportant to get these decisionsright at
the outset, because an incorrect choice may not become apparent until much later in the development process, at which point its
rectification is often difficult, time-consuming, demoralizing, and expensive.

Even when you know exactly what you want to do, getting things just right can be tricky. What's the proper return type for the
assignment operator? How should oper at or new behave when it can't find enough memory? When should a destructor be
virtual? How should you write a member initialization list? It's crucial to sweat details like these, because failure to do so
almost always leads to unexpected, possibly mystifying, program behavior. More importantly, the aberrant behavior may not be
immediately apparent, giving rise to the specter of code that passes through quality control while still harboring a variety of
undetected bugs —ticking time-bombs just waiting to go off.

Thisis not a book that must be read cover to cover to make any sense. You need not even read it front to back. The material is
broken down into 50 Items, each of which stands more or less on its own. Frequently, however, one Item will refer to others, so
one way to read the book is to start with a particular Item of interest and then follow the references to see where they lead you.

The Items are grouped into general topic areas, so if you are interested in discussions related to a particular issue, such as
memory management or object-oriented design, you can start with the relevant section and either read straight through or start
jumping around from there. Y ou will find, however, that all of the material in this book is pretty fundamental to effective C++

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (5 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

programming, so almost everything is eventually related to everything elsein one way or another.

Thisis not areference book for C++, nor isit away for you to learn the language from scratch. For example, I'm eager to tell
you all about the gotchas in writing your own oper at or new (see Items 7-10), but | assume you can go elsewhere to discover
that that function must return avoi d* and itsfirst argument must be of type si ze_t . There are anumber of introductory
books on C++ that contain information such as that.

The purpose of this book is to highlight those aspects of C++ programming that are usually treated superficialy (if at all). Other
books describe the different parts of the language. This book tells you how to combine those parts so you end up with effective
programs. Other books tell you how to get your programs to compile. This book tells you how to avoid problems that compilers
won't tell you about.

Like most languages, C++ has arich folklore that is usually passed from programmer to programmer as part of the language's
grand oral tradition. This book is my attempt to record some of that accumulated wisdom in a more accessible form.

At the same time, this book limitsitself to legitimate, portable, C++. Only language featuresin the ©1SO/ANSI language
standard (see Item M 35) have been used here. In this book, portability isakey concern, so if you're looking for implementation-
dependent hacks and kludges, thisis not the place to find them.

Alas, C++ as described by the standard is sometimes different from the C++ supported by your friendly neighborhood compiler
vendors. Asaresult, when | point out places where relatively new language features are useful, | also show you how to produce
effective software in their absence. After all, it would be foolish to labor in ignorance of what the future is sure to bring, but by
the same token, you can't just put your life on hold until the latest, greatest, be-all-and-end-all C++ compilers appear on your
computer. Y ou've got to work with the tools available to you, and this book helps you do just that.

Noticethat | refer to compilers — plural. Different compilers implement varying approximations to the standard, so | encourage
you to develop your code under at least two compilers. Doing so will help you avoid inadvertent dependence on one vendor's
proprietary language extension or its misinterpretation of the standard. It will also help keep you away from the bleeding edge
of compiler technology, i.e., from new features supported by only one vendor. Such features are often poorly implemented
(buggy or slow — frequently both), and upon their introduction, the C++ community lacks experience to advise you in their
proper application. Blazing trails can be exciting, but when your goal is producing reliable code, it's often best to let others do
the bushwhacking for you.

One thing you will not find in this book is the C++ Gospel, the One True Path to perfect C++ software. Each of the 50 Itemsin
this book provides guidance on how to come up with better designs, how to avoid common problems, or how to achieve greater
efficiency, but none of the Itemsis universally applicable. Software design and implementation is a complex task, one
invariably colored by the constraints of the hardware, the operating system, and the application, so the best | can do is provide
guidelines for creating better programs.

If you follow all the guidelines all the time, you are unlikely to fall into the most common traps surrounding C++, but
guidelines, by their very nature, have exceptions. That's why each Item has an explanation. The explanations are the most
important part of the book. Only by understanding the rationale behind an Item can you reasonably determine whether it applies
to the software you are developing and to the unique constraints under which you toil.

The best use of this book, then, isto gain insight into how C++ behaves, why it behaves that way, and how to use its behavior to
your advantage. Blind application of the Items in this book is clearly inappropriate, but at the same time, you probably shouldn't
violate any of the guidelines without having a good reason for doing so.

There's no point in getting hung up on terminology in a book like this; that form of sport is best |eft to language lawyers.
However, thereisasmall C++ vocabulary that everybody should understand. The following terms crop up often enough that it
isworth making sure we agree on what they mean.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (6 / 189) [2003-6-11 20:02:42]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cstandard
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5473

Effective C++, 2E

A declaration tells compilers about the name and type of an object, function, class, or template, but it omits certain details.

These are declarations:
extern int x;
int nunDi gits(int nunber);
cl ass C ock;

tenpl at e<cl ass T>
class Smart Poi nter;

/'l object declaration
/] function declaration

/] class declaration

/'l tenplate declaration

A definition, on the other hand, provides compilers with the details. For an object, the definition is where compilers allocate
memory for the object. For afunction or a function template, the definition provides the code body. For aclass or aclass
template, the definition lists the members of the class or template:

int Xx;

int nunDi gits(int nunber)

{
I nt digitsSoFar = 1;

i f (number < 0) {
nunber = -nunber;
++di gi t sSoFar ;

}

whil e (nunber /= 10) ++digitsSoFar;

return digitsSoFar;

}

class O ock {
publi c:
G ock();
~Cl ock();

i nt hour() const;
int mnute() const;
int second() const;

b

t enpl at e<cl ass T>
cl ass Smart Poi nter {
publi c:

Smart Pointer (T *p = 0);

/'l object definition

/1 function definition

[l (this function returns
/1 the nunber of digits in
/1 its paraneter)

/] class definition

/1l tenplate definition

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (7 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

~Smart Poi nter();

T * operator->() const;

T& operator*() const;

b

That brings us to constructors. A default constructor is one that can be called without any arguments. Such a constructor either
has no parameters or has a default value for every parameter. Y ou generally need a default constructor if you want to define

arrays of objects:

class A {
publi c:
A();
};

A arrayA[10];

class B {
publi c:

b

B(int x =

0);

B arrayB[10];

class C {
publi c:
Clint x);
i

C array(10];

/] default constructor

/] 10 constructors call ed

/] default constructor

/! 10 constructors call ed,
/'l each with an arg of O

// not a default constructor

/] error!

Y ou may find that your compilers reject arrays of objects when a class's default constructor has default parameter values. For
example, some compilers refuse to accept the definition of ar r ay B above, even though it receives the blessing of the C++
standard. Thisis an example of the kind of discrepancy that can exist between the standard's description of C++ and a particular
compiler's implementation of the language. Every compiler | know of has afew of these shortcomings. Until compiler vendors
catch up to the standard, be prepared to be flexible, and take solace in the certainty that someday in the not-too-distant future,
the C++ described in the standard will be the same as the language accepted by C++ compilers.

Incidentally, if you want to create an array of objects for which there is no default constructor, the usual ploy isto define an
array of pointersinstead. Then you can initialize each pointer separately by using new.

C *ptrArray[10];

ptrArray[0]

ptrArray[1]

new C(22);

new C(4);

/! no constructors call ed

// allocate and construct
/1 1 C object

Il ditto

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (8 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

This suffices ailmost all the time. When it doesn't, you'll probably have to fall back on the more advanced (and hence more
obscure) "placement new' approach described in Item M4.

Back on the terminology front, a copy constructor is used to initialize an object with a different object of the same type:

class String {

publi c:
String(); /1l default constructor
String(const String& rhs); /'l copy constructor
private:
char *dat a;
1
String si; /1 call default constructor
String s2(sl); /1 call copy constructor
String s3 = s2; /1l call copy constructor

Probably the most important use of the copy constructor is to define what it means to pass and return objects by value. As an
example, consider the following (inefficient) way of writing a function to concatenate two St r i ng objects:

const String operator+(String sl1, String s2)

{
String tenp;

delete [] tenp.data;

tenp. data =
new char[strlen(sl.data) + strlen(s2.data) + 1];

strcpy(tenp.data, sl.data);
strcat(tenp.data, s2.data);

return tenp;

}

String a("Hello");
String b(" world");
String ¢ = a + b; /1 ¢ = String("Hello world")

Thisoper at or + takestwo St r i ng objects as parameters and returns one St r i ng object as aresult. Both the parameters
and the result will be passed by value, so there will be one copy constructor called to initialize s1 with a, oneto initialize s2
with b, and oneto initialize ¢ with t enp. In fact, there might even be some additional callsto the copy constructor if a
compiler decides to generate intermediate temporary objects, which it is allowed to do (see [tem M19). The important point
here is that pass-by-value means "call the copy constructor.”

By the way, you wouldn't really implement oper at or + for St ri ngslikethis. Returningaconst St ri ng object is correct

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (9 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5218
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41177

Effective C++, 2E

(see Items 21 and 23), but you would want to pass the two parameters by reference (see Item 22).

Actualy, you wouldn't write oper at or + for St r i ngsat al if you could help it, and you should be able to help it ailmost all
the time. That's because the standard C++ library (see Item 49) contains a string type (cunningly named st r i ng), aswell asan
oper at or + for st ri ng objects that does almost exactly what the oper at or + above does. In this book, | useboth St ri ng
and st r i ng objects, but | use them in different ways. (Note that the former name is capitalized, the latter nameisnot.) If |
need just ageneric string and | don't care how it'simplemented, | usethe st r i ng typethat is part of the standard C++ library.
That's what you should do, too. Often, however, | want to make a point about how C++ behaves, and in those cases, | need to
show some implementation code. That's when | use the (nonstandard) St r i ng class. As a programmer, you should use the
standard st r i ng type whenever you need a string object; the days of developing your own string class as a C++ rite of passage
are behind us. However, you still need to understand the issues that go into the development of classeslikestri ng. Stri ng
is convenient for that purpose (and for that purpose only). Asfor raw char * -based strings, you shouldn't use those antique
throw-backs unless you have a very good reason. Well-implemented st r i ng types can now be superior to char * sin virtually
every way — including efficiency (see Item 49 and Items M29-M 30).

The next two terms we need to grapple with are initialization and assignment. An object'sinitialization occurs when it isgiven a
value for the very first time. For objects of classes or structs with constructors, initialization is always accomplished by calling a
constructor. Thisis quite different from object assignment, which occurs when an object that is already initialized is given a
new value:

string si, [l initialization
string s2("Hello"); [l initialization
string s3 = s2; /1 initialization
sl = s3; /'l assi gnnent

From a purely operational point of view, the difference between initialization and assignment is that the former is performed by
a constructor while the latter is performed by oper at or =. In other words, the two processes correspond to different function
cals.

The reason for the distinction is that the two kinds of functions must worry about different things. Constructors usually have to
check their arguments for validity, whereas most assignment operators can take it for granted that their argument is legitimate
(because it has already been constructed). On the other hand, the target of an assignment, unlike an object undergoing
construction, may already have resources allocated to it. These resources typically must be released before the new resources
can be assigned. Frequently, one of these resources is memory. Before an assignment operator can allocate memory for a new
value, it must first deall ocate the memory that was allocated for the old value.

Hereishow a St r i ng constructor and assignment operator could be implemented:

/'l a possible String constructor
String::String(const char *val ue)

{
if (value) { /1 if value ptr isn't nul
data = new char[strlen(value) + 1];
strcpy(data, val ue);
}
el se { /1 handle null value ptr3
data = new char[1];
*data = "\0"; /1 add trailing
nul | char

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (10 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#6073
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#6074

Effective C++, 2E

}
}

/'l a possible String assignnment operator
String& String::operator=(const String& rhs)

{
if (this == & hs)
return *this; /'l see Item 17
delete [] data; /'l delete old nenory
data = /1 allocate new nenory

new char[strlen(rhs.data) + 1];
strcpy(data, rhs.data);

return *this; /] see |tem 15

}

Notice how the constructor must check its parameter for validity and how it must take pains to ensure that the member dat a is
properly initialized, i.e., pointsto achar * that is properly null-terminated. On the other hand, the assignment operator takes it
for granted that its parameter islegitimate. Instead, it concentrates on detecting pathological conditions, such as assignment to
itself (see Item 17), and on deallocating old memory before allocating new memory. The differences between these two
functions typify the differences between object initialization and object assignment. By the way, if the [] " notation in the use
of del et e isnew to you (pardon the pun), Items 5 and M8 should dispel any confusion you may have.

A final term that warrants discussion is client. A client is a programmer, one who uses the code you write. When | talk about
clientsin this book, | am referring to people looking at your code, trying to figure out what it does; to people reading your class
definitions, attempting to determine whether they want to inherit from your classes; to people examining your design decisions,
hoping to glean insights into their rationale.

Y ou may not be used to thinking about your clients, but I'll spend a good deal of time trying to convince you to make their lives
as easy asyou can. After al, you are a client of the software other people develop. Wouldn't you want those people to make
things easy for you? Besides, someday you may find yourself in the uncomfortable position of having to use your own code, in
which case your client will be youl!

| use two constructs in this book that may not be familiar to you. Both are relatively recent additionsto C++. Thefirst isthe
bool type, which has asits valuesthe keywordst r ue and f al se. Thisisthe type now returned by the built-in relational
operators (e.g., <, >, ==, etc.) and tested in the condition part of i f, f or , whi | e, and do statements. If your compilers haven't
implemented bool , an easy way to approximate it isto use atypedef for bool and constant objectsfort r ue andf al se:

t ypedef int bool;

const bool false = 0;
const bool true = 1;

Thisis compatible with the traditional semantics of C and C++. The behavior of programs using this approximation won't
change when they're ported to bool -supporting compilers. For a different way of approximating bool — including a
discussion of the advantages and disadvantages of each approach — turn to the Introduction of More Effective C++.

The second new construct isreally four constructs, the casting formsst ati ¢_cast,const _cast,dynam c_cast, and
rei nterpret _cast.Conventional C-style castslook like this:

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (11 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#33985
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#71736

Effective C++, 2E

(type) expression /| cast expression to be of
/Il type type

The new casts look like this;

static_cast <t ype>(expression) /| cast expression to be of

/'l type type
const _cast <t ype>(expressi on)

dynam c_cast <t ype>(expressi on) <type>
reinterpret_cast<type>(expression) <type>
These different casting forms serve different purposes:

. const _cast isdesigned to cast away the constness of objects and pointers, atopic | examinein Item 21.

. dynam c_cast isusedto perform "safe downcasting,” a subject we'll explorein Item 39.

. reinterpret_cast isengineered for caststhat yield implementation-dependent results, e.g., casting between
function pointer types. (You're not likely toneed r ei nt er pr et _cast very often. | don't useit at al in this book.)

. static_cast issortof the catch-all cast. It's what you use when none of the other castsis appropriate. It's the closest
in meaning to the conventiona C-style casts.

Conventional casts continue to be legal, but the new casting forms are preferable. They're much easier to identify in code (both
for humans and for tools like gr ep), and the more narrowly specified purpose of each casting form makes it possible for
compilersto diagnose usage errors. For example, only const _cast can be used to cast away the constness of something. If
you try to cast away an object's or a pointer's constness using one of the other new casts, your cast expression won't compile.

For more information on the new casts, see Item M2 or consult a recent introductory textbook on C++.

In the code examplesin this book, | have tried to select meaningful names for objects, classes, functions, etc. Many books,
when choosing identifiers, embrace the time-honored adage that brevity is the soul of wit, but I'm not as interested in being
witty as| amin being clear. | have therefore striven to break the tradition of using cryptic identifiersin books on programming
languages. Nonetheless, | have at times succumbed to the temptation to use two of my favorite parameter names, and their
meanings may not be immediately apparent, especialy if you've never done time on a compiler-writing chain gang.

Thenamesarel hs and r hs, and they stand for "left-hand side" and "right-hand side,” respectively. | use them as parameter
names for functions implementing binary operators, especially oper at or == and arithmetic operators like oper at or * . For
example, if a and b are objects representing rational numbers, and if rational numbers can be multiplied via a non-member
oper at or * function, the expression

a*b
is equivalent to the function call
operator*(a, b)
Asyou will discover in Item 23, | declare oper at or * likethis:

const Rational operator*(const Rational & | hs,
const Rational & rhs);

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (12 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#77216

Effective C++, 2E

Asyou can see, the left-hand operand, a, isknown as| hs inside the function, and the right-hand operand is known asr hs.

I've also chosen to abbreviate names for pointers according to this rule: a pointer to an object of type T is often called pt ,
"pointer to T." Here are some examples:

string *ps; /'l ps ptr to string

class Airpl ane;
Ai rpl ane *pa,; /'l pa

ptr to Airplane

cl ass BankAccount;
BankAccount *pba; /'l pba = ptr to BankAccount

| use asimilar convention for references. That is, r s might be areference-to-st r i ng and r a areference-to-Ai r pl ane.
| occasionally use the name nf when I'm talking about member functions.

On the off chance there might be some confusion, any time I mention the C programming language in this book, | mean the
°|SO/-ANSI-sanctified version of C, not the older, less strongly-typed, "classic" C.

Back to Introduction
Continue to Item 1: Prefer const and inline to #define.

Shifting from C to C++

Getting used to C++ takes alittle while for everyone, but for grizzled C programmers, the process can be especially unnerving.
Because C is effectively a subset of C++, all the old C tricks continue to work, but many of them are no longer appropriate. To
C++ programmers, for example, a pointer to a pointer looks a little funny. Why, we wonder, wasn't a reference to a pointer used
instead?

Cisafairly simplelanguage. All it really offersis macros, pointers, structs, arrays, and functions. No matter what the problem
IS, the solution will always boil down to macros, pointers, structs, arrays, and functions. Not so in C++. The macros, pointers,
structs, arrays and functions are still there, of course, but so are private and protected members, function overloading, default
parameters, constructors and destructors, user-defined operators, inline functions, references, friends, templates, exceptions,
namespaces, and more. The design space is much richer in C++ than it isin C: there are just alot more options to consider.

When faced with such avariety of choices, many C programmers hunker down and hold tight to what they're used to. For the
most part, that's no great sin, but some C habits run contrary to the spirit of C++. Those are the ones that have simply got to go.

Back to Shifting from C to C++
Continue to Item 2: Prefer <i ost r ean> to <st di 0. h>

Item 1: Prefer const andi nl i ne to #def i ne.

This Item might better be called "prefer the compiler to the preprocessor,” because #def i ne is often treated as if it's not part
of the language per se. That's one of its problems. When you do something like this,

#defi ne ASPECT _RATI O 1. 653

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (13 / 189) [2003-6-11 20:02:42]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=iso
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=ansi

Effective C++, 2E

the symbolic name ASPECT _RATI Omay never be seen by compilers; it may be removed by the preprocessor before the source
code ever getsto acompiler. Asaresult, the name ASPECT _RATI Omay not get entered into the symbol table. This can be
confusing if you get an error during compilation involving the use of the constant, because the error message may refer to

1. 653, not ASPECT_RATI O. If ASPECT_RATI Owas defined in a header file you didn't write, you'd then have no idea where
that 1. 653 came from, and you'd probably waste time tracking it down. This problem can also crop up in a symbolic debugger,
because, again, the name you're programming with may not be in the symbol table.

The solution to this sorry scenario is simple and succinct. Instead of using a preprocessor macro, define a constant:
const doubl e ASPECT RATI O = 1. 653;
This approach works like a charm. There are two special cases worth mentioning, however.

First, things can get a bit tricky when defining constant pointers. Because constant definitions are typically put in header files
(where many different source files will include them), it's important that the pointer be declared const , usually in addition to
what the pointer points to. To define a constant char * -based string in a header file, for example, you have to write const
twice:

const char * const authorName = "Scott Meyers";

For adiscussion of the meanings and uses of const , especially in conjunction with pointers, see Item 21.

Second, it's often convenient to define class-specific constants, and that calls for a slightly different tack. To limit the scope of a
constant to a class, you must make it a member, and to ensure there's at most one copy of the constant, you must make it a static
member:

cl ass GanePl ayer {

private:
static const int NUM TURNS = 5; /'l constant declaration
int scores[NUM TURNS] ; /'l use of constant

1

There's aminor wrinkle, however, which is that what you see above is adeclaration for NUM_TURNS, not a definition. You
must still define static class membersin an implementation file:

const int GanePl ayer: : NUM TURNS; /1 mandat ory definition;
/1l goes in class inmpl. file

There's no need to lose sleep worrying about this detail. If you forget the definition, your linker should remind you.

Older compilers may not accept this syntax, because it used to beillegal to provide aninitial value for a static class member at
its point of declaration. Furthermore, in-class initialization is allowed only for integral types (e.g., i nt s, bool s, char s, etc.),
and only for constants. In cases where the above syntax can't be used, you put the initial value at the point of definition:

cl ass Engi neeri ngConstants { /1l this goes in the class
private: /'l header file

static const doubl e FUDGE_FACTOR

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (14 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

H

/'l this goes in the class inplenentation file
const doubl e Engi neeri ngConst ants: : FUDGE_FACTOR = 1. 35;

Thisisall you need amost all the time. The only exception is when you need the value of a class constant during compilation of
the class, such asin the declaration of the array GanePl ayer : : scor es above (where compilersinsist on knowing the size
of the array during compilation). Then the accepted way to compensate for compilers that (incorrectly) forbid the in-class
specification of initial valuesfor integral class constantsisto use what is affectionately known as "the enum hack." This
technique takes advantage of the fact that the values of an enumerated type can be used wherei nt s are expected, so

GanePl ayer could just aswell have been defined like this:

cl ass GanePl ayer {

private:
enum { NUM TURNS = 5 }; /1 "the enum hack"” —makes
/1 NUM_TURNS a synbolic nane
/Il for 5
int scores[NUM TURNS] ; /[l fine
1

Unless you're dealing with compilers of primarily historical interest (i.e., those written before 1995), you shouldn't have to use
the enum hack. Still, it's worth knowing what it looks like, because it's not uncommon to encounter it in code dating back to
those early, simpler times.

Getting back to the preprocessor, another common (mis)use of the #def i ne directive isusing it to implement macros that ook
like functions but that don't incur the overhead of a function call. The canonical example is computing the maximum of two
values:

#define max(a,b) ((a) > (b) ? (a) : (b))

This little number has so many drawbacks, just thinking about them is painful. Y ou're better off playing in the freeway during
rush hour.

Whenever you write amacro like this, you have to remember to parenthesize all the arguments when you write the macro body;
otherwise you can run into trouble when somebody calls the macro with an expression. But even if you get that right, look at the
weird things that can happen:

int a=5 b =0;

max(++a, b); /1 ais increnented tw ce
max(++a, b+10); /1 a is increnented once

Here, what happensto a inside max depends on what it is being compared with!

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (15 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

Fortunately, you don't need to put up with this nonsense. Y ou can get all the efficiency of amacro plusall the predictable
behavior and type-safety of aregular function by using an inline function (see Item 33):

inline int max(int a, int b) { returna >b ? a: b; }

Now thisisn't quite the same as the macro above, because this version of max can only be called with i nt s, but atemplate
fixes that problem quite nicely:

tenpl at e<cl ass T>
inline const T& nmax(const T& a, const T& b)
{ returna>b ?a: b; }

This template generates awhole family of functions, each of which takes two objects convertible to the same type and returns a
reference to (a constant version of) the greater of the two objects. Because you don't know what the type T will be, you pass and
return by reference for efficiency (see Item 22).

By the way, before you consider writing templates for commonly useful functions like max, check the standard library (see
Item 49) to seeif they already exist. In the case of max, you'll be pleasantly surprised to find that you can rest on others' laurels:

max is part of the standard C++ library.

Given the availability of const sandi nl i nes, your need for the preprocessor is reduced, but it's not completely eliminated.
The day isfar from near when you can abandon #i ncl ude, and #i f def /#i f ndef continue to play important rolesin
controlling compilation. It's not yet time to retire the preprocessor, but you should definitely plan to start giving it longer and
more frequent vacations.

Back to Item 1: Prefer const and inline to #define.
Continue to Item 3: Prefer new and delete to malloc and free.

Item 2: Prefer <i ostr ean®to<st di 0. h>.

Y es, they're portable. Y es, they're efficient. Y es, you already know how to use them. Yes, yes, yes. But venerated though they
are, the fact of the matter isthat scanf and pri ntf and all their ilk could use some improvement. In particular, they're not
type-safe and they're not extensible. Because type safety and extensibility are cornerstones of the C++ way of life, you might
just as well resign yourself to them right now. Besides, the pr i nt f /scanf family of functions separate the variablesto be
read or written from the formatting information that controls the reads and writes, just like FORTRAN does. It's time to bid the
1950s afond farewell.

Not surprisingly, these weaknesses of pri nt f /scanf arethe strengths of oper at or >> and oper at or <<.

int i;
Rational r; // r is a rational nunber

cin > i > r;
cout << i << r;

If this code isto compile, there must be functions oper at or >> and oper at or << that can work with an object of type

Rat i onal (possibly viaimplicit type conversion — see Item M5). If these functions are missing, it's an error. (The versions
fori nt sare standard.) Furthermore, compilers take care of figuring out which versions of the operatorsto call for different

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (16 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5970

Effective C++, 2E

variables, so you needn't worry about specifying that the first object to be read or writtenisani nt and the second isa
Rati onal .

In addition, objects to be read are passed using the same syntactic form as are those to be written, so you don't have to
remember silly rules like you do for scanf , where if you don't already have a pointer, you have to be sure to take an address,
but if you've already got a pointer, you have to be sure not to take an address. Let C++ compilers take care of those details.
They have nothing better to do, and you do have better things to do. Finally, note that built-in typeslikei nt areread and
written in the same manner as user-defined types like Rat i onal . Try that using scanf andpri nt f !

Here's how you might write an output routine for a class representing rational numbers:
cl ass Rational {

publi c:
Rational (int nunmerator = 0, int denom nator = 1);

private:
int n, d; /! nunerator and denom nat or

friend ostrean& operator<<(ostrean& s, const Rational & r);

1
ostrean& operat or<<(ostrean& s, const Rational & r)
{
S << r.n << '/'" << r.d;
return s;
}

Thisversion of oper at or << demonstrates some subtle (but important) points that are discussed el sewhere in this book. For
example, oper at or << isnot amember function (Item 19 explains why), and the Rat i onal object to be output is passed

into oper at or << asareference-to-const rather than as an object (see Item 22). The corresponding input function,
oper at or >>, would be declared and implemented in asimilar manner.

Reluctant though | am to admit it, there are some situations in which it may make sense to fall back on the tried and true. First,
some implementations of iostream operations are less efficient than the corresponding C stream operations, so it's possible
(though unlikely — see Item M 16) that you have an application in which this makes a significant difference. Bear in mind,

though, that this says nothing about iostreams in general, only about particular implementations; see Iltem M23. Second, the
iostream library was modified in some rather fundamental ways during the course of its standardization (see Item 49), so

applications that must be maximally portable may discover that different vendors support different approximations to the
standard. Finally, because the classes of the iostream library have constructors and the functionsin <st di 0. h> do not, there
are rare occasions involving the initialization order of static objects (see Item 47) when the standard C library may be more

useful simply because you know that you can always call it with impunity.

The type safety and extensibility offered by the classes and functions in the iostream library are more useful than you might
initially imagine, so don't throw them away just because you're used to <st di 0. h>. After all, even after the transition, you'll
still have your memories.

Incidentally, that's no typo in the Item title; | really mean <i ost r ean® and not <i ost r eam h>. Technically speaking, there
isno such thing as<i ost r eam h> — the °standardization committee eliminated it in favor of <i ost r ean> when they

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (17 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#40995
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41253
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=committee

Effective C++, 2E

truncated the names of the other non-C standard header names. The reasons for their doing this are explained in Item 49, but
what you really need to understand isthat if (asislikely) your compilers support both <i ost r ean® and <i ost r eam h>,
the headers are subtly different. In particular, if you #i ncl ude <i ost r ean®, you get the elements of the iostream library
ensconced within the namespace st d (see ltem 28), but if you #i ncl ude <i ost r eam h>, you get those same elements at
global scope. Getting them at global scope can lead to name conflicts, precisely the kinds of name conflicts the use of
namespaces is designed to prevent. Besides, <i ost r ean islessto typethan <i ost r eam h>. For many people, that's
reason enough to prefer it.

Back to Item 2: Prefer <i ost reant to<st di 0. h>.
Continue to Item 4: Prefer C++-style comments.

Item 3: Prefernewanddel etetonal | oc andfr ee.

The problem with mal | oc and f r ee (and their variants) is ssmple: they don't know about constructors and destructors.
Consider the following two ways to get space for an array of 10 st r i ng objects, one using mal | oc, the other using new:

string *stringArrayl =
static_cast<string*>(malloc(10 * sizeof(string)));

string *stringArray2 = new string[10];

Herest ri ngAr r ayl pointsto enough memory for 10 st r i ng objects, but no objects have been constructed in that memory.
Furthermore, without jumping through some rather obscure linguistic hoops (such as those described in Items M4 and M8), you
have no way to initialize the objectsin the array. In other words, st r i ngAr r ay1 is pretty useless. In contrast,

st ri ngArray?2 pointsto an array of 10 fully constructed st r i ng objects, each of which can safely be used in any operation
takingast ri ng.

Nonetheless, let's suppose you magically managed to initialize the objectsinthe st ri ngArr ay1 array. Later onin your
program, then, you'd expect to do this:

free(stringArrayl);

delete [] stringArray2; /Il see Item5 for why the
/1 "[]" is necessary

Thecall tof r ee will release the memory pointed to by st r i ngAr r ay1, but no destructors will be called onthestri ng
objectsin that memory. If the st r i ng objects themselves allocated memory, asst r i ng objects are wont to do, al the
memory they allocated will be lost. On the other hand, when del et e iscalled onst ri ngAr r ay2, adestructor iscalled for
each object in the array before any memory is released.

Because newand del et e interact properly with constructors and destructors, they are clearly the superior choice.

Mixing newand del et e withnmal | oc andf r ee isusualy abad idea. When you try to call f r ee on a pointer you got from
newor call del et e on apointer you got from mal | oc, the results are undefined, and we al know what "undefined" means: it
means it works during development, it works during testing, and it blows up in your most important customers faces.

The incompatibility of new/del et e and mal | oc/f r ee can lead to some interesting complications. For example, the
st r dup function commonly found in <st r i ng. h> takesa char * -based string and returns a copy of it:

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (18 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5218
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#33985

Effective C++, 2E

char * strdup(const char *ps); /1l return a copy of what
/1l ps points to

At some sites, both C and C++ use the same version of st r dup, so the memory alocated inside the function comes from

mal | oc. Asaresult, unwitting C++ programmers calling st r dup might overlook the fact that they must usef r ee on the
pointer returned from st r dup. But wait! To forestall such complications, some sites might decide to rewrite st r dup for C++
and have this rewritten version call newinside the function, thereby mandating that callerslater use del et e. Asyou can
imagine, this can lead to some pretty nightmarish portability problems as code is shuttled back and forth between sites with
different formsof st r dup.

Still, C++ programmers are as interested in code reuse as C programmers, and it's asimple fact that there are lots of C libraries
based onmal | oc and f r ee containing code that is very much worth reusing. When taking advantage of such alibrary, it's
likely you'll end up with the responsibility for f r eeing memory mal | oced by the library and/or mal | ocing memory the
library itself will f r ee. That's fine. There's nothing wrong with calling mal | oc and f r ee inside a C++ program as long as
you make sure the pointers you get from mal | oc always meet their maker in f r ee and the pointers you get from new
eventually find their way to del et e. The problems start when you get sloppy and try to mix newwith f r ee or mal | oc with
del et e. That'sjust asking for trouble.

Giventhat mal | oc and f r ee areignorant of constructors and destructors and that mixing mal | oc/f r ee with new/del et e
can be more volatile than a fraternity rush party, you're best off sticking to an exclusive diet of news and del et eswhenever
you can.

Back to Item 3: Prefer new and delete to malloc and free.
Continue to Memory Management

Item 4. Prefer C++-style comments.

The good old C comment syntax works in C++ too, but the newfangled C++ comment-to-end-of-line syntax has some distinct
advantages. For example, consider this situation:

if (a>b) {
/1l int tenp = a; /'l swap a and b
/Il a = b;
Il b = tenp;

}

Here you have a code block that has been commented out for some reason or other, but in a stunning display of software
engineering, the programmer who originally wrote the code actually included a comment to indicate what was going on. When
the C++ comment form was used to comment out the block, the embedded comment was of no concern, but there could have
been a serious problem had everybody chosen to use C-style comments:

if (a>b) {
[* int tenp = a; /* swap a and b */
a = b;
b = tenp;
*/
}

Notice how the embedded comment inadvertently puts a premature end to the comment that is supposed to comment out the
code block.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (19 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

C-style comments still have their place. For example, they're invaluable in header files that are processed by both C and C++
compilers. Still, if you can use C++-style comments, you are often better off doing so.

It's worth pointing out that retrograde preprocessors that were written only for C don't know how to cope with C++-style
comments, so things like the following sometimes don't work as expected:

#define LI GHT_SPEED 3e8 /1 msec (in a vacuum

Given a preprocessor unfamiliar with C++, the comment at the end of the line becomes part of the macro! Of course, asis
discussed in Item 1, you shouldn't be using the preprocessor to define constants anyway .

Back to Item 4. Prefer C++-style comments.
Continue to Item 5: Use the same form in corresponding uses of new and del ete.

Memory Management

Memory management concerns in C++ fall into two general camps: getting it right and making it perform efficiently. Good
programmers understand that these concerns should be addressed in that order, because a program that is dazzlingly fast and
astoundingly small is of little useif it doesn't behave the way it's supposed to. For most programmers, getting things right means
calling memory allocation and deallocation routines correctly. Making things perform efficiently, on the other hand, often
means writing custom versions of the allocation and deall ocation routines. Getting things right there is even more important.

On the correctness front, C++ inherits from C one of its biggest headaches, that of potential memory leaks. Even virtual
memory, wonderful invention though it is, isfinite, and not everybody has virtual memory in the first place.

In C, amemory leak arises whenever memory allocated through mal | oc is never returned through f r ee. The names of the
playersin C++ arenewand del et e, but the story is much the same. However, the situation isimproved somewhat by the
presence of destructors, because they provide a convenient repository for callsto del et e that all objects must make when they
are destroyed. At the same time, there is more to worry about, because newimplicitly calls constructors and del et e implicitly
calls destructors. Furthermore, there is the complication that you can define your own versions of oper at or newand

oper at or del et e, both inside and outside of classes. Thisgivesrise to al kinds of opportunities to make mistakes. The
following Items (as well as ltem M8) should help you avoid some of the most common ones.

Back to Memory Management
Continue to Item 6: Use delete on pointer members in destructors.

Item 5: Use the same form in corresponding uses of newand del et e.
What's wrong with this picture?

string *stringArray = new string[100];

del ete stringArray;

Everything here appears to be in order — the use of newis matched with ause of del et e — but something is still quite
wrong: your program's behavior is undefined. At the very least, 99 of the 100 st r i ng objects pointed to by st ri ngArr ay
are unlikely to be properly destroyed, because their destructors will probably never be called.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (20 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#33985

Effective C++, 2E

When you use new, two things happen. First, memory is allocated (viathe function oper at or new, about which I'll have
moreto say in Items 7-10 as well as Item M8). Second, one or more constructors are called for that memory. When you use
del et e, two other things happen: one or more destructors are called for the memory, then the memory is deallocated (viathe
function oper at or del et e — seeltems 8 and M8). The big question for del et e isthis. how many objects reside in the
memory being deleted? The answer to that determines how many destructors must be called.

Actually, the question is simpler: does the pointer being deleted point to a single object or to an array of objects? The only way
for del et e to know isfor you to tell it. If you don't use bracketsin your use of del et e, del et e assumesasingle object is
pointed to. Otherwise, it assumes that an array is pointed to:

string *stringPtrl new string;

string *stringPtr2 new string[100];

delete stringPtrl; /| del ete an obj ect
delete [] stringPtr2; /'l delete an array of
/| objects

What would happen if you used the”[] " formon st ri ngPt r 1? The result is undefined. What would happen if you didn't use
the"[] " formonstri ngPt r 2? Well, that's undefined too. Furthermore, it's undefined even for built-in typeslikei nt s, even
though such types lack destructors. The rule, then, issimple: if youuse[] when you call new, you must use[] when you call
del et e. If youdon'tuse[] whenyou call new, don'tuse[] whenyou call del et e.

Thisisaparticularly important rule to bear in mind when you are writing a class containing a pointer data member and also
offering multiple constructors, because then you've got to be careful to use the same form of newin all the constructors to
initialize the pointer member. If you don't, how will you know what form of del et e to usein your destructor? For a further
examination of thisissue, see ltem 11.

Thisrule is also important for thet ypedef -inclined, because it meansthat at ypedef 's author must document which form of
del et e should be employed when new is used to conjure up objects of thet ypedef type. For example, consider this
t ypedef:

t ypedef string AddressLines[4]; /1l a person's address
/1l has 4 |ines, each of
/1l which is a string
Because Addr essLi nes isan array, this use of new,
string *pal = new AddressLi nes; /1l note that "new
/| AddressLi nes" returns

/1l a string*, just like
/1l "new string[4]" would

must be matched with the array form of del et e:

del ete pal; /1 undefi ned!

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (21 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#33985
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#33985

Effective C++, 2E

delete [] pal; /[l fine

To avoid such confusion, you're probably best off abstaining fromt ypedef sfor array types. That should be easy, however,
because the standard C++ library (see Item 49) includesst ri ng and vect or templates that reduce the need for built-in
arraysto nearly zero. Here, for example, Addr essLi nes could be definedto beavect or of stri ngs. Thatis,

Addr essLi nes could be of typevect or <st ri ng>.

Back to Item 5: Use the same form in corresponding uses of new and delete.
Continue to Item 7: Be prepared for out-of-memory conditions.

Item 6: Use del et e on pointer members in destructors.

Most of the time, classes performing dynamic memory allocation will use new in the constructor(s) to alocate the memory and
will later use del et e in the destructor to free up the memory. Thisisn't too difficult to get right when you first write the class,
provided, of course, that you remember to employ del et e on all the members that could have been assigned memory in any
constructor.

However, the situation becomes more difficult as classes are maintained and enhanced, because the programmers making the
modifications to the class may not be the ones who wrote the class in the first place. Under those conditions, it's easy to forget
that adding a pointer member almost always requires each of the following:

. Initialization of the pointer in each of the constructors. If no memory isto be allocated to the pointer in a particular
constructor, the pointer should beinitialized to O (i.e., the null pointer).
. Deletion of the existing memory and assignment of new memory in the assignment operator. (See also Item 17.)

. Deletion of the pointer in the destructor.

If you forget to initialize a pointer in a constructor, or if you forget to handle it inside the assignment operator, the problem
usually becomes apparent fairly quickly, so in practice those issues don't tend to plague you. Failing to delete the pointer in the
destructor, however, often exhibits no obvious external symptoms. Instead, it manifestsitself as a subtle memory leak, a slowly
growing cancer that will eventually devour your address space and drive your program to an early demise. Because this
particular problem doesn't usually call attention to itself, it's important that you keep it in mind whenever you add a pointer
member to aclass.

Note, by the way, that deleting a null pointer is always safe (it does nothing). Thus, if you write your constructors, your
assignment operators, and your other member functions such that each pointer member of the classis always either pointing to
valid memory or isnull, you can merrily del et e away in the destructor without regard for whether you ever used newfor the
pointer in question.

There's no reason to get fascist about this Item. For example, you certainly don't want to use del et e on a pointer that wasn't
initialized vianew, and, except in the case of smart pointer objects (see Item M28), you almost never want to delete a pointer
that was passed to you in the first place. In other words, your class destructor usually shouldn't be using del et e unless your
class members were the ones who used newin the first place.

Speaking of smart pointers, one way to avoid the need to delete pointer membersis to replace those members with smart pointer
objects like the standard C++ Library'saut o_pt r . To see how this can work, take alook at Items M9 and M 10.

Back to Item 6: Use delete on pointer members in destructors.
Continue to Item 8: Adhere to convention when writing operator new and operator delete.

Item 7: Be prepared for out-of-memory conditions.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (22 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#61766
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5292
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#38223

Effective C++, 2E

When oper at or newcan't alocate the memory you request, it throws an exception. (It used to return 0, and some older
compilers still do that. Y ou can make your compilersdo it again if you want to, but I'll defer that discussion until the end of this
Item.) Deep in your heart of hearts, you know that handling out-of-memory exceptionsis the only truly moral course of action.
At the same time, you are keenly aware of the fact that doing so isapain in the neck. As aresult, chances are that you omit such
handling from time to time. Like always, perhaps. Still, you must harbor a lurking sense of guilt. | mean, what if newreally
doesyield an exception?

Y ou may think that one reasonable way to cope with this matter isto fall back on your daysin the gutter, i.e., to use the
preprocessor. For example, acommon C idiom is to define a type-independent macro to allocate memory and then check to
make sure the allocation succeeded. For C++, such a macro might look something like this:

#defi ne NEW PTR TYPE) \
try { (PTR) = new TYPE;, } \
catch (std::bad alloc& { assert(0); }

("Wait! What'sthisst d: : bad_al | oc business?’, you ask. bad_al | oc isthetype of exception oper at or newthrows
when it can't satisfy a memory allocation request, and st d is the name of the namespace (see Item 28) wherebad_al | oc is
defined. "Okay," you continue, "what'sthisasser t business?' Well, if you look in the standard C include file<assert. h>
(or its namespace-savvy C++ equivalent, <casser t > — see Item 49), you'll find that asser t isamacro. The macro checks
to see if the expression it's passed is non-zero, and, if it's not, it issues an error message and callsabor t . Okay, it does that
only when the standard macro NDEBUG isn't defined, i.e., in debug mode. In production mode, i.e., when NDEBUG is defined,
assert expandsto nothing— toavoi d statement. Y ou thus check asser t ions only when debugging.)

This NEWmacro suffers from the common error of using an assert to test a condition that might occur in production code
(after al, you can run out of memory at any time), but it also has a drawback specific to C++: it failsto take into account the
myriad ways in which new can be used. There are three common syntactic forms for getting new objects of type T, and you
need to deal with the possibility of exceptions for each of these forms:

new T,

new T(constructor argunents);

new T[si ze];

This oversmplifies the problem, however, because clients can define their own (overloaded) versions of oper at or new, so
programs may contain an arbitrary number of different syntactic forms for using new.

How, then, to cope? If you're willing to settle for avery simple error-handling strategy, you can set things up so that if arequest
for memory cannot be satisfied, an error-handling function you specify is called. This strategy relies on the convention that
when oper at or new cannot satisfy arequest, it calls a client-specifiable error-handling function — often called a new-
handler — before it throws an exception. (In truth, what oper at or newreally doesis slightly more complicated. Details are
provided in Item 8.)

To specify the out-of-memory-handling function, clientscall set _new_handl er, which is specified in the header <new>
more or lesslike this:

typedef void (*new _handler)();
new_handl er set _new_handl er (new_handl er p) throw);

Asyou can see, new_handl er isatypedef for a pointer to afunction that takes and returns nothing, and

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (23 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

set _new_handl er isafunction that takes and returnsanew_handl er .
set _new_handl er 's parameter isapointer to the function oper at or newshould call if it can't alocate the requested
memory. The return value of set _new_handl er isapointer to the function in effect for that purpose before

set _new_handl er wascalled.

Youuseset new _handl er likethis:

/1 function to call if operator new can't allocate enough nenory
voi d noMor eMenory()
{
cerr << "Unable to satisfy request for nmenory\n";
abort();
}
i nt main()
{

set _new_handl er (noMor eMenory) ;

i nt *pBi gDataArray = new i nt[100000000];

}

If, as seemslikely, oper at or newis unable to alocate space for 100,000,000 integers, noNMbr eMenor y will be called, and
the program will abort after issuing an error message. Thisisamarginally better way to terminate the program than a simple
core dump. (By the way, consider what happens if memory must be dynamically allocated during the course of writing the error
messagetocerr ...)

When oper at or new cannot satisfy areguest for memory, it calls the new-handler function not once, but repeatedly until it
can find enough memory. The code giving rise to these repeated callsis shown in Item 8, but this high-level descriptionis

enough to conclude that a well-designed new-handler function must do one of the following:

. Makemorememory available. Thismay allow oper at or news next attempt to allocate the memory to succeed. One
way to implement this strategy isto allocate alarge block of memory at program start-up, then release it the first time the
new-handler isinvoked. Such arelease is often accompanied by some kind of warning to the user that memory islow
and that future requests may fail unless more memory is somehow made available.

. Install adifferent new-handler. If the current new-handler can't make any more memory available, perhaps it knows of
adifferent new-handler that is more resourceful. If so, the current new-handler can install the other new-handler in its
place (by caling set _new_handl er). The next time oper at or newcallsthe new-handler function, it will get the
one most recently installed. (A variation on thisthemeis for a new-handler to modify its own behavior, so the next time
it'sinvoked, it does something different. One way to achieve thisis to have the new-handler modify static or global data
that affects the new-handler's behavior.)

. Deingtall the new-handler, i.e., passthe null pointer to set _new_handl| er . With no new-handler installed,
oper at or newwill throw an exception of type st d: : bad_al | oc when its attempt to allocate memory is
unsuccessful.

. Throw an exception of typest d: : bad_al | oc or some type derived from st d: : bad_al | oc. Such exceptions
will not be caught by oper at or new, so they will propagate to the site originating the request for memory. (Throwing
an exception of adifferent type will violate oper at or news exception specification. The default action when that
happensisto call abor t , soif your new-handler is going to throw an exception, you definitely want to make sureit's

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (24 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

fromthest d: : bad_al | oc hierarchy. For more information on exception specifications, see [tem M14.)

. Not return, typicaly by callingabort or exi t, both of which are found in the standard C library (and thusin the
standard C++ library — see Item 49).

These choices give you considerable flexibility in implementing new-handler functions.

Sometimes you'd like to handle memory allocation failuresin different ways, depending on the class of the object being
allocated:

class X {
publi c:
static void out O Menory();

b

class Y {
publi c:
static void out Of Menory();

3

X* pl = new X /1 if allocation is unsuccessful,
/1 call X :outCO Menory

Y* p2 = new Y, /1 if allocation is unsuccessful,

/1 call Y::outCO Menory

C++ has no support for class-specific new-handlers, but it doesn't need to. Y ou can implement this behavior yourself. You just
have each class provide itsown versions of set _new_handl| er and oper at or new. Theclasssset _new_handl er
allows clients to specify the new-handler for the class (just like the standard set _new_handl| er alows clientsto specify the
global new-handler). The classsoper at or new ensures that the class-specific new-handler is used in place of the global new-
handler when memory for class objectsis allocated.

Consider aclass X for which you want to handle memory allocation failures. Y ou'll have to keep track of the function to call
when oper at or new can't allocate enough memory for an object of type X, so you'll declare a static member of type
new_handl er to point to the new-handler function for the class. Y our class X will look something like this:

class X {

publi c:
static new_handl er set_new_handl er (new_handl er p);
static void * operator new(size_t size);

private:
static new _handl er currentHandl er;

b

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (25 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#6011

Effective C++, 2E

Static class members must be defined outside the class definition. Because you'll want to use the default initialization of static
objectsto O, you'll define X: : cur r ent Handl er without initializing it:

new_handl er X: :currentHandl er; /'l sets currentHandl er
[l to O (i.e., null) by
/1 default

Theset _new _handl er functionin class X will save whatever pointer is passed to it. It will return whatever pointer had been
saved prior to the call. Thisis exactly what the standard version of set _new_handl er does:

new_handl er X :set_new _handl er (new_handl er p)
{
new_handl er ol dHandl er = current Handl er;
current Handl er = p;
return ol dHandl er;

}

Finally, X'soper at or newwill do the following:

1. Cdl the standard set _new_handl er with X's error-handling function. Thiswill install X's new-handler as the global
new- handler. In the code below, notice how you explicitly reference the st d scope (where the standard
set _new_handl er resides) by usingthe": : " notation.

2. Call theglobal oper at or newto actually allocate the requested memory. If theinitial attempt at allocation fails, the
global oper at or newwill invoke X's new-handler, because that function was just installed as the global new-handler.
If the global oper at or newis ultimately unable to find away to alocate the requested memory, it will throw a
st d: : bad_al | oc exception, which X'soper at or newwill catch. X'soper at or newwill then restore the global
new-handler that was originally in place, and it will return by propagating the exception.

3. Assuming the global oper at or newwas able to successfully alocate enough memory for an object of type X, X's
oper at or newwill again call the standard set _new_handl er to restore the global error-handling function to what
it was originally. It will then return a pointer to the allocated memory.

Here's how you say all that in C++:
void * X :operator new(size_ t size)

{

new_handl er gl obal Handl er = /1l install X's
std::set_new_handl er (current Handl er) ; /1 handl er

voi d *nenory;

try { /] attenpt
menory = ::operator new size); /1 allocation
}
catch (std::bad_alloc& { /'l restore
std: : set _new_handl er (gl obal Handl er) ; /'l handl er;
t hr ow; /| propagate
} /] exception
std::set_new_handl er (gl obal Handl er) ; /'l restore
/1 handl er

return nenory;

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (26 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

}

If the duplicated callsto st d: : set _new_handl| er caught your eye, turn to Item M9 for information on how to eliminate
them.

Clients of class X use its new-handling capabilities like this:

voi d noMoreMenory(); /1 decl. of function to
/1 call if menory allocation
/1l for X objects fails

X::set_new _handl er (noMor eMenory) ;
/'l set noMoreMenory as X' s
/'l new handling function

X *px1 = new X; /1 if menory allocation
/1 fails, call noMoreMenory

string *ps = new string; /1 if menory allocation
/1l fails, call the gl oba
/1 new handl i ng function
[l (if there is one)

X::set _new_handl er (0); /'l set the X-specific
/'l new handling function
/1l to nothing (i.e., null)

X *px2 = new X; /1 if menory allocation
/1 fails, throw an exception
/1 imediately. (There is
/'l no new handling function
/1l for class X.)

Y ou may note that the code for implementing this scheme is the same regardless of the class, so a reasonable inclination would
beto reuseit in other places. As Item 41 explains, both inheritance and templates can be used to create reusable code. However,

in this case, it's a combination of the two that gives you what you need.

All you haveto dois create a "mixin-style" base class, i.e., a base class that's designed to allow derived classes to inherit a
single specific capability — in this case, the ability to set a class-specific new-handler. Then you turn the base classinto a
template. The base class part of the design lets derived classesinherit theset _new_handl er and oper at or newfunctions
they all need, while the template part of the design ensures that each inheriting class gets adifferent cur r ent Handl er data
member. The result may sound a little complicated, but you'll find that the code looks reassuringly familiar. In fact, about the
only real differenceisthat it's now reusable by any class that wantsiit:

t enpl at e<cl ass T> /1 "mxin-style" base class
cl ass NewHandl| er Support { /1l for class-specific
publi c: /'l set_new_handl er support

static new_handl er set_new_handl er (new_handl er p);
static void * operator new(size_t size);

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (27 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5292

Effective C++, 2E

private:
stati c new _handl er currentHandl er;

b

t enpl at e<cl ass T>
new_handl er NewHandl er Support <T>:: set _new_handl er (new_handl er p)
{

new_handl er ol dHandl er = current Handl er;

current Handl er = p;

return ol dHandl er;

}

t enpl at e<cl ass T>
voi d * NewHandl er Support <T>::operator new(size_ t size)

{

new_handl er gl obal Handl er =
std::set_new_handl er (current Handl er) ;

voi d *nenory;

try {
menory = ::operator new size);
}

catch (std::bad_alloc& {
std::set _new handl er (gl obal Handl er) ;
t hr ow,

}

std::set_new_handl er (gl obal Handl er) ;

return nenory;

}

/1 this sets each currentHandler to O
t enpl at e<cl ass T>
new_handl er NewHandl er Support <T>:: current Handl er;

With this class template, adding set _new_handl| er support to class X iseasy: X just inherits from
newHand| er Suppor t <X>:

/'l note inheritance fromm xin base class tenplate. (See
[/l ny article on counting objects for information on why
/1 private inheritance m ght be preferable here.)

class X: public NewHandl er Support <X> {

. /'l as before, but no declarations for
}; /'l set_new_handl er or operator new

Clients of X remain obliviousto al the behind-the-scenes action; their old code continues to work. Thisis good, because one
thing you can usually rely on your clients being is oblivious.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (28 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MAGAZINE/CO_FRAME.HTM

Effective C++, 2E

Using set _new_handl er isaconvenient, easy way to cope with the possibility of out-of-memory conditions. Certainly it'sa
lot more attractive than wrapping every use of newinsideat r y block. Furthermore, templates like NewHand| er Suppor t
make it simple to add a class-specific new-handler to any class that wants one. Mixin-style inheritance, however, invariably
leads to the topic of multiple inheritance, and before starting down that slippery slope, you'll definitely want to read Item 43.

Until 1993, C++ required that oper at or newreturn O when it was unable to satisfy a memory request. The current behavior
isfor oper at or newtothrow ast d: : bad_al | oc exception, but alot of C++ was written before compilers began
supporting the revised specification. The °C++ standardization committee didn't want to abandon the established test-for-0 code
base, so they provided alternative forms of oper at or new (and oper at or new{] — see Item 8) that continue to offer the
traditional failure-yields-0 behavior. These forms are called "nothrow" forms because, well, they never do at hr ow, and they
employ not hr ow objects (defined in the standard header <new>) at the point where new s used:

class Wdget { ... };

W dget *pwl = new W dget; /1 throws std::bad_alloc if
/1 allocation fails

if (pwl == 0) ... /1l this test nust fail

W dget *pw2 =

new (not hrow) W dget; /'l returns O if allocation

/] fails

if (pw2 == 0) ... /1l this test may succeed

Regardless of whether you use "normal” (i.e., exception-throwing) new or "nothrow" new, it'simportant that you be prepared
to handle memory allocation failures. The easiest way to do that is to take advantage of set _new_handl er , because it works
with both forms.

Back to Item 7: Be prepared for out-of-memory conditions.
Continue to Item 9: Avoid hiding the "normal" form of new.

Item 8: Adhere to convention when writing oper at or newand oper at or del et e.

When you take it upon yourself to write oper at or new (Item 10 explains why you might want to), it's important that your
function(s) offer behavior that is consistent with the default oper at or new. In practical terms, this means having the right

return value, calling an error-handling function when insufficient memory is available (see Item 7), and being prepared to cope
with requests for no memory. Y ou aso need to avoid inadvertently hiding the "normal” form of new, but that's atopic for Item
9.

The return value part is easy. If you can supply the requested memory, you just return a pointer to it. If you can't, you follow the
rule described in Item 7 and throw an exception of typest d: : bad_al | oc.

It's not quite that simple, however, because oper at or newactually tries to allocate memory more than once, calling the error-
handling function after each failure, the assumption being that the error-handling function might be able to do something to free
up some memory. Only when the pointer to the error-handling function is null doesoper at or newthrow an exception.

In addition, the °-C++ standard requires that oper at or newreturn alegitimate pointer even when 0 bytes are requested.
(Believeit or not, requiring this odd-sounding behavior actually simplifies things elsewhere in the language.)

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (29 / 189) [2003-6-11 20:02:42]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=committee
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cstandard

Effective C++, 2E

That being the case, pseudocode for a non-member oper at or newlookslikethis:

void * operator new(size t size) /'l your operator new m ght
{ /1l take additional parans
I f (size == 0) { /1 handl e O-byte requests
size = 1; /'l by treating them as
} /'l 1-byte requests
while (1) {

attenpt to allocate size bytes;

if (the allocation was successful)
return (a pointer to the nenory);

/1 allocation was unsuccessful; find out what the
/1l current error-handling function is (see Item7)
new_handl er gl obal Handl er = set _new handl er (0);
set _new _handl er (gl obal Handl er) ;

i f (gl obal Handl er) (*gl obal Handl er) ();
el sethrow std::bad_alloc();

}
}

Thetrick of treating requests for zero bytes asif they were really requests for one byte looks slimy, but it's simple, it'slegal, it
works, and how often do you expect to be asked for zero bytes, anyway?

Y ou may also look askance at the place in the pseudocode where the error-handling function pointer is set to null, then promptly
reset to what it was originally. Unfortunately, there is no way to get at the error-handling function pointer directly, so you have
tocal set _new_handl er tofind out what it is. Crude, yes, but also effective.

Item 7 remarks that oper at or new contains an infinite loop, and the code above shows that loop explicitly —whi | e (1) is
about asinfinite asit gets. The only way out of the loop isfor memory to be successfully allocated or for the new-handling
function to do one of the things described in Item 7: make more memory available, install a different new-handler, deinstall the
new-handler, throw an exception of or derived from st d: : bad_al | oc, or fail to return. It should now be clear why the new-
handler must do one of those things. If it doesn't, the loop inside oper at or newwill never terminate.

One of the things many people don't realize about oper at or newisthat it'sinherited by subclasses. That can lead to some
interesting complications. In the pseudocode for oper at or new above, notice that the function triesto allocate si ze bytes
(unlesssi ze is0). That makes perfect sense, because that's the argument that was passed to the function. However, most class-
specific versions of oper at or new (including the one you'll find in Item 10) are designed for a specific class, not for a class
or any of its subclasses. That is, given an oper at or newfor aclass X, the behavior of that function is amost always carefully
tuned for objects of sizesi zeof (X) — nothing larger and nothing smaller. Because of inheritance, however, it is possible that
theoper at or newin abase class will be called to allocate memory for an object of aderived class:

cl ass Base {

publi c:
static void * operator new(size_t size);

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (30 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

3

cl ass Derived: public Base /1 Derived doesn't declare
{ ... }; /| operator new

Derived *p = new Deri ved,; /| calls Base::operator new

If Base'sclass-specific oper at or newwasn't designed to cope with this— and chances are slim that it was — the best way
for it to handle the situation is to slough off calls requesting the "wrong" amount of memory to the standard oper at or new,
like this:

void * Base::operator new(size t size)

{
if (size != sizeof(Base)) /[l if size is "wong,"
return ::operator new size); /1 have standard operat or
/1 new handl e the request
/1 otherw se handl e
/'l the request here
}

"Hold on!" | hear you cry, "Y ou forgot to check for the pathol ogical-but-neverthel ess-possible case where si ze is zero!"
Actudly, | didn't, and please stop using hyphens when you cry out. The test is still there, it's just been incorporated into the test
of si ze against si zeof (Base) . The *C++ standard works in mysterious ways, and one of those waysisto decree that all
freestanding classes have nonzero size. By definition, si zeof (Base) can never be zero (even if it has no members), so if

Si ze iszero, therequest will be forwarded to : : oper at or new, and it will become that function's responsibility to treat the
request in areasonable fashion. (Interestingly, si zeof (Base) may be zero if Base isnot afreestanding class. For details,
consult my article on counting objects.)

If you'd like to control memory allocation for arrays on a per-class basis, you need to implement oper at or news array-
specific cousin, oper at or new] . (Thisfunction isusually called "array new," becauseit's hard to figure out how to
pronounce "operator new[]".) If you decide to write oper at or newf] , remember that al you're doing is allocating raw
memory — you can't do anything to the as-yet-nonexistent objectsin the array. In fact, you can't even figure out how many
objects will bein the array, because you don't know how big each object is. After all, abase classsoper at or new{] might,
through inheritance, be called to allocate memory for an array of derived class objects, and derived class objects are usually
bigger than base class objects. Hence, you can't assume inside Base: : oper at or new|] that the size of each object going
intothearray issi zeof (Base) , and that means you can't assume that the number of objectsin the array is(byt es
request ed) / si zeof (Base) . For more information on oper at or new |, seeltem M8.

So much for the conventions you need to follow when writing oper at or new (and oper at or new|]). For oper at or
del et e (and itsarray counterpart, oper at or del et e[]), thingsare simpler. About all you need to remember isthat C++
guarantees it's aways safe to delete the null pointer, so you need to honor that guarantee. Here's pseudocode for a non-member
operator del ete:

voi d operator delete(void *rawvenory)

{
I f (rawivenory == 0) return; /1 do nothing if the null

/1l pointer is being deleted

deal | ocate the nenory pointed to by rawMenory;

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (31 / 189) [2003-6-11 20:02:42]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cstandard
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MAGAZINE/CO_FRAME.HTM
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#33985

Effective C++, 2E

return;

}

The member version of this function is simple, too, except you've got to be sure to check the size of what's being del eted.
Assuming your class-specific oper at or newforwards requests of the "wrong" sizeto: : oper at or new, you've got to
forward "wrongly sized" deletion requeststo: : oper at or del et e:

cl ass Base { /| sanme as before, but now
publ i c: /1 op. delete is declared
static void * operator newsize_t size);
static void operator delete(void *rawMenory, size_t size);

b
voi d Base: :operator del ete(void *rawMenory, size_t size)
{
if (rawivenory == 0) return; /'l check for null pointer
if (size != sizeof(Base)) { [l if size is "wong,"
;. operator delete(rawMenory); // have standard operator
return; /1 delete handl e the request
}

deal | ocate the nenory pointed to by rawMenory;

return;

}

The conventions, then, for oper at or newand oper at or del et e (and their array counterparts) are not particularly
onerous, but it isimportant that you obey them. If your allocation routines support new-handler functions and correctly deal
with zero-sized requests, you're all but finished, and if your deallocation routines cope with null pointers, there's little more to
do. Add support for inheritance in member versions of the functions, and presto! — you're done.

Back to Item 8: Adhere to convention when writing operator new and operator delete.
Continue to Item 10: Write operator delete if you write operator new.

Item 9: Avoid hiding the "normal” form of new.

A declaration of aname in an inner scope hides the same name in outer scopes, so for afunction f at both global and class
scope, the member function will hide the global function:

void f(); /1 global function
class X {
publi c:

void f(); /1 menber function
1
X X;

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (32 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

f(); /1 calls global f
x.f(); /1 calls X :f

Thisis unsurprising and normally causes no confusion, because global and member functions are usually invoked using
different syntactic forms. However, if you add to this class an oper at or newtaking additional parameters, the result is likely
to be an eye-opener:

class X {
publi c:
void f();

/'l operator new allow ng specification of a
/'l new handl i ng function
static void * operator newsize_t size, new_handler p);

b
voi d speci al ErrorHandl er(); /1 definition is el sewhere
X *px1l =

new (speci al ErrorHandl er) X [l calls X :operator new
X *px2 = new X; Il error!

By declaring afunction called "operator new" inside the class, you inadvertently block access to the "normal” form of new.
Why thisis so isdiscussed in Item 50. Here we're more interested in figuring out how to avoid the problem.

One solution isto write a class-specific oper at or newthat supports the "normal™ invocation form. If it does the same thing
asthe global version, that can be efficiently and elegantly encapsulated as an inline function:

class X {
publi c:
void f();

static void * operator newsize_ t size, new _handler p);

static void * operator newsize_t size)
{ return ::operator new(size); }

H
X *px1l =
new (speci al ErrorHandl er) X; /1l calls X :operator
/'l new(size_t, new_handl er)
X* px2 = new X [l calls X :operator

/'l new(size_t)
An adternative is to provide a default parameter value (see Item 24) for each additional parameter you add to oper at or new:.

class X {

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (33 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

publi c:
void f();
static
voi d * operator new(size_t size, /'l note default
new_handler p = 0); /'l value for p
3
X *px1 = new (special ErrorHandl er) X; /'l fine
X* px2 = new X; /'l also fine

Either way, if you later decide to customize the behavior of the "normal” form of new, all you need to do is rewrite the
function; callers will get the customized behavior automatically when they relink.

Back to Item 9: Avoid hiding the "normal” form of new.
Continue to Constructors, Destructors, and Assignment Operators

Item 10: Write oper at or del et e if you write oper at or new.

Let's step back for amoment and return to fundamentals. Why would anybody want to write their own version of oper at or
newor oper at or del et e inthefirst place?

More often than not, the answer is efficiency. The default versions of oper at or newand oper at or del et e are perfectly
adequate for general-purpose use, but their flexibility inevitably leaves room for improvementsin their performance in amore
circumscribed context. Thisis especially true for applications that dynamically allocate alarge number of small objects.

As an example, consider aclass for representing airplanes, where the Ai r pl ane class contains only a pointer to the actual
representation for airplane objects (a technique discussed in Item 34):

class AirplaneRep { ... }; /'l representation for an
/'l Airplane object

class Airplane {

publi c:

private:
Ai rpl aneRep *rep; /]l pointer to representation

}

AnAi r pl ane object is not very big; it contains but a single pointer. (As explained in Items 14 and M 24, it may implicitly
contain a second pointer if the Ai r pl ane class declares virtual functions.) When you allocate an Ai r pl ane object by calling
oper at or new, however, you probably get back more memory than is needed to store this pointer (or pair of pointers). The
reason for this seemingly wayward behavior has to do with the need for oper at or newand oper at or del et e to
communicate with one another.

Because the default version of oper at or newis ageneral-purpose allocator, it must be prepared to allocate blocks of any
size. Similarly, the default version of oper at or del et e must be prepared to deallocate blocks of whatever size oper at or
new alocated. For oper at or del et e to know how much memory to deallocate, it must have some way of knowing how
much memory oper at or newallocated in thefirst place. A common way for oper at or newtotell oper at or del et e
how much memory it allocated is by prepending to the memory it returns some additional data that specifies the size of the

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (34 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41284

Effective C++, 2E

allocated block. That is, when you say this,

Airpl ane *pa = new Airpl ane;
you don't necessarily get back ablock of memory that looks like this:
Instead, you often get back a block of memory that looks more like this:

For small objects like those of class Ai r pl ane, thisadditional bookkeeping data can more than double the amount of memory
needed for each dynamically allocated object (especially if the class contains no virtual functions).

If you're devel oping software for an environment in which memory is precious, you may not be able to afford this kind of
spendthrift allocation. By writing your own oper at or newfor the Ai r pl ane class, you can take advantage of the fact that
al Ai r pl ane objects are the same size, so there isn't any need for bookkeeping information to be kept with each alocated
block.

One way to implement your class-specific oper at or newisto ask the default oper at or newfor big blocks of raw
memory, each block of sufficient sizeto hold alarge number of Ai r pl ane objects. The memory chunksfor Ai r pl ane

objects themselves will be taken from these big blocks. Currently unused chunks will be organized into alinked list — the free
list — of chunksthat are available for future Ai r pl ane use. This may make it sound like you'll have to pay for the overhead
of anext fieldin every object (to support the list), but you won't: the space for the r ep field (which is necessary only for
memory chunksin use as A r pl ane objects) will also serve as the place to store the next pointer (because that pointer is
needed only for chunks of memory not in use as Ai r pl ane objects). You'll arrange for this job-sharing in the usual fashion:
you'll useauni on.

To turn thisdesign into reality, you have to modify the definition of Ai r pl ane to support custom memory management. Y ou
doit asfollows:

class Airplane { /1 nodified class —now supports
publ i c: /| custom nenory nanagenent

static void * operator new(size_ t size);

private:
uni on {
Ai rpl aneRep *rep; /'l for objects in use
Ai rpl ane *next; /1l for objects on free |ist
b

/'l this class-specific constant (see Item 1) specifies how
/1 many Airplane objects fit into a big nenory bl ock;

[l it's initialized bel ow

static const int BLOCK SIZE;

static Airplane *headO Freeli st;

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (35 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

Here you've added the declarations for oper at or new, the union that allowsther ep and next fieldsto occupy the same
memory, a class-specific constant for specifying how big each allocated block should be, and a static pointer to keep track of
the head of the freelist. It'simportant to use a static member for thislast task, because there's one free list for the entire class,

not one freelist for each Ai r pl ane object.

The next thing to do isto write the new oper at or new:

void * Airplane::operator new size_ t size)

{

}

If you've read Item 8, you know that when oper at or new can't satisfy arequest for memory, it's supposed to perform a series

of ritualistic stepsinvolving new-handler functions and exceptions. There is no sign of such steps above. That's because this
oper at or newgetsal the memory it managesfrom: : oper at or new. That meansthisoper at or newcan fail only if
. operat or newdoes. Butif : : oper at or newfails, it must engage in the new-handling ritual (possibly culminating in

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (36 / 189) [2003-6-11 20:02:42]

/'l send requests of the "wong" size to ::operator new);
/1 for details, see Item8
if (size !'= sizeof (Airplane))

return ::operator new size);

Airplane *p = /Il pis nowa pointer to the
headOf Fr eeli st ; /'l head of the free |ist

/1 if pis valid, just nove the list head to the
/'l next elenent in the free |ist
if (p)

headOf FreeLi st = p->next;

el se {
/'l The free list is enpty. Allocate a bl ock of nenory
/'l big enough to hold BLOCK SIZE Airpl ane objects
Ai rpl ane *newBl ock =
static_cast <Airpl ane*>(::operator new BLOCK SIZE *
si zeof (Al rpl ane)));

/1 forma new free list by linking the nmenory chunks
/'l together; skip the zeroth el enent, because you'll
/'l return that to the caller of operator new
for (int i =1; i < BLOCK SIZE-1; ++i)

newBl ock[i].next = &newBl ock[i +1];

/1l termnate the linked Iist with a null pointer
newBl ock[BLOCK_SI ZE- 1] . next = 0;

/'l set pto front of list, headO FreelList to
/1 chunk imedi ately follow ng

p = newBl ock;

headOf FreeLi st = &newBl ock|[1] ;

}

return p;

Effective C++, 2E

the throwing of an exception), so thereisno need for Ai r pl ane'soper at or newto do it, too. In other words, the new-
handler behavior isthere, you just don't seeit, becauseit'shidden inside: : oper at or new.

Giventhisoper at or new, the only thing left to do is provide the obligatory definitions of Ai r pl ane's static data members:

Ai rpl ane *Airpl ane: : headO Fr eeli st ; /1l these definitions
/[l go in an inplenen-
const int Airplane::BLOCK SIZE = 512; /[l tation file, not

/] a header file

There's no need to explicitly set headOf Fr eeLi st to the null pointer, because static members are initialized to O by default.
The value for BLOCK_SI ZE, of course, determines the size of each memory block we get from: : oper at or new.

Thisversion of oper at or newwill work just fine. Not only will it use alot lessmemory for Ai r pl ane objects than the
default oper at or new, it'saso likely to be faster, possibly as much as two orders of magnitude faster. That shouldn't be
surprising. After all, the general version of oper at or new has to cope with memory requests of different sizes, hasto worry
about internal and external fragmentation, etc., whereas your version of oper at or new just manipulates a couple of pointers
inalinked list. It's easy to be fast when you don't have to be flexible.

Atlong last we arein a position to discussoper at or del et e. Remember oper at or del et e? Thisltem is about
oper at or del et e. Ascurrently written, your Ai r pl ane class declaresoper at or new, but it does not declare
oper at or del et e. Now consider what happens when a client writes the following, which is nothing if not eminently
reasonable:

Airpl ane *pa = new Airpl ane; /1 calls
/1 Airplane::operator new

del et e pa; /1 calls ::operator delete

If you listen closely when you read this code, you can hear the sound of an airplane crashing and burning, with much weeping
and wailing by the programmers who knew it. The problem isthat oper at or new (the one defined in Ai r pl ane) returnsa
pointer to memory without any header information, but oper at or del et e (the default, global one) assumes that the memory
it's passed does contain header information! Surely thisis arecipe for disaster.

This exampleillustrates the general rule: oper at or newand oper at or del et e must be written in concert so that they
share the same assumptions. If you're going to roll your own memory allocation routine, be sure to roll one for deallocation, too.
(For another reason why you should follow this advice, turn to the sidebar on placement new and placement del et e in my

article on counting objectsin C++.)

Here's how you solve the problem with the Ai r pl ane class:

class Airplane { /'l sanme as before, except there's
publ i c: /'l now a decl. for operator delete

static void operator delete(void *deadObj ect,
size_t size);

b

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (37 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MAGAZINE/CO_FRAME.HTM#sidebar
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MAGAZINE/CO_FRAME.HTM

Effective C++, 2E

/| operator delete is passed a nenory chunk, which,

/] if it's the right size, is just added to the

/1 front of the list of free chunks

void Airplane::operator del ete(void *deadObj ect,
size_t size)

{
i f (deadCbject == 0) return; /] see Item8
if (size !'= sizeof (Airplane)) { /] see Item38
.. operator del et e(deadOj ect);
return;
}

Ai rpl ane *carcass =
static_cast <Airpl ane*>(deadbj ect) ;

car cass->next = headO Freeli st ;
headOf Fr eeLi st = carcass;

}

Because you were careful in oper at or newto ensure that calls of the "wrong" size were forwarded to the global oper at or
new (see Item 8), you must demonstrate equal care in ensuring that such "improperly sized" objects are handled by the global
version of oper at or del et e. If you did not, you'd run into precisely the problem you have been laboring so arduously to
avoid — a semantic mismatch between newand del et e.

Interestingly, thesi ze_t value C++ passesto oper at or del et e may beincorrect if the object being deleted was derived
from abase class lacking a virtual destructor. Thisis reason enough for making sure your base classes have virtual destructors,
but Item 14 describes a second, arguably better reason. For now, simply note that if you omit virtual destructorsin base classes,

oper at or del et e functions may not work correctly.

All of which iswell and good, but | can tell by the furrow in your brow that what you're realy concerned about is the memory
leak. With all the software development experience you bring to the table, there's no way you'd fail to noticethat Ai r pl ane's
oper at or newcals: : oper at or newto get big blocks of memory, but Airplanesoper at or del et e failsto release
those blocks.4 Memory leak! Memory leak! | can almost hear the alarm bells going off in your head.

Listen to me carefully: thereis no memory leak.

A memory leak arises when memory is allocated, then all pointers to that memory are lost. Absent garbage collection or some
other extralinguistic mechanism, such memory cannot be reclaimed. But this design has no memory leak, because it's never the
case that al pointers to memory are lost. Each big block of memory isfirst broken downinto Ai r pl ane-sized chunks, and
these chunks are then placed on the free list. When clients call Ai r pl ane: : oper at or new, chunks are removed from the
freelist, and clients receive pointers to them. When clients call oper at or del et e, the chunks are put back on the free list.
With this design, all memory chunks are either in use as Ai r pl ane objects (in which case it's the clients' responsibility to
avoid leaking their memory) or are on the free list (in which case there's a pointer to the memory). Thereis no memory leak.

Nevertheless, the blocks of memory returned by : : oper at or neware never released by Ai r pl ane: : oper at or

del et e, and there has to be some name for that. Thereis. Y ou've created a memory pool. Call it semantic gymnasticsif you
must, but there is an important difference between a memory leak and a memory pool. A memory leak may grow indefinitely,
even if clients are well-behaved, but a memory pool never grows larger than the maximum amount of memory requested by its
clients.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (38 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

It would not be difficult to modify Ai r pl ane's memory management routines so that the blocks of memory returned by
. . oper at or newwere automatically released when they were no longer in use, but there are two reasons why you might not
want to do it.

The first concerns your likely motivation for tackling custom memory management. There are many reasons why you might do
it, but the most common oneis that you've determined (see Item M 16) that the default oper at or newand oper at or

del et e usetoo much memory or are too slow (or both). That being the case, every additional byte and every additional
statement you devote to tracking and releasing those big memory blocks comes straight off the bottom line: your software runs
slower and uses more memory than it would if you adopted the pool strategy. For libraries and applicationsin which
performanceis at a premium and you can expect pool sizes to be reasonably bounded, the pool approach may well be best.

The second reason has to do with pathological behavior. Suppose Ai r pl ane's memory management routines are modified so
Ai r pl ane'soper at or del et e releases any big block of memory that has no active objectsin it. Now consider this
program:

int main()
{
Ai rpl ane *pa = new Airpl ane; /1 first allocation: get big
/1l block, nmake free |list, etc.
del ete pa; /1 block is now enpty;
/'l release it
pa = new Airpl ane; /1 uh oh, get block again,
/'l make free list, etc.
del et e pa; /'l okay, block is enpty
/1l again; release it
/1l you get the idea...
return O;
}

This nasty little program will run slower and use more memory than with even the default oper at or newand oper at or
del et e, much less the pool-based versions of those functions!

Of course, there are ways to deal with this pathology, but the more you code for uncommon special cases, the closer you get to
reimplementing the default memory management functions, and then what have you gained? A memory pool is not the answer
to al memory management questions, but it's a reasonable answer to many of them.

Infact, it's a reasonable answer often enough that you may be bothered by the need to reimplement it for different classes.
"Surely,” you think to yourself, "there should be away to package the notion of afixed-sized memory allocator so it's easily
reused.” Thereis, though this Item has droned on long enough that I'll leave the details in the form of the dreaded exercise for
the reader.

Instead, I'll simply show aminimal interface (see Item 18) to a Pool class, where each object of type Pool isan allocator for
objects of the size specified in the Pool 's constructor:

cl ass Pool {

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (39 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#40995

Effective C++, 2E

publi c:
Pool (size_t n); /'l Create an allocator for
/'l objects of size n

void * alloc(size_t n) ; /1 Al ocate enough nenory
/1l for one object; follow
/| operator new conventions
/1l fromltem$8

void free(wvoid *p, size_t n); /1 Return to the pool the
/1l menory pointed to by p;
/1l follow operator delete
/'l conventions fromltem8

~Pool () ; /1l Deallocate all nenory in
/'l the pool

b

This class allows Pool objects to be created, to perform allocation and deallocation operations, and to be destroyed. When a
Pool object isdestroyed, it releases all the memory it allocated. This means there is now away to avoid the memory leak-like
behavior that Ai r pl ane's functions exhibited. However, this also meansthat if aPool 's destructor is called too soon (before
all the objects using its memory have been destroyed), some objects will find their memory yanked out from under them before
they're done using it. To say that the resulting behavior is undefined is being generous.

Given thisPool class, even a Java programmer can add custom memory management capabilitiesto Ai r pl ane without
breaking a sweat:

class Airplane {
publi c:

/1 usual Airplane functions

static void * operator new(size_ t size);
static void operator delete(void *p, size_t size);

private:
Ai rpl aneRep *rep; /1l pointer to representation
static Pool nenPool ; /1 menory pool for Airplanes
1

inline void * A rplane::operator newsize_t size)
{ return nmenPool . al |l oc(size); }

inline void Airplane::operator delete(void *p,
size_t size)
{ menPool . free(p, size); }

/'l create a new pool for Airplane objects; this goes in
/1 the class inplenentation file
Pool Airpl ane: : menPool (si zeof (Ai rpl ane));

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (40 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

Thisisamuch cleaner design than the one we saw earlier, because the Ai r pl ane classisno longer cluttered with non-
airplane details. Gone are the uni on, the head of the free list, the constant defining how big each raw memory block should be,
etc. That's al hidden inside Pool , which isreally where it should be. Let Pool 's author worry about memory management
minutiae. Y our job isto makethe Ai r pl ane classwork properly.

Now, it'sinteresting to see how custom memory management routines can improve program performance, and it's worthwhile
to see how such routines can be encapsulated inside a class like Pool |, but let us not lose sight of the main point. That point is
that oper at or newand oper at or del et e need to work together, so if you write oper at or new, be sure to write
oper at or del et e, aswell.

Back to Item 10: Write operator delete if you write operator new.
Continue to Item 11: Declare a copy constructor and an assignment operator for classes with dynamically allocated memory.

Constructors, Destructors, and Assignment Operators

Almost every class you write will have one or more constructors, a destructor, and an assignment operator. Little wonder. These
are your bread-and-butter functions, the ones that control the fundamental operations of bringing a new object into existence
and making sureit'sinitialized; getting rid of an object and making sure it's been properly cleaned up; and giving an object a
new value. Making mistakes in these functions will lead to far-reaching and distinctly unpleasant repercussions throughout your
classes, so it'svital that you get them right. In this section, | offer guidance on putting together the functions that comprise the
backbone of well-formed classes.

Back to Constructors, Destructors, and Assignment Operators
Continue to Item 12: Prefer initialization to assignment in constructors.

Item 11: Declare a copy constructor and an assignment operator for classes with dynamically
allocated memory.

Consider aclassfor representing St r i ng objects:

/'l a poorly designed String class
class String {

publi c:

String(const char *val ue);

~String();

/1 no copy ctor or operator=

private:

char *dat a;
3
String::String(const char *val ue)
{

I f (value) {
data = new char[strlen(value) + 1];
strcpy(data, val ue);

}

el se {

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (41 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

data = new char[1];
*data = "\0";
}
}

inline String::~String() { delete [] data; }

Note that there is no assignment operator or copy constructor declared in this class. Asyou'll see, this has some unfortunate
consequences.

If you make these object definitions,

String a("Hello");
String b("Wrld");

the situation is as shown below:

Inside object a is a pointer to memory containing the character string "Hello". Separate from that is an object b containing a
pointer to the character string "World". If you now perform an assignment,

b = a;

thereis no client-defined oper at or = to call, so C++ generates and calls the default assignment operator instead (see Item 45).

This default assignment operator performs memberwise assignment from the members of a to the members of b, which for
pointers (a. dat a and b. dat a) isjust a bitwise copy. The result of this assignment is shown below.

There are at least two problems with this state of affairs. First, the memory that b used to point to was never deleted; it islost
forever. Thisisaclassic example of how a memory leak can arise. Second, both a and b now contain pointers to the same
character string. When one of them goes out of scope, its destructor will delete the memory still pointed to by the other. For
example:

String a("Hello"); /1l define and construct a
{ /'l open new scope
String b("Wrld"); /1l define and construct b
b = a; /'l execute default op=,

/1l lose b's nmenory

} /'l close scope, call b's
/'l destructor

String ¢ = a; /1l c.data is undefined!
/1l a.data is already del eted

The last statement in this exampleisacall to the copy constructor, which also isn't defined in the class, hence will be generated

by C++ in the same manner as the assignment operator (again, see Item 45) and with the same behavior: bitwise copy of the
underlying pointers. That leads to the same kind of problem, but without the worry of a memory leak, because the object being

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (42 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

initialized can't yet point to any allocated memory. In the case of the code above, for example, there is no memory leak when
c. dat aisinitialized with the value of a. dat a, because c. dat a doesn't yet point anywhere. However, after c isinitialized
with a, both c. dat a and a. dat a point to the same place, so that place will be deleted twice: once when ¢ is destroyed, once
again when a is destroyed.

The case of the copy constructor differs alittle from that of the assignment operator, however, because of the way it can bite
you: pass-by-value. Of course, Item 22 demonstrates that you should only rarely pass objects by value, but consider this

anyway:
voi d doNot hing(String local String) {}
String s = "The Truth Is Qut There";
doNot hi ng(s) ;

Everything looks innocuous enough, but because| ocal St ri ng ispassed by value, it must be initialized from s viathe
(default) copy constructor. Hence, | ocal St ri ng hasacopy of the pointer that isinside s. When doNot hi ng finishes
executing, | ocal St ri ng goesout of scope, and its destructor is called. The end result is by now familiar: s contains a
pointer to memory that | ocal St ri ng hasaready deleted.

By the way, the result of using del et e on a pointer that has already been deleted is undefined, so even if s isnever used
again, there could well be a problem when it goes out of scope.

The solution to these kinds of pointer aliasing problemsisto write your own versions of the copy constructor and the
assignment operator if you have any pointersin your class. Inside those functions, you can either copy the pointed-to data
structures so that every object has its own copy, or you can implement some kind of reference-counting scheme (see Iltem M 29)
to keep track of how many objects are currently pointing to a particular data structure. The reference-counting approach is more
complicated, and it calls for extrawork inside the constructors and destructors, too, but in some (though by no means all)
applications, it can result in significant memory savings and substantial increases in speed.

For some classes, it's more trouble than it's worth to implement copy constructors and assignment operators, especialy when
you have reason to believe that your clients won't make copies or perform assignments. The examples above demonstrate that
omitting the corresponding member functions reflects poor design, but what do you do if writing them isn't practical, either?
Simple: you follow this Item's advice. Y ou declare the functions (pr i vat e, asit turns out), but you don't define (i.e.,
implement) them at all. That prevents clients from calling them, and it prevents compilers from generating them, too. For details
on this nifty trick, see Item 27.

One more thing about the St r i ng class | used in this Item. In the constructor body, | was careful touse[] with new both
times| called it, even though in one of the places | wanted only asingle object. As described in Item 5, it's essential to employ
the same form in corresponding applications of newand del et e, so | was careful to be consistent in my uses of new. Thisis
something you do not want to forget. Always make sure that you use[] withdel et e if and only if youused [] with the
corresponding use of new.

Back to [tem 11: Declare a copy constructor and an assignment operator for classes with dynamically allocated memory.
Continueto Item 13: List membersin an initialization list in the order in which they are declared.

Item 12: Prefer initialization to assignment in constructors.

Consider atemplate for generating classes that allow a name to be associated with a pointer to an object of sometype T:

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (43 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#6073

Effective C++, 2E

t enpl at e<cl ass T>
cl ass NanedPtr {
publi c:
NanmedPtr (const string& initName, T *initPtr);

private:
string nane;
T *ptr;
b

(Inlight of the aliasing that can arise during the assignment and copy construction of objects with pointer members (see Item
11), you might wish to consider whether NanedPt r should implement these functions. Hint: it should (see Item 27).)

When you write the NanedPt r constructor, you have to transfer the values of the parameters to the corresponding data
members. There are two waysto do this. Thefirst isto use the member initialization list:

tenpl at e<cl ass T>

NamedPt r <T>:: NanmedPtr (const string& initName, T *initPtr)
: name(initNane), ptr(initkPtr)

{}

The second is to make assignments in the constructor body:

t enpl at e<cl ass T>
NanedPt r <T>: : NamedPtr (const string& initName, T *initPtr)
{
nane = init Naneg;
ptr = initPtr;
}

There are important differences between these two approaches.

From a purely pragmatic point of view, there are times when the initialization list must be used. In particular, const and
reference members may only be initialized, never assigned. So, if you decided that aNanmedPt r <T> object could never change
its name or its pointer, you might follow the advice of I1tem 21 and declare the membersconst :

tenpl at e<cl ass T>
cl ass NanedPtr {
publi c:
NanmedPtr (const string& initName, T *initPtr);

private:
const string nane;
T * const ptr;

H

This class definition requires that you use a member initialization list, because const members may only beinitialized, never
assigned.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (44 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

Y ou'd obtain very different behavior if you decided that a NanedPt r <T> object should contain areference to an existing
name. Even so, you'd still have to initialize the reference on your constructors member initialization lists. Of course, you could
also combine the two, yielding NamedPt r <T> objects with read-only access to names that might be modified outside the
class:

t enpl at e<cl ass T>
cl ass NanedPtr {
publi c:
NanmedPtr (const string& initName, T *initPtr);

private:
const string& nane; /1l must be initialized via
[l initializer |ist
T * const ptr; /1l must be initialized via
[l initializer |ist
1

The original class template, however, containsno const or reference members. Even so, using amember initialization list is
still preferable to performing assignments inside the constructor. This time the reason is efficiency. When a member
initialization list is used, only asingle st r i ng member function is called. When assignment inside the constructor is used, two
are called. To understand why, consider what happens when you declare a NarmedPt r <T> object.

Construction of objects proceeds in two phases.

1. Initialization of data members. (See also Item 13.)
2. Execution of the body of the constructor that was called.

(For objects with base classes, base class member initialization and constructor body execution occurs prior to that for derived
classes.)

For the NanmedPt r classes, this means that a constructor for the st r i ng object nane will always be called before you ever
get inside the body of aNamedPt r constructor. The only question, then, isthis: which st ri ng constructor will be called?

That depends on the member initialization list in the NamedPt r classes. If you fail to specify an initialization argument for
nane, the default st r i ng constructor will be called. When you later perform an assignment to nane inside the NanmedPt r
constructors, you will call oper at or = on nane. That will total two callsto st r i ng member functions: one for the default
constructor and one more for the assignment.

On the other hand, if you use a member initialization list to specify that name should beinitialized with i ni t Name, nane will
be initialized through the copy constructor at a cost of only asingle function call.

Even in the case of the lowly st r i ng type, the cost of an unnecessary function call may be significant, and as classes become
larger and more complex, so do their constructors, and so does the cost of constructing objects. If you establish the habit of
using amember initialization list whenever you can, not only do you satisfy arequirement for const and reference members,
you also minimize the chances of initializing data members in an inefficient manner.

In other words, initialization via a member initialization list is always legal, is never less efficient than assignment inside the
body of the constructor, and is often more efficient. Furthermore, it simplifies maintenance of the class (see Item M32), because

if adata member'stypeislater modified to something that requires use of a member initialization list, nothing has to change.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (45 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5373

Effective C++, 2E

There is one time, however, when it may make sense to use assignment instead of initialization for the data membersin aclass.
That is when you have alarge number of data members of built-in types, and you want them all initialized the same way in each
constructor. For example, here's a class that might qualify for thiskind of treatment:

cl ass ManyDat aMors {
publi c:
/' default constructor
ManyDat aMor s() ;

/'l copy constructor
ManyDat aMor s(const ManyDat aMor s& X) ;

private:
int a, b, ¢, d, e, f, g, h;
double i, j, k, I,

b

Suppose you want to initialize all the intsto 1 and all the doublesto O, even if the copy constructor is used. Using member
initialization lists, you'd have to write this:

ManyDat aMor s: : ManyDat aMor s()
a(l), b(1), c(1), d(1), e(1), f(1), 9(1), h(1), i(0),
j(0), k(0), 1(0), n(0O)
{ ...}
ManyDat aMor s: : ManyDat aMor s(const ManyDat aMor s& X)
a(l), b(1), c(1), d(1), e(1), f(1), 9(1), h(1), i(0),
{j(O)i k(0), 1(0), n(0)

Thisis more than just unpleasant drudge work. It is error-prone in the short term and difficult to maintain in the long term.

However, you can take advantage of the fact that there is no operational difference between initialization and assignment for
(non-const , non-reference) objects of built-in types, so you can safely replace the memberwise initialization listswith a
function call to acommon initialization routine:

cl ass ManyDat aMors {
publi c:
/1 default constructor
ManyDat aMor s() ;

/'l copy constructor
ManyDat aMor s(const ManyDat aMor s& X) ;

private:
int a, b, ¢, d, e, f, g, h;
double i, j, k, I,
void init(); /1l used to initialize data

/! menbers

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (46 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

1
voi d ManyDataMors: :init()
{
a=b=c=d=e=f =9g=h=1;
i = J =k =1 =m-= 0,
}
ManyDat aMor s: : ManyDat aMor s()
{
init();
}
ManyDat aMor s: : ManyDat aMor s(const ManyDat aMbr s& X)
{
init();
}

Because the initialization routine is an implementation detail of the class, you are, of course, careful to makeit pri vat e,
right?

Notethat st at i ¢ class members should never beinitialized in a class's constructor. Static members are initialized only once
per program run, so it makes no sense to try to "initialize" them each time an object of the classstype is created. At the very
least, doing so would be inefficient: why pay to "initialize" an object multiple times? Besides, initialization of static class
membersis different enough from initialization of their nonstatic counterparts that an entire Iltem — Item 47 — is devoted to
the topic.

Back to Item 12: Prefer initialization to assignment in constructors.
Continue to Item 14: Make sure base classes have virtual destructors.

Item 13: List members in an initialization list in the order in which they are declared.

Unrepentant Pascal and Ada programmers often yearn for the ability to define arrays with arbitrary bounds, i.e., from 10 to 20
instead of from 0O to 10. Long-time C programmers will insist that everybody who's anybody will always start counting from 0O,
but it's easy enough to placate the begi n/end crowd. All you have to do is define your own Ar r ay class template:

t enpl at e<cl ass T>
class Array {
publi c:
Array(int | owBound, int highBound);

private:
vect or <T> dat a; /]l the array data is stored

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (47 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

/1 in a vector object; see
/1 1tem 49 for info about

/'l the vector tenplate
size_t size; [l # of elenments in array

i nt | Bound, hBound; /1 1 ower bound, higher bound
b

t enpl at e<cl ass T>
Array<T>::Array(int | owBound, int highBound)
si ze(hi ghBound - | owBound + 1),
| Bound(| owBound), hBound(hi ghBound) ,
dat a(si ze)

{}

An industrial-strength constructor would perform sanity checking on its parameters to ensure that hi ghBound was at least as
great as| owBound, but there isamuch nastier error here: even with perfectly good values for the array's bounds, you have
absolutely no idea how many elements dat a holds.

"How can that be?' | hear you cry. "l carefully initialized si ze before passing it to thevect or constructor!” Unfortunately,
you didn't — you just tried to. The rules of the game are that class members are initialized in the order of their declaration in
the class; the order in which they are listed in a member initialization list makes not awhit of difference. In the classes
generated by your Ar r ay template, dat a will always beinitiaized first, followed by si ze, | Bound, and hBound. Always.

Perverse though this may seem, thereis areason for it. Consider this scenario:

cl ass Wacko {

publ i c:
Wacko(const char *s): si1(s), s2(0) {}
Wacko(const Wacko& rhs): s2(rhs.sl), s1(0) {}

private:
string sl, s2;

}

Wwacko wi = "Hello world!l";
Wacko w2 = wil;

If memberswere initialized in the order of their appearance in an initialization list, the data members of wl and w2 would be
constructed in different orders. Recall that the destructors for the members of an object are always called in the inverse order of
their constructors. Thus, if the above were allowed, compilers would have to keep track of the order in which the members were
initialized for each object, just to ensure that the destructors would be called in the right order. That would be an expensive
proposition. To avoid that overhead, the order of construction and destruction is the same for all objects of a given type, and the
order of membersin an initialization list isignored.

Actualy, if you really want to get picky about it, only nonstatic data members are initialized according to the rule. Static data
members act like global and namespace objects, so they are initialized only once; see Item 47 for details. Furthermore, base
class data members are initialized before derived class data members, so if you're using inheritance, you should list base class
initializers at the very beginning of your member initialization lists. (If you're using multiple inheritance, your base classes will
beinitialized in the order in which you inherit from them; the order in which they're listed in your member initialization lists

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (48 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

will again beignored. However, if you're using multiple inheritance, you've probably got more important things to worry about.
If you don't, [tem 43 would be happy to make suggestions regarding aspects of multiple inheritance that are worrisome.)

The bottom lineisthis: if you hope to understand what is really going on when your objects are initialized, be sureto list the
membersin an initialization list in the order in which those members are declared in the class.

Back to Item 13: List membersin an initialization list in the order in which they are declared.
Continue to Item 15: Have operator= return areference to *this.

Item 14: Make sure base classes have virtual destructors.

Sometimes it's convenient for a class to keep track of how many objects of its type exist. The straightforward way to do thisis
to create a static class member for counting the objects. The member isinitialized to O, isincremented in the class constructors,
and is decremented in the class destructor. (Item M 26 shows how to package this approach so it's easy to add to any class, and
my article on counting objects describes additional refinements to the technique.)

Y ou might envision amilitary application, in which a class representing enemy targets might look something like this:

cl ass EnenyTarget ({

publi c:
EnenyTarget () { ++nunffargets; }
EnenyTar get (const EnenyTarget&) { ++nunflargets; }
~EnenyTarget () { --nunfTargets; }

static size_t number Of Targets()
{ return nunTargets; }

virtual bool destroy(); [l returns success of
/] attenpt to destroy
/| EnemyTar get object

private:
static size_t nunrargets; /| object counter

b

/'l class statics nust be defined outside the class;
/1l initializationis to O by default
si ze_t EnenyTarget:: nuniargets;

Thisclassis unlikely to win you a government defense contract, but it will suffice for our purposes here, which are substantially
less demanding than are those of the Department of Defense. Or so we may hope.

Let us suppose that a particular kind of enemy target is an enemy tank, which you model, naturally enough (see Item 35, but
also see Item M 33), as a publicly derived class of EnenyTar get . Because you are interested in the total number of enemy
tanks as well as the total number of enemy targets, you'll pull the same trick with the derived class that you did with the base
class:

cl ass EnenyTank: public EnenyTarget {

publ i c:
EnenyTank() { ++nunTanks; }

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (49 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5350
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MAGAZINE/CO_FRAME.HTM
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#10947

Effective C++, 2E

EnemyTank(const EnemyTanké& rhs)
EnenyTar get (r hs)
{ ++nunifanks; }

~EnenyTank() { --numlanks; }

static size_t nunber O Tanks()
{ return nunTanks; }

virtual bool destroy();

private:
static size_t numlanks; /1 object counter for tanks

}

Having now added this code to two different classes, you may be in a better position to appreciate [tem M26's general solution
to the problem.

Finally, let's assume that somewhere in your application, you dynamically create an Enemy Tank object using new, which you
later get rid of viadel et e:

EnemyTarget *targetPtr = new EnenyTank;

delete targetPtr;

Everything you've done so far seems completely kosher. Both classes undo in the destructor what they did in the constructor,
and there's certainly nothing wrong with your application, in which you were careful to use del et e after you were done with
the object you conjured up with new. Nevertheless, there is something very troubling here. Y our program's behavior is
undefined — you have no way of knowing what will happen.

The °C++ language standard is unusually clear on thistopic. When you try to delete a derived class object through a base class
pointer and the base class has a nonvirtual destructor (as Eneny Tar get does), the results are undefined. That means
compilers may generate code to do whatever they like: reformat your disk, send suggestive mail to your boss, fax source code to
your competitors, whatever. (What often happens at runtime is that the derived class's destructor is never called. In this
example, that would mean your count of Enerny Tank s would not be adjusted when't ar get Pt r was deleted. Y our count of
enemy tanks would thus be wrong, arather disturbing prospect to combatants dependent on accurate battlefield information.)

To avoid this problem, you have only to make the Eneny Tar get destructor virtual. Declaring the destructor virtual ensures
well-defined behavior that does precisely what you want: both Eneny Tank'sand Eneny Tar get 's destructors will be called
before the memory holding the object is deall ocated.

Now, the Enenry Tar get class contains avirtual function, which is generally the case with base classes. After al, the purpose
of virtual functionsisto allow customization of behavior in derived classes (see Item 36), so almost all base classes contain

virtual functions.

If aclass does not contain any virtual functions, that is often an indication that it is not meant to be used as a base class. When a
classis not intended to be used as a base class, making the destructor virtual is usually a bad idea. Consider this example, based

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (50 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5350
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cstandard

Effective C++, 2E

on adiscussion in the ARM (see Item 50):

/'l class for representing 2D points
class Point {

publi c:
Poi nt (short int xCoord, short int yCoord);
~Point ();

private:
short int x, vy;

3

If ashort i nt occupies 16 bits, aPoi nt object can fit into a 32-bit register. Furthermore, a Poi nt object can be passed as a
32-bit quantity to functions written in other languages such as C or FORTRAN. If Poi nt 's destructor is made virtual, however,
the situation changes.

The implementation of virtual functions requires that objects carry around with them some additional information that can be
used at runtime to determine which virtual functions should be invoked on the object. In most compilers, this extra information
takes the form of apointer called avpt r ("virtual table pointer"). Thevpt r pointsto an array of function pointers called a
vt bl ("virtual table"); each class with virtual functions has an associated vt bl . When avirtual function isinvoked on an
object, the actual function called is determined by following the object'svpt r toavt bl and then looking up the appropriate
function pointer inthe vt bl .

The details of how virtual functions are implemented are unimportant (though, if you're curious, you can read about them in
Item M24). What isimportant isthat if the Poi nt class containsavirtual function, objects of that type will implicitly double in
size, from two 16-bit shor t sto two 16-bit shor t splusa32-bit vpt r ! No longer will Poi nt objectsfit in a 32-bit register.
Furthermore, Poi nt objectsin C++ no longer ook like the same structure declared in another language such as C, because
their foreign language counterparts will lack thevpt r . Asaresult, it isno longer possible to pass Poi nt sto and from
functions written in other languages unless you explicitly compensate for the vpt r , which isitself an implementation detail

and hence unportable.

The bottom lineisthat gratuitously declaring all destructorsvirtual isjust as wrong as never declaring them virtual. In fact,
many people summarize the situation thisway: declare avirtual destructor in aclassif and only if that class contains at |east
one virtual function.

Thisisagood rule, one that works most of the time, but unfortunately, it is possible to get bitten by the nonvirtual destructor
problem even in the absence of virtual functions. For example, Item 13 considers a class template for implementing arrays with
client-defined bounds. Suppose you decide (in spite of the advice in Item M33) to write a template for derived classes
representing named arrays, i.e., classes where every array has a name:

t enpl at e<cl ass T> /'l base class tenpl ate
class Array { [l (fromltem 13)
publi c:

Array(int | owBound, int highBound);

~Array();
private:

vect or <T> dat a;

size_t size;

i nt | Bound, hBound;
i

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (51 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41284
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#10947

Effective C++, 2E

t enpl at e<cl ass T>
cl ass NanedArray: public Array<T> {
publi c:
NanmedArray(int | owBound, int highBound, const string& name);

private:
string arrayNane;

b

If anywhere in an application you somehow convert a pointer-to-NamedAr r ay into a pointer-to-Ar r ay and you then use
del et e onthe Ar r ay pointer, you are instantly transported to the realm of undefined behavior:

NanmedAr r ay<i nt > *pna =
new NamedArray<i nt>(10, 20, "Inpendi ng Doont);

Array<int> *pa;

pa = pna; /1 NamedArray<i nt>* -> Array<int>*

del ete pa; /'l undefined! (Insert thene to
[1-Tw |ight Zone here); in practice,
/'l pa->arrayName will often be | eaked,
/| because the NanedArray part of
/1l *pa will never be destroyed

This situation can arise more frequently than you might imagine, because it's not uncommon to want to take an existing class
that does something, Ar r ay in this case, and derive from it a class that does al the same things, plus more. NanedAr r ay
doesn't redefine any of the behavior of Ar r ay — it inherits all its functions without change — it just adds some additional
capabilities. Y et the nonvirtual destructor problem persists. (As do others. See Iltem M33.)

Finally, it's worth mentioning that it can be convenient to declare pure virtua destructorsin some classes. Recall that pure
virtual functions result in abstract classes — classes that can't be instantiated (i.e., you can't create objects of that type).
Sometimes, however, you have a class that you'd like to be abstract, but you don't happen to have any functions that are pure
virtual. What to do? Well, because an abstract classis intended to be used as a base class, and because a base class should have
avirtual destructor, and because a pure virtual function yields an abstract class, the solution is ssimple: declare a pure virtual
destructor in the class you want to be abstract.

Here's an example:

class AWV { /[l AWDV = "Abstract w o
/1 Virtual s"
publi c:
virtual ~AWOV() = O; /'l declare pure virtual

[/ destructor

b

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (52 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#10947

Effective C++, 2E

This class has a pure virtual function, so it's abstract, and it has a virtual destructor, so you can rest assured that you won't have
to worry about the destructor problem. There is one twist, however: you must provide a definition for the pure virtual
destructor:

AVWDV: : ~AVWOV() {} /1 definition of pure
[/ virtual destructor

Y ou need this definition, because the way virtual destructors work is that the most derived class's destructor is called first, then
the destructor of each base classis called. That means that compilers will generate a call to ~AWDV even though the classis
abstract, so you have to be sure to provide a body for the function. If you don't, the linker will complain about a missing
symbol, and you'll have to go back and add one.

Y ou can do anything you like in that function, but, as in the example above, it's not uncommon to have nothing to do. If that is
the case, you'll probably be tempted to avoid paying the overhead cost of a call to an empty function by declaring your
destructor inline. That's a perfectly sensible strategy, but there's atwist you should know about.

Because your destructor isvirtual, its address must be entered into the classs vt bl (see ltem M24). But inline functions aren't
supposed to exist as freestanding functions (that'swhat i nl i ne means, right?), so special measures must be taken to get
addresses for them. Item 33 tells the full story, but the bottom line isthis: if you declare avirtual destructor i nl i ne, you're
likely to avoid function call overhead when it'sinvoked, but your compiler will still have to generate an out-of-line copy of the
function somewhere, too.

Back to [tem 14: Make sure base classes have virtual destructors.
Continueto Item 16: Assign to all data members in operator=.

Item 15: Have oper at or =return a referenceto *t hi s.

°Bjarne Stroustrup, the designer of C++, went to alot of trouble to ensure that user-defined types would mimic the built-in types
as closely as possible. That's why you can overload operators, write type conversion functions (see Item M5), take control of
assignment and copy construction, etc. After so much effort on his part, the least you can do is keep the ball rolling.

Which brings us to assignment. With the built-in types, you can chain assignments together, like so:

int w, X, vy, Z;

Asaresult, you should be able to chain together assignments for user-defined types, too:
string w, x, vy, Zz; /1 string is "user-defined"
/1l by the standard C++
/1l library (see |tem 49)
w=Xx=y =2z ="Hello";

Asfate would have it, the assignment operator is right-associative, so the assignment chain is parsed like this:

W= (x = (y = (z = "Hello"));

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (53 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41284
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=bjarne
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5970

Effective C++, 2E

It's worthwhile to write this in its completely equivalent functional form. Unless you're a closet L1SP programmer, this example
should make you grateful for the ability to define infix operators:

w. oper at or =(x. oper at or=(y. operat or=(z. operator=("Hell0"))));

Thisform isillustrative because it emphasizes that the argument to w. oper at or =, x. oper at or =, andy. oper at or =is
the return value of aprevious call to oper at or =. Asaresult, the return type of oper at or = must be acceptable as an input
to the function itself. For the default version of oper at or = in aclass C, the signature of the function is as follows (see Item

45):
C& C.:operator=(const C&);

You'll amost aways want to follow this convention of having oper at or = both take and return areference to a class object,
although at times you may overload oper at or = so that it takes different argument types. For example, the standard st r i ng
type provides two different versions of the assignment operator:

string& /1 assign a string
oper at or=(const string& rhs); /1l to a string
string& /1 assign a char*
oper at or=(const char *rhs); /[l to a string

Notice, however, that even in the presence of overloading, the return type is areference to an object of the class.

A common error amongst new C++ programmersisto have oper at or = return voi d, adecision that seems reasonable until
you realize it prevents chains of assignment. So don't do it.

Another common error isto have oper at or = return areferenceto aconst object, like this:

cl ass Wdget {

publi c:
C. /'l note
const Wdget & operator=(const Wdget& rhs); /'l const
C. /'l return

3 Il type

The usual motivation isto prevent clients from doing silly things like this:
W dget wl, w2, w3;
(Wl = wW2) = wg; /1 assign w2 to wl, then w3 to

/1l the result! (Gving Wdget's
/| operator= a const return val ue
/'l prevents this fromconpiling.)
Silly thismay be, but not so silly that it's prohibited for the built-in types:
int i1, 12, i3;

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (54 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

(11 =12) =13; /1l legal! assigns i2 to
/1 11, then i3 to il!

I know of no practical use for thiskind of thing, but if it's good enough for the i nt s, it's good enough for me and my classes. It
should be good enough for you and yours, too. Why introduce gratuitous incompatibilities with the conventions followed by the
built-in types?

Within an assignment operator bearing the default signature, there are two obvious candidates for the object to be returned: the
object on the left hand side of the assignment (the one pointed to by t hi s) and the object on the right-hand side (the one named
in the parameter list). Which is correct?

Here are the possibilitiesfor aSt r i ng class (a class for which you'd definitely want to write an assignment operator, as
explained in Item 11):

String& String::operator=(const String& rhs)

{
return *this; /'l return reference
/1 to | eft-hand object
}
String& String::operator=(const String& rhs)
{
return rhs; /'l return reference to
/'l right-hand object
}

This might strike you as a case of six of one versus a half a dozen of the other, but there are important differences.

First, the version returning r hs won't compile. That's becauser hs is areference-to-const -St ri ng, but oper at or =
returns areference-to-St r i ng. Compilers will give you no end of grief for trying to return areference-to-non-const when the
object itself isconst . That seems easy enough to get around, however — just redeclare oper at or = like this:

String& String::operator=(String& rhs) { ...}
Alas, now the client code won't compile! Look again at the last part of the original chain of assignments:
X = "Hello"; /'l same as x.op=("Hello");
Because the right-hand argument of the assignment is not of the correct type— it'sachar array, notaSt r i ng — compilers

would haveto create atemporary St r i ng object (viathe St r i ng constructor — see Item M 19) to make the call succeed.
That is, they'd have to generate code roughly equivalent to this:

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (55 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41177

Effective C++, 2E
const String tenp("Hello"); /1l create tenporary
X = tenp; /|l pass tenporary to op=

Compilers are willing to create such atemporary (unless the needed constructor isexpl i ci t — see ltem 19), but note that the
temporary object isconst . Thisisimportant, because it prevents you from accidentally passing atemporary into a function
that modifiesits parameter. If that were allowed, programmers would be surprised to find that only the compiler-generated
temporary was modified, not the argument they actually provided at the call site. (We know thisfor afact, because early
versions of C++ allowed these kinds of temporaries to be generated, passed, and modified, and the result was alot of surprised
programmers.)

Now we can see why the client code above won't compileif St ri ng'soper at or = is declared to take a reference-to-non-
const String:it'snever lega to passaconst object to afunction that fails to declare the corresponding parameter const .
That's just smple const -correctness.

Y ou thus find yourself in the happy circumstance of having no choice whatsoever: you'll always want to define your assignment
operators in such away that they return areference to their left-hand argument, *t hi s. If you do anything else, you prevent
chains of assignments, you prevent implicit type conversions at call sites, or both.

Back to Item 15: Have operator= return areference to *this.
Continue to Item 17: Check for assignment to self in operator=.

Item 16: Assign to all data members in oper at or =,

Item 45 explains that C++ will write an assignment operator for you if you don't declare one yourself, and Item 11 describes
why you often won't much care for the one it writes for you, so perhaps you're wondering if you can somehow have the best of
both worlds, whereby you let C++ generate a default assignment operator and you selectively override those parts you don't
like. No such luck. If you want to take control of any part of the assignment process, you must do the entire thing yourself.

In practice, this means that you need to assign to every data member of your object when you write your assignment
operator(s):

t enpl at e<cl ass T> /'l tenplate for classes associating
cl ass NanedPtr { /1 nanes with pointers (fromltem 12)
publi c:

NanmedPtr (const string& initName, T *initPtr);
NanmedPt r & oper at or=(const NanmedPtr& rhs);

private:
string nane;
T *ptr;
1

t enpl at e<cl ass T>
NanedPt r <T>& NamedPt r <T>: : oper at or =(const NanmedPtr<T>& rhs)

{
if (this == & hs)
return *this; /] see |ltem 17

/1 assign to all data menbers

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (56 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

nane = rhs. naneg; /1l assign to nane

*ptr = *rhs.ptr; /1 for ptr, assign what's
/1 pointed to, not the
/1l pointer itself

return *this; /'l see Iltem 15

}

Thisis easy enough to remember when the classis originally written, but it's equally important that the assignment operator(s)
be updated if new data members are added to the class. For example, if you decide to upgrade the NanedPt r template to carry
atimestamp marking when the name was last changed, you'll have to add a new data member, and this will require updating the
constructor(s) as well as the assignment operator(s). In the hustle and bustle of upgrading a class and adding new member
functions, etc., it's easy to let thiskind of thing slip your mind.

Thereal fun begins when inheritance joins the party, because a derived class's assignment operator(s) must also handle
assignment of its base class members! Consider this:

cl ass Base {
publi c:
Base(int initialValue = 0): x(initialValue) {}

private:
int Xx;

b

cl ass Derived: public Base {
publi c:
Derived(int initialValue)
Base(initial Value), y(initial Value) {}

Deri ved& operator=(const Derived& rhs);
private:

int y;
b

Thelogical way to write Der i ved's assignment operator is like this:

/| erroneous assignment operator
Derived& Derived: : operator=(const Derived& rhs)

{
if (this == &hs) return *this; /'l see Item 17
y = rhs.y; /1l assign to Derived' s
/'l 1 one data menber
return *this; /] see Item 15
}

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (57 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

Unfortunately, thisisincorrect, because the data member x in the Base part of aDer i ved object is unaffected by this
assignment operator. For example, consider this code fragment:

voi d assi gnnent Tester ()

{
Derived d1(0); /[l dl.x =0, di.y =0
Derived d2(1); [l d2.x =1, d2.y =1
dl = dz; /1l dil.x =0, dl.y = 1!
}

Notice how the Base part of d1 isunchanged by the assignment.

The straightforward way to fix this problem would be to make an assignment to x in Der i ved: : oper at or =. Unfortunately,
that's not legal, because x is a private member of Base. Instead, you have to make an explicit assignment to the Base part of
Der i ved frominside Der i ved's assignment operator.

Thisishow you do it:

/'l correct assignnment operator
Derived& Derived: : operator=(const Derived& rhs)

{
if (this == & hs) return *this;

Base: : operat or=(rhs); /1l call this->Base::operator=
y = rhs.y;

return *this;

}

Here you just make an explicit call to Base: : oper at or =. That call, like al calls to member functions from within other
member functions, will use*t hi s asitsimplicit left-hand object. The result will be that Base: : oper at or = will do
whatever work it does on the Base part of *t hi s — precisely the effect you want.

Alas, some compilers (incorrectly) reject thiskind of call to a base class's assignment operator if that assignment operator was
generated by the compiler (see Item 45). To pacify these renegade trandators, you need to implement
Deri ved: : oper at or = thisway:

Derived& Derived: : operator=(const Derived& rhs)

{
if (this == &hs) return *this;
static_cast<Base&>(*this) = rhs; /1l call operator= on
/| Base part of *this
y = rhs.y;

return *this;

}

Thismonstrosity casts* t hi s to be areference to aBase, then makes an assignment to the result of the cast. That makes an

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (58 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

assignment to only the Base part of the Der i ved object. Careful now! It isimportant that the cast be to areferenceto aBase
object, not to aBase object itself. If you cast *t hi s to be aBase object, you'll end up calling the copy constructor for Base,
and the new object you construct (see Item M 19) will be the target of the assignment; *t hi s will remain unchanged. Hardly

what you want.

Regardless of which of these approaches you employ, once you've assigned the Base part of the Der i ved object, you then
continue with Der i ved's assignment operator, making assignmentsto all the data members of Der i ved.

A similar inheritance-related problem often arises when implementing derived class copy constructors. Take alook at the
following, which is the copy constructor analogue of the code we just examined:

cl ass Base {

publi c:
Base(int initialValue = 0): x(initialValue) {}
Base(const Base& rhs): x(rhs.x) {}

private:
int x;

}

cl ass Derived: public Base {
publi c:
Derived(int initial Value)
Base(initial Value), y(initialValue) {}

Derived(const Derived& rhs) /| erroneous copy
y(rhs.y) {} /| constructor
private:
int vy;

}

Class Der i ved demonstrates one of the nastiest bugsin all C++-dom: it failsto copy the base class part when aDer i ved
object is copy constructed. Of course, the Base part of such aDer i ved object is constructed, but it's constructed using
Base's default constructor. Its member x isinitialized to O (the default constructor's default parameter value), regardless of the
value of x in the object being copied!

To avoid this problem, Der i ved's copy constructor must make sure that Base's copy constructor isinvoked instead of Base's
default constructor. That's easily done. Just be sure to specify an initializer value for Base in the member initialization list of
Der i ved's copy constructor:

class Derived: public Base {

publi c:
Derived(const Derived& rhs): Base(rhs), y(rhs.y) {}

b

Now when aclient createsaDer i ved by copying an existing object of that type, its Base part will be copied, too.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (59 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41177

Effective C++, 2E

Back to Item 16: Assign to all data membersin operator=.
Continue to Classes and Functions: Design and Declaration

Item 17: Check for assignment to self in oper at or =.
An assignment to self occurs when you do something like this:

class X { ... };

a = a; /Il ais assigned to itself

Thislooks like asilly thing to do, but it's perfectly legal, so don't doubt for a moment that programmers do it. More importantly,
assignment to self can appear in this more benign-looking form:

a = b;

If b isanother name for a (for example, areference that has been initialized to a), then thisis also an assignment to self, though
it doesn't outwardly look likeit. Thisis an example of aliasing: having two or more names for the same underlying object. As
you'll see at the end of this Item, aliasing can crop up in any number of nefarious disguises, so you need to take it into account
any time you write a function.

Two good reasons exist for taking special care to cope with possible aliasing in assignment operator(s). The lesser of them is
efficiency. If you can detect an assignment to self at the top of your assignment operator(s), you can return right away, possibly
saving alot of work that you'd otherwise have to go through to implement assignment. For example, Item 16 points out that a
proper assignment operator in a derived class must call an assignment operator for each of its base classes, and those classes
might themselves be derived classes, so skipping the body of an assignment operator in a derived class might save alarge
number of other function calls.

A more important reason for checking for assignment to self isto ensure correctness. Remember that an assignment operator
must typically free the resources allocated to an object (i.e., get rid of its old value) before it can allocate the new resources
corresponding to its new value. When assigning to self, this freeing of resources can be disastrous, because the old resources
might be needed during the process of allocating the new ones.

Consider assignment of St ri ng objects, where the assignment operator fails to check for assignment to self:

class String {

publi c:
String(const char *val ue); /'l see Item 11 for
/1l function definition
~String(); /'l see Item 11 for

// function definition

String& operator=(const String& rhs);

private:
char *dat a;

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (60 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

/'l an assignnment operator that omts a check
/1 for assignnent to self
String& String::operator=(const String& rhs)

{

delete [] data; /'l delete old nenory

/1 allocate new nmenory and copy rhs's value into it
data = new char[strlen(rhs.data) + 1];
strcpy(data, rhs.data);

return *this; /] see |ltem 15

}

Consider now what happensin this case:
String a = "Hello";
a = a /| same as a.operator=(a)

Inside the assignment operator, *t hi s and r hs seem to be different objects, but in this case they happen to be different names
for the same object. Y ou can envision it like this:

The first thing the assignment operator doesisusedel et e on dat a, and the result is the following state of affairs:

Now when the assignment operator triestodoast r | en onr hs. dat a, theresults are undefined. Thisisbecauser hs. dat a
was deleted when dat a was deleted, which happened because dat a, t hi s- >dat a, and r hs. dat a are all the same pointer!
From this point on, things can only get worse.

By now you know that the solution to the dilemmais to check for an assignment to self and to return immediately if such an
assignment is detected. Unfortunately, it's easier to talk about such a check than it isto write it, because you are immediately
forced to figure out what it means for two objects to be "the same.”

The topic you confront is technically known as that of object identity, and it's awell-known topic in object-oriented circles. This
book is no place for a discourse on object identity, but it is worthwhile to mention the two basic approaches to the problem.

One approach isto say that two objects are the same (have the same identity) if they have the same value. For example, two
St ri ng objects would be the same if they represented the same sequence of characters:

String a = "Hello";
String b = "Wrld";
String ¢ = "Hello";

Here a and ¢ have the same value, so they are considered identical; b is different from both of them. If you wanted to use this
definition of identity in your St r i ng class, your assignment operator might look like this:

String& String::operator=(const String& rhs)

{
if (strcnp(data, rhs.data) == 0) return *this;

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (61 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

}

Value equality is usually determined by oper at or ==, so the general form for an assignment operator for a class C that uses
value equality for object identity isthis:

C& C.:operator=(const C& rhs)

{
/'l check for assignnent to self
if (*this == rhs) /| assunes op== exists
return *this;
}

Note that this function is comparing objects (viaoper at or ==), not pointers. Using value equality to determine identity, it
doesn't matter whether two objects occupy the same memory; al that matters is the values they represent.

The other possibility isto equate an object's identity with its address in memory. Using this definition of object equality, two
objects are the same if and only if they have the same address. This definition is more common in C++ programs, probably
because it's easy to implement and the computation is fast, neither of which is always true when object identity is based on
values. Using address equality, a general assignment operator looks like this:

C& C.:operator=(const C& rhs)
{

/'l check for assignnent to self
if (this == &hs) return *this;

}
This suffices for a great many programs.

If you need a more sophisticated mechanism for determining whether two objects are the same, you'll have to implement it
yourself. The most common approach is based on a member function that returns some kind of object identifier:

class C {
publ i c:
Obj ectI D identity() const; /'l see also Item 36
1
Given object pointersa and b, then, the objects they point to areidentical if and only if a- >i dentity() == b-

>i dentity().Of course you areresponsible for writing oper at or == for Cbj ect | Ds.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (62 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

The problems of aliasing and object identity are hardly confined to oper at or =. That'sjust afunction in which you are
particularly likely to run into them. In the presence of references and pointers, any two names for objects of compatible types
may in fact refer to the same object. Here are some other situations in which aliasing can show its Medusa-like visage:

cl ass Base {
voi d nf1(Base& rb); /1 rb and *this could be
/'l the sane

b

void f1(Base& rbl, Base& rhb2); /1 rbl and rb2 could be
/'l the sane

class Derived: public Base {
voi d nf2(Base& rb); /1 rb and *this could be
/'l the sane

b

int f2(Derived& rd, Base& rb); /1 rd and rb coul d be
/'l the sane

These examples happen to use references, but pointers would serve just as well.

Asyou can see, aliasing can crop up in avariety of guises, so you can't just forget about it and hope you'll never runinto it.
Well, maybe you can, but most of us can't. At the expense of mixing my metaphors, thisis a clear case in which an ounce of
prevention is worth its weight in gold. Anytime you write afunction in which aliasing could conceivably be present, you must
take that possibility into account when you write the code.

Back to Item 17: Check for assignment to self in operator=.
Continue to ltem 18: Strive for class interfaces that are complete and minimal.

Classes and Functions: Design and Declaration

Declaring anew classin a program creates a new type: class design is type design. Y ou probably don't have much experience
with type design, because most languages don't offer you the opportunity to get any practice. In C++, it is of fundamental
importance, not just because you can do it if you want to, but because you are doing it every time you declare a class, whether
you mean to or not.

Designing good classes is challenging because designing good types is challenging. Good types have a natural syntax, an
intuitive semantics, and one or more efficient implementations. In C++, a poorly thought out class definition can make it
impossible to achieve any of these goals. Even the performance characteristics of aclass's member functions are determined as
much by the declarations of those member functions as they are by their definitions.

How, then, do you go about designing effective classes? First, you must understand the issues you face. Virtually every class
requires that you confront the following gquestions, the answers to which often lead to constraints on your design:

. How should objects be created and destroyed? How thisis done strongly influences the design of your constructors and

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (63 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

destructor, as well asyour versions of oper at or new, oper at or new |, oper at or del et e, and oper at or
del et e[], if you write them. (Item M8 describes the differences among these terms.)

. How does object initialization differ from object assignment? The answer to this question determines the behavior of and
the differences between your constructors and your assignment operators.

. What does it mean to pass objects of the new type by value? Remember, the copy constructor defines what it meansto
pass an object by value.

. What are the constraints on legal values for the new type? These constraints determine the kind of error checking you'll
have to do inside your member functions, especially your constructors and assignment operators. It may also affect the
exceptions your functions throw and, if you use them, your functions' exception specifications (see Item M14).

. Doesthe new type fit into an inheritance graph? If you inherit from existing classes, you are constrained by the design
of those classes, particularly by whether the functions you inherit are virtual or nonvirtual. If you wish to allow other
classes to inherit from your class, that will affect whether the functions you declare are virtual.

. What kind of type conversions are allowed? If you wish to allow objects of type A to be implicitly converted into objects
of type B, you will want to write either atype conversion function in class A or anon-expl i ci t constructor in class B
that can be called with asingle argument. If you wish to allow explicit conversions only, you'll want to write functions to
perform the conversions, but you'll want to avoid making them type conversion operators or non-expl i ci t single-
argument constructors. (Item M5 discusses the advantages and disadvantages of user-defined conversion functions.)

. What operators and functions make sense for the new type? The answer to this question determines which functions
you'll declarein your class interface.

. What standard operators and functions should be explicitly disallowed? Those are the ones you'll need to declare
private.

. Who should have access to the members of the new type? This question helps you determine which members are public,
which are protected, and which are private. It aso helps you determine which classes and/or functions should be friends,
aswell as whether it makes sense to nest one class inside another.

. How general is the new type? Perhaps you're not really defining a new type. Perhaps you're defining awhole family of
types. If so, you don't want to define a new class, you want to define a new class template.

These are difficult questions to answer, so defining effective classesin C++ isfar from simple. Done properly, however, user-
defined classesin C++ yield types that are all but indistinguishable from built-in types, and that makes all the effort
worthwhile.

A discussion of the details of each of the above issues would comprise abook in its own right, so the guidelines that follow are
anything but comprehensive. However, they highlight some of the most important design considerations, warn about some of
the most frequent errors, and provide solutions to some of the most common problems encountered by class designers. Much of
the advice is as applicable to non-member functions as it is to member functions, so in this section | consider the design and
declaration of global and namespace-resident functions, too.

Back to Classes and Functions: Design and Declaration
Continue to Item 19: Differentiate among member functions, non-member functions, and friend functions.

Item 18: Strive for class interfaces that are complete and minimal.

The client interface for a classisthe interface that is accessible to the programmers who use the class. Typically, only functions
exist in thisinterface, because having data membersin the client interface has a number of drawbacks (see Item 20).

Trying to figure out what functions should be in a class interface can drive you crazy. Y ou're pulled in two completely different
directions. On the one hand, you'd like to build a class that is easy to understand, straightforward to use, and easy to implement.
That usually implies afairly small number of member functions, each of which performs a distinct task. On other hand, you'd
like your class to be powerful and convenient to use, which often means adding functions to provide support for commonly
performed tasks. How do you decide which functions go into the class and which ones don't?

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (64 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#33985
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#6011
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5970

Effective C++, 2E

Try this: aim for a class interface that is complete and minimal.

A complete interface is one that allows clients to do anything they might reasonably want to do. That is, for any reasonable task
that clients might want to accomplish, there is a reasonable way to accomplish it, athough it may not be as convenient as clients
might like. A minimal interface, on the other hand, is one with as few functionsin it as possible, one in which no two member
functions have overlapping functionality. If you offer a complete, minimal interface, clients can do whatever they want to do,
but the class interface is no more complicated than absolutely necessary.

The desirability of acomplete interface seems obvious enough, but why a minimal interface? Why not just give clients
everything they ask for, adding functionality until everyone is happy?

Aside from the moral issue — isit really right to mollycoddle your clients? — there are definite technical disadvantagesto a
classinterface that is crowded with functions. First, the more functions in an interface, the harder it isfor potential clients to
understand. The harder it is for them to understand, the more reluctant they will be to learn how to useit. A classwith 10
functions looks tractable to most people, but a class with 100 functions is enough to make many programmers run and hide. By
expanding the functionality of your classto make it as attractive as possible, you may actually end up discouraging people from
learning how to use it.

A largeinterface can also lead to confusion. Suppose you create a class that supports cognition for an artificial intelligence
application. One of your member functionsiscalled t hi nk, but you later discover that some people want the function to be
caled ponder , and others prefer the namer um nat e. In an effort to be accommodating, you offer all three functions, even
though they do the same thing. Consider then the plight of a potential client of your class who is trying to figure things out. The
client is faced with three different functions, al of which are supposed to do the same thing. Can that really be true? Isn't there
some subtle difference between the three, possibly in efficiency or generality or reliability? If not, why are there three different
functions? Rather than appreciating your flexibility, such a potential client is likely to wonder what on earth you were thinking
(or pondering, or ruminating over).

A second disadvantage to alarge class interface is that of maintenance (see Iltem M 32). It's simply more difficult to maintain
and enhance a class with many functions than it is a class with few. It is more difficult to avoid duplicated code (with the
attendant duplicated bugs), and it is more difficult to maintain consistency across the interface. It's also more difficult to
document.

Finally, long class definitions result in long header files. Because header filestypically have to be read every time aprogram is
compiled (see Item 34), class definitions that are longer than necessary can incur a substantial penalty in total compile-time over

thelife of a project.

The long and short of it isthat the gratuitous addition of functions to an interface is not without costs, so you need to think
carefully about whether the convenience of a new function (a new function can only be added for convenience if the interface is
already complete) justifies the additional costsin complexity, comprehensibility, maintainability, and compilation speed.

Y et there's no sense in being unduly miserly. It is often justifiable to offer more than a minimal set of functions. If acommonly
performed task can be implemented much more efficiently as a member function, that may well justify its addition to the
interface. (Then again, it may not. See [tem M16.) If the addition of a member function makes the class substantially easier to
use, that may be enough to warrant itsinclusion in the class. And if adding a member function is likely to prevent client errors,
that, too, is a powerful argument for its being part of the interface.

Consider a concrete example: atemplate for classes that implement arrays with client-defined upper and lower bounds and that
offer optional bounds-checking. The beginning of such an array template is shown below:

t enpl at e<cl ass T>
class Array {

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (65 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5373
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#40995

Effective C++, 2E

publi c:
enum BoundsChecki ngSt at us { NO CHECK BOUNDS = O,
CHECK _BOUNDS = 1};

Array(i nt | owBound, int highBound,
BoundsChecki ngSt at us check = NO_CHECK BOUNDS) ;

Array(const Array& rhs);
~Array();

Array& operator=(const Array& rhs);

private:
i nt | Bound, hBound; /1 1 ow bound, high bound
vect or <T> dat a; /1l contents of array; see

/] 1tem 49 for vector info

BoundsChecki ngSt at us checki ngBounds;
b

The member functions declared so far are the ones that require basically no thinking (or pondering or ruminating). Y ou have a
constructor to allow clients to specify each array's bounds, a copy constructor, an assignment operator, and a destructor. In this
case, you've declared the destructor nonvirtual, which implies that this class is not to be used as a base class (see Item 14).

The declaration of the assignment operator is actually less clear-cut than it might at first appear. After al, built-in arraysin C++
don't allow assignment, so you might want to disallow it for your Ar r ay objects, too (see Item 27). On the other hand, the
array-likevect or template (in the standard library — see Item 49) permits assignments between vect or objects. In this

example, you'll follow vect or 'slead, and that decision, as you'll see below, will affect other portions of the classes's
interface.

Old-time C hacks would cringe to see this interface. Where is the support for declaring an array of a particular size? It would be
easy enough to add another constructor,

Array(int size,
BoundsChecki ngSt at us check = NO_CHECK BOUNDS) ;

but thisis not part of aminimal interface, because the constructor taking an upper and lower bound can be used to accomplish
the same thing. Nonetheless, it might be awise political move to humor the old geezers, possibly under the rubric of
consistency with the base language.

What other functions do you need? Certainly it is part of a complete interface to index into an array:

[/ return elenent for read/wite
T& operator[] (int index);

/'l return element for read-only
const T& operator[](int index) const;

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (66 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

By declaring the same function twice, once const and once non-const , you provide support for both const and non-
const Arr ay objects. The differencein return typesis significant, asis explained in Item 21.

Asit now stands, the Ar r ay template supports construction, destruction, pass-by-value, assignment, and indexing, which may
strike you as a complete interface. But look closer. Suppose a client wants to loop through an array of integers, printing out each
of its elements, like so:

Array<int> a(10, 20); /'l bounds on a are 10 to 20
for (int i =1ower bound of a; i <= upper bound of a; ++i)
COUt << ||a[|| << | << ||] — n << a[l] << |\n|1

How isthe client to get the bounds of a? The answer depends on what happens during assignment of Ar r ay objects, i.e., on
what happensinside Ar r ay: : oper at or =. In particular, if assignment can change the bounds of an Ar r ay object, you must
provide member functions to return the current bounds, because the client has no way of knowing a priori what the bounds are
at any given point in the program. In the example above, if a was the target of an assignment between the time it was defined
and the time it was used in the loop, the client would have no way to determine the current bounds of a.

On the other hand, if the bounds of an Ar r ay object cannot be changed during assignment, then the bounds are fixed at the
point of definition, and it would be possible (though cumbersome) for a client to keep track of these bounds. In that case,
though it would be convenient to offer functions to return the current bounds, such functions would not be part of atruly
minimal interface.

Proceeding on the assumption that assignment can modify the bounds of an object, the bounds functions could be declared
thus:

i nt | owBound() const;
i nt hi ghBound() const;

Because these functions don't modify the object on which they are invoked, and because you prefer to use const whenever
you can (see Item 21), these are both declared const member functions. Given these functions, the loop above would be

written as follows:

for (int i = a.lowBound(); i <= a.highBound(); ++i)
cout << "a[" << i << "] =" << a[i] << "\n";

Needlessto say, for such aloop to work for an array of objects of type T, an oper at or << function must be defined for
objects of type T. (That's not quite true. What must exist isan oper at or << for T or for some other type to which T may be
implicitly converted (see Item M5). But you get the idea.)

Some designers would argue that the Ar r ay class should also offer afunction to return the number of elementsin an Ar r ay
object. The number of elementsissimply hi ghBound() - I owBound() +1, so such afunction is not really necessary, but in
view of the frequency of off-by-one errors, it might not be a bad idea to add such a function.

Other functions that might prove worthwhile for this class include those for input and output, as well as the various relational

operators (e.g., <, >, ==, etc.). None of those functionsis part of aminimal interface, however, because they can all be
implemented in terms of loops containing callsto oper ator[].

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (67 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5970

Effective C++, 2E

Speaking of functionslike oper at or <<, oper at or >>, and the relational operators, Item 19 discusses why they are
frequently implemented as non-member friend functions instead of as member functions. That being the case, don't forget that
friend functions are, for all practical purposes, part of aclasssinterface. That means that friend functions count toward a class
interface’'s compl eteness and minimalness.

Back to Item 18 : Strive for class interfaces that are complete and minimal.
Continue to Item 20 : Avoid data membersin the public interface.

Item 19: Differentiate among member functions, non-member functions, and friend functions.

The biggest difference between member functions and non-member functions is that member functions can be virtual and non-
member functions can't. Asaresult, if you have afunction that has to be dynamically bound (see Item 38), you've got to use a

virtual function, and that virtual function must be a member of some class. It's as simple as that. If your function doesn't need to
be virtual, however, the water begins to muddy a bit.

Consider aclass for representing rational numbers:

cl ass Rational {

publi c:
Rational (int nunmerator = 0, int denom nator = 1);
i nt nunmerator() const;
I nt denom nator() const;

private:

};...

Asit stands now, thisis a pretty useless class. (Using the terms of Item 18, the interface is certainly minimal, but it's far from
complete.) You know you'd like to support arithmetic operations like addition, subtraction, multiplication, etc., but you're
unsure whether you should implement them viaa member function, a non-member function, or possibly a non-member function
that's afriend.

When in doubt, be object-oriented. Y ou know that, say, multiplication of rational numbersisrelated to the Rat i onal class, so
try bundling the operation with the class by making it a member function:

cl ass Rational {
publ i c:

const Rational operator*(const Rational & rhs) const;

b

(If you're unsure why this function is declared the way it is— returning aconst by-value result, but taking a reference-to-
const asitsargument — consult Items 21-23.)

Now you can multiply rational numbers with the greatest of ease:

Rati onal oneEighth(1, 8);
Rati onal oneHal f (1, 2);

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (68 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

Rational result = oneHalf * oneEi ghth; /'l fine
result = result * oneEi ghth; [l fine

But you're not satisfied. Y ou'd also like to support mixed-mode operations, where Rat i onal s can be multiplied with, for
example, i nt s. When you try to do this, however, you find that it works only half the time:

resul t oneHal f * 2; [/ fine
result = 2 * oneHal f; [/ error!

Thisis abad omen. Multiplication is supposed to be commutative, remember?

The source of the problem becomes apparent when you rewrite the last two examplesin their equivalent functional form:

resul t oneHal f. operator*(2); /[l fine

result = 2.operator*(oneHal f); /1 error!

The object oneHal f isan instance of aclassthat contains an oper at or *, so your compilers call that function. However, the
integer 2 has no associated class, hence no oper at or * member function. Y our compilers will also look for a non-member
oper at or * (i.e., onethat'sin avisible namespace or is global) that can be called like this,

result = operator*(2, oneHalf); /'l error!
but there is no non-member oper at or * takingani nt and aRat i onal , so the search fails.

Look again at the call that succeeds. Y ou'll see that its second parameter isthe integer 2, yet Rat i onal : : oper at or * takes
aRat i onal object asits argument. What's going on here? Why does 2 work in one position and not in the other?

What's going on isimplicit type conversion. Your compilers know you're passing an i nt and the function requires a

Rat i onal , but they also know that they can conjure up asuitable Rat i onal by calling the Rat i onal constructor with the
I nt you provided, so that's what they do (see Item M19). In other words, they treat the call asif it had been written more or
lesslike this:

const Rational tenp(2); /]l create a tenporary
/'l Rational object from?2

result = oneHalf * tenp; /'l same as
/'l oneHal f.operator*(tenp);

Of course, they do thisonly when non-expl i ci t constructors are involved, because expl i ci t constructors can't be used
for implicit conversions; that'swhat expl i ci t means. If Rat i onal were defined like this,

cl ass Rational {
publi c:
explicit Rational (int nunerator = O, /[l this ctor is
int denomnator = 1); // now explicit

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (69 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41177

Effective C++, 2E

const Rational operator*(const Rational & rhs) const;

b

neither of these statements would compile:

result oneHal f * 2; /] error!
result = 2 * oneHal f; /] error!

That would hardly qualify as support for mixed-mode arithmetic, but at least the behavior of the two statements would be
consistent.

TheRat i onal classwe've been examining, however, is designed to allow implicit conversions from built-in types to

Rat i onal s— that'swhy Rat i onal 's constructor isn't declared expl i ci t . That being the case, compilers will perform the
implicit conversion necessary to alow r esul t 'sfirst assignment to compile. In fact, your handy-dandy compilers will perform
thiskind of implicit type conversion, if it's needed, on every parameter of every function call. But they will do it only for
parameters listed in the parameter list, never for the object on which a member function isinvoked, i.e., the object
corresponding to *t hi s inside amember function. That's why this call works,

result = oneHal f.operator*(2); [/l converts int -> Rational
and this one does not:

result = 2.operator*(oneHalf); /1l doesn't convert
/1 int -> Rational

The first case involves a parameter listed in the function declaration, but the second one does not.

Nonetheless, you'd still like to support mixed-mode arithmetic, and the way to do it is by now perhaps clear: make
oper at or * anon-member function, thus allowing compilers to perform implicit type conversions on all arguments:

class Rational {

/1l contains no operator*
1

/'l declare this globally or within a namespace; see
/1 1tem M0 for why it's witten as it is
const Rational operator*(const Rational & | hs,

const Rational & rhs)

{

return Rational (I hs. nunmerator() * rhs.nunmerator(),
| hs. denom nator () * rhs.denom nator());

}

Rat i onal oneFourth(1, 4);
Rati onal result;

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (70 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#45310

Effective C++, 2E

result = oneFourth * 2; /'l fine
result = 2 * oneFourth; /1l hooray, it works!

Thisis certainly a happy ending to the tale, but there is a nagging worry. Should oper at or * be made afriend of the
Rat i onal class?

In this case, the answer is no, because oper at or * can be implemented entirely in terms of the class's public interface. The
code above shows one way to do it. Whenever you can avoid friend functions, you should, because, much asin red life, friends
are often more trouble than they're worth.

However, it's not uncommon for functions that are not members, yet are still conceptually part of aclass interface, to need
access to the non-public members of the class.

Asan example, let's fall back on aworkhorse of this book, the St r i ng class. If you try to overload oper at or >> and
oper at or << for reading and writing St r i ng objects, you'll quickly discover that they shouldn't be member functions. If
they were, you'd have to put the St r i ng object on the left when you called the functions:

/1l a class that incorrectly declares operator>> and
/| operator<< as nenber functions
class String {
publi c:
String(const char *val ue);

i stream& operator>>(istream& i nput);
ostrean& oper at or <<(ostrean& out put);

private:
char *dat a;
3
String s;
s >> cin; /'l legal, but contrary
/1l to convention
s << cout; /1 ditto

That would confuse everyone. As aresult, these functions shouldn't be member functions. Notice that thisis a different case
from the one we discussed above. Here the goal is anatural calling syntax; earlier we were concerned about implicit type
conversions.

If you were designing these functions, you'd come up with something like this:

I stream& operator>>(istream& i nput, String& string)
{

delete [] string.data;

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (71 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

read frominput into sone nenory, and make string. data
point to it

return input;

}

ostrean& oper at or <<(ostrean& out put,
const String& string)
{

return out put << string.data;

}

Notice that both functions need access to the dat a field of the St r i ng class, afield that's private. However, you already know
that you have to make these functions non-members. Y ou're boxed into a corner and have no choice: non-member functions
with a need for access to non-public members of a class must be made friends of that class.

The lessons of this Item are summarized below, in which it isassumed that f isthe function you're trying to declare properly
and Cisthe classto which it is conceptually related:

. Virtual functions must be members. If f needsto be virtual, make it a member function of C.

. oper at or >>and oper at or << arenever members. If f isoper at or >> or oper at or <<, makef anon-
member function. If, in addition, f needs access to non-public members of C, makef afriend of C.

. Only non-member functions get type conversionson their left-most argument. If f needs type conversions on its
left-most argument, make f anon-member function. If, in addition, f needs access to non-public members of C, make f
afriend of C.

. Everything else should be a member function. If none of the other cases apply, makef amember function of C.

Back to Item 19: Differentiate anong member functions, non-member functions, and friend functions.
Continue to Item 21: Use const whenever possible.

Item 20: Avoid data members in the public interface.

First, let'slook at thisissue from the point of view of consistency. If everything in the public interface is a function, clients of
your class won't have to scratch their heads trying to remember whether to use parentheses when they want to access a member
of your class. They'll just do it, because everything is afunction. Over the course of alifetime, that can save alot of head
scratching.

Y ou don't buy the consistency argument? How about the fact that using functions gives you much more precise control over the
accessibility of data members? If you make a data member public, everybody has read/write accessto it, but if you use
functionsto get and set its value, you can implement no access, read-only access, and read-write access. Heck, you can even
implement write-only access if you want to:

cl ass AccesslLevel s {
publi c:
i nt getReadOnly() const{ return readOnly; }

voi d setReadWite(int value) { readWite = value; }
Int getReadWite() const { return readWite; }

void setWiteOnly(int value) { witeOnly = value; }

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (72 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

private:
i nt noAccess; // no access to this i nt
int readOnly; /1l read-only access to
/] this int
int readWite; /] read-wite access to
/] this int
int witeOnly; /'l wite-only access to
/] this int
b

Still not convinced? Then it's time to bring out the big gun: functional abstraction. If you implement access to a data member
through a function, you can later replace the data member with a computation, and nobody using your class will be any the
wiser.

For example, suppose you are writing an application in which some automated equipment is monitoring the speed of passing
cars. As each car passes, its speed is computed, and the value is added to a collection of al the speed data collected so far:

cl ass SpeedDat aCol | ection {

publi c:
voi d addVal ue(i nt speed); /1l add a new data val ue
doubl e averageSoFar () const; /'l return average speed
1

Now consider the implementation of the member function aver ageSoFar (see aso Item M18). One way to implement it isto
have a data member in the class that is a running average of all the speed data so far collected. Whenever aver ageSoFar is
called, it just returns the value of that data member. A different approach isto have aver ageSoFar compute its value anew
each timeit's called, something it could do by examining each data value in the collection. (For amore general discussion of
these two approaches, see ltems M17 and M 18.)

The first approach — keeping a running average — makes each SpeedDat aCol | ect i on object bigger, because you have to
allocate space for the data member holding the running average. However, aver ageSoFar can be implemented very
efficiently; it'sjust an inline function (see Item 33) that returns the value of the data member. Conversely, computing the
average whenever it's requested will make aver ageSoFar run slower, but each SpeedDat aCol | ect i on object will be
smaller.

Who's to say which is best? On a machine where memory istight, and in an application where averages are needed only
infrequently, computing the average each time is a better solution. In an application where averages are needed frequently,
speed is of the essence, and memory is not an issue, keeping arunning average is preferable. The important point is that by
accessing the average through a member function, you can use either implementation, a valuable source of flexibility that you
wouldn't have if you made a decision to include the running average data member in the public interface.

The upshot of al thisisthat you're just asking for trouble by putting data members in the public interface, so play it safe by
hiding al your data members behind awall of functional abstraction. If you do it now, we'll throw in consistency and fine-
grained access control at no extra cost!

Back to [tem 20: Avoid data membersin the public interface.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (73 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41124
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41011
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41124

Effective C++, 2E

Continue to Item 22: Prefer pass-by-reference to pass-by-value.

Item 21: Use const whenever possible.

The wonderful thing about const isthat it allows you to specify a certain semantic constraint — a particular object should not
be modified — and compilers will enforce that constraint. It allows you to communicate to both compilers and other
programmers that a value should remain invariant. Whenever that is true, you should be sure to say so explicitly, because that
way you enlist your compilers aid in making sure the constraint isn't violated.

Theconst keyword isremarkably versatile. Outside of classes, you can useit for global or namespace constants (see Items 1
and 47) and for static objects (local to afile or ablock). Inside classes, you can useit for both static and nonstatic data members
(seedso Item 12).

For pointers, you can specify whether the pointer itself isconst , the datait pointstoisconst , both, or neither:

"Hel | 0"; /'l non-const pointer,
/1 non-const data2

char *p

"Hel | 0"; /'l non-const pointer,
/'l const data

const char *p

"Hel | 0"; /'l const pointer,
/'l non-const data

char * const p

"Hel | 0"; /1l const pointer,
/] const data

const char * const p

This syntax isn't quite as capricious asit looks. Basically, you mentally draw a vertical line through the asterisk of a pointer
declaration, and if the word const appearsto the left of the line, what's pointed to is constant; if the word const appearsto
the right of the line, the pointer itself is constant; if const appears on both sides of the line, both are constant.

When what's pointed to is constant, some programmerslist const before the type name. Otherslist it after the type name but
before the asterisk. As aresult, the following functions take the same parameter type:

class Wdget { ... };

void fl(const Wdget *pw); /1 f1 takes a pointer to a
/| constant W dget object

voi d f2(Wdget const *pw); /'l so does f2

Because both forms exist in real code, you should accustom yourself to both of them.

Some of the most powerful uses of const stem from its application to function declarations. Within afunction declaration,
const can refer to the function's return value, to individual parameters, and, for member functions, to the function as awhole.

Having afunction return a constant value often makes it possible to reduce the incidence of client errors without giving up

safety or efficiency. In fact, as [tem 29 demonstrates, using const with areturn value can make it possible to improve the
safety and efficiency of afunction that would otherwise be problematic.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (74 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

For example, consider the declaration of the oper at or * function for rational numbers that isintroduced in Item 19:

const Rational operator*(const Rational & | hs,
const Rational & rhs);

Many programmers sguint when they first see this. Why should the result of oper at or * beaconst object? Becauseif it
weren't, clients would be able to commit atrocities like this:

Rational a, b, c;

(a* b)) =c; /1l assign to the product
/'l of a*Db!

I don't know why any programmer would want to make an assignment to the product of two numbers, but | do know this: it
would beflat-out illegal if a, b, and ¢ were of abuilt-in type. One of the hallmarks of good user-defined typesis that they avoid
gratuitous behavioral incompatibilities with the built-ins, and allowing assignments to the product of two numbers seems pretty
gratuitous to me. Declaring oper at or * 'sreturn value const preventsit, and that's why It's The Right Thing To Do.

There's nothing particularly new about const parameters — they act just like local const objects. (See [tem M 19, however,
for adiscussion of how const parameters can lead to the creation of temporary objects.) Member functions that are const ,
however, are a different story.

The purpose of const member functions, of course, is to specify which member functions may be invoked on const objects.
Many people overlook the fact that member functions differing only in their constness can be overloaded, however, and thisis
an important feature of C++. Consider the St r i ng class once again:

class String {
publi c:

/| operator[] for non-const objects
char & operator[] (int position)
{ return data[position]; }

/'l operator[] for const objects
const char& operator[](int position) const
{ return data[position]; }

private:
char *dat a;

b

String s1 = "Hell o";
cout << s1[0]; /1 calls non-const
/1 String::operator]]
const String s2 = "World";
cout << s2[0]; /'l calls const

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (75 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41177

Effective C++, 2E

/1 String::operator|]

By overloading oper at or [| and giving the different versions different return values, you are able to have const and non-
const Stri ngshandled differently:

String s = "Hello"; /1 non-const String object

cout << s[0]; /[l fine —reading a
/'l non-const String

s[0] = "Xx"; /[l fine —writing a
/'l non-const String

const String cs = "Worl d"; /1l const String object

cout << c¢s[0]; /1 fine —reading a
/'l const String

cs[0] = "x'; /[l error! —witing a
/1l const String

By the way, note that the error here has only to do with the return value of the oper at or [] that is caled; the callsto
oper at or [] themselvesare all fine. The error arises out of an attempt to make an assignment to aconst char &, because
that's the return value from the const version of operator[].

Also note that the return type of the non-const oper at or [] must beareferencetoachar — achar itself will not do. If
oper at or[] did return asimple char , statements like this wouldn't compile:

s[0] = "Xx";

That's because it's never legal to modify the return value of afunction that returns a built-in type. Evenif it were legal, the fact
that C++ returns objects by value (see Item 22) would mean that a copy of s. dat a[0] would be modified, not s. dat a[0]
itself, and that's not the behavior you want, anyway.

Let'stake a brief time-out for philosophy. What exactly does it mean for a member function to be const ? There aretwo
prevailing notions: bitwise constness and conceptual constness.

The bitwise const camp believes that amember functionisconst if and only if it doesn't modify any of the object's data
members (excluding those that are static), i.e., if it doesn't modify any of the bits inside the object. The nice thing about bitwise
constnessisthat it's easy to detect violations: compilers just ook for assignments to data members. In fact, bitwise constnessis
C++'s definition of constness, and aconst member function isn't allowed to modify any of the data members of the object on
which it isinvoked.

Unfortunately, many member functions that don't act very const pass the bitwise test. In particular, amember function that
modifies what a pointer points to frequently doesn't act const . But if only the pointer isin the object, the function is bitwise
const , and compilers won't complain. That can lead to counterintuitive behavior:

class String {

publi c:
/'l the constructor nmekes data point to a copy

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (76 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

/1 of what value points to
String(const char *val ue);

operator char *() const { return data;}

private:

char *dat a;
1
const String s = "Hello"; /| decl are constant object
char *nasty = s; /1 calls op char*() const
*nasty = 'M; /1 nodifies s.data[0]
cout << s; /Il wites "Mello"

Surely there is something wrong when you create a constant object with a particular value and you invoke only const member
functions on it, yet you are still able to change its value! (For a more detailed discussion of this example, see Item 29.)

This leads to the notion of conceptual constness. Adherents to this philosophy argue that aconst member function might
modify some of the bits in the object on which it's invoked, but only in ways that are undetectable by clients. For example, your
St ri ng class might want to cache the length of the object whenever it's requested (see Item M 18):

class String {
publi c:
/'l the constructor nmakes data point to a copy
/1l of what value points to
String(const char *value): lengthlsValid(false) { ... }

size t length() const;

private:
char *dat a;

size_t datalLength; /1l last calculated |length
/'l of string

bool | engthlsValid, /1 whether length is
/1l currently valid

¥

size_t String::length() const

{
if (!lengthlsVvalid) {
datalLength = strlen(data); /1 error!

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (77 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41124

Effective C++, 2E

I engthlsValid = true; /'l error!

}

return datalLengt h;

}

Thisimplementation of | engt h is certainly not bitwise const — both dat aLengt h and | engt hl sVal i d may be modified
— yet it seems as though it should be valid for const St ri ng objects. Compilers, you will find, respectfully disagree; they
insist on bitwise constness. What to do?

The solution is simple: take advantage of the const -related wiggle room the °C++ standardization committee thoughtfully
provided for just these types of situations. That wiggle room takes the form of the keyword nut abl e. When applied to
nonstatic data members, mut abl e frees those members from the constraints of bitwise constness:

class String {
publi c:

/] sane as above

private:
char *dat a;

mut abl e si ze_t datalLength; /'l these data nenbers are
/1 now nutabl e; they may be
mut abl e bool | engthlsVvali d; /1 nodified anywhere, even
/'l inside const nenber
}; [l functions

size_t String::length() const

{
if (!lengthlsVvalid) {
datalLength = strlen(data); /1 now fine
I engthlsvValid = true; /1 also fine
}

return datalengt h;

}
nmut abl e isawonderful solution to the bitwise-constness-is-not-quite-what-I-had-in-mind problem, but it was added to C++
relatively late in the standardization process, so your compilers may not support it yet. If that's the case, you must descend into
the dark recesses of C++, wherelifeis cheap and constness may be cast away.

Inside amember function of class C, thet hi s pointer behaves asif it had been declared as follows:

C * const this; /] for non-const nenber
/] functions

const C * const this; [/l for const nenber
/] functions

That being the case, al you have to do to make the problematic version of St ri ng: : | engt h (i.e., the one you could fix with

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (78 / 189) [2003-6-11 20:02:42]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=committee

Effective C++, 2E

nmut abl e if your compilers supported it) valid for both const and non-const objectsisto change the type of t hi s from
const C* const toC* const . You can't do that directly, but you can fakeit by initializing alocal pointer to point to the
same object ast hi s does. Then you can access the members you want to modify through the local pointer:

size t String::length() const
{
/1l make a local version of this that's
/1l not a pointer-to-const
String * const local This =
const _cast<String * const>(this);

if (!lengthlsValid) {
| ocal Thi s->datalLength = strlen(data);
| ocal Thi s->l engthlsValid = true;

}

return datalLengt h;

}

Pretty thisain't, but sometimes a programmer's just gotta do what a programmer's gotta do.

Unless, of course, it's not guaranteed to work, and sometimes the old cast-away-constness trick isn't. In particular, if the object
t hi s pointstoistruly const , i.e, wasdeclared const at its point of definition, the results of casting away its constness are
undefined. If you want to cast away constness in one of your member functions, you'd best be sure that the object you're doing
the casting on wasn't originally defined to be const .

There is one other time when casting away constness may be both useful and safe. That's when you have aconst object you
want to pass to afunction taking anon-const parameter, and you know the parameter won't be modified inside the function.
The second condition isimportant, because it is always safe to cast away the constness of an object that will only be read — not
written — even if that object was originally defined to beconst .

For example, some libraries have been known to incorrectly declare the st r | en function as follows:
size_t strlen(char *s);

Certainly st r | en isn't going to modify what s pointsto — at least not the st r | en | grew up with. Because of this
declaration, however, it would be invalid to call it on pointers of typeconst char *. To get around the problem, you can
safely cast away the constness of such pointers when you passthemtostr| en:

const char *klingonGeeting = "nugneH'; /1l "nugneH' is
/1 "Hello" in
/'l Klingon

size_t length =
strlen(const _cast<char*>(kli ngonG eeting));

Don't get cavalier about this, though. It is guaranteed to work only if the function being called, st r | en in this case, doesn't try
to modify what its parameter points to.

Back to [tem 21: Use const whenever possible.
Continue to Item 23: Don't try to return areference when you must return an object.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (79 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

Item 22: Prefer pass-by-reference to pass-by-value.

In C, everything is passed by value, and C++ honors this heritage by adopting the pass-by-value convention as its default.
Unless you specify otherwise, function parameters are initialized with copies of the actual arguments, and function callers get
back a copy of the value returned by the function.

As| pointed out in the Introduction to this book, the meaning of passing an object by value is defined by the copy constructor of
that object's class. This can make pass-by-value an extremely expensive operation. For example, consider the following (rather
contrived) class hierarchy:

cl ass Person {
publi c:
Person(); /] paraneters omtted for
[l sinplicity
~Person();

private:
string name, address;

b

class Student: public Person {
publi c:
St udent () ; [/l paranmeters omtted for
Il simplicity
~St udent () ;

private:
string school Nane, school Address;

b

Now consider asimple functionr et ur nSt udent that takesa St udent argument (by value) and immediately returnsit (also
by value), plusacall to that function:

Student returnStudent (Student s) { return s; }

St udent pl at o; /1l Plato studied under
/'l Socrates

ret urnSt udent (pl at o) ; /1 call returnStudent
What happens during the course of this innocuous-looking function call?

The simple explanation isthis: the St udent copy constructor is caled to initialize s with pl at 0. Then the St udent copy
constructor is called again to initialize the object returned by the function with s. Next, the destructor iscalled for s. Finaly,
the destructor is called for the object returned by r et ur nSt udent . So the cost of this do-nothing function istwo calls to the
St udent copy constructor and two callsto the St udent destructor.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (80 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

But wait, there'smore! A St udent object hastwo st r i ng objects within it, so every time you construct a St udent object
you must also construct two st ri ng objects. A St udent object also inherits from a Per son object, so every time you
construct a St udent object you must also construct a Per son object. A Per son object has two additional st r i ng objects
insideit, so each Per son construction also entailstwo more st r i ng constructions. The end result is that passing a St udent
object by value leads to one call to the St udent copy constructor, one call to the Per son copy constructor, and four callsto
the st r i ng copy constructor. When the copy of the St udent object is destroyed, each constructor call is matched by a
destructor call, so the overall cost of passing a St udent by valueis six constructors and six destructors. Because the function
ret ur nSt udent uses pass-by-value twice (once for the parameter, once for the return value), the complete cost of acall to
that function is twelve constructors and twelve destructors!

In fairness to the C++ compiler-writers of the world, thisis aworst-case scenario. Compilers are allowed to eliminate some of
these calls to copy constructors. (The °C++ standard — see Item 50 — describes the precise conditions under which they are

allowed to perform this kind of magic, and Item M20 gives examples). Some compilers take advantage of this license to
optimize. Until such optimizations become ubiquitous, however, you've got to be wary of the cost of passing objects by value.

To avoid this potentially exorbitant cost, you need to pass things not by value, but by reference:

const Student & returnStudent (const Studenté& s)
{ return s; }

Thisis much more efficient: no constructors or destructors are called, because no new objects are being created.

Passing parameters by reference has another advantage: it avoids what is sometimes called the "slicing problem.” When a
derived class object is passed as a base class object, all the specialized features that make it behave like a derived class object
are "diced" off, and you're left with a ssmple base class object. Thisis almost never what you want. For example, suppose
you're working on a set of classes for implementing a graphical window system:

cl ass W ndow {

publi c:
string name() const; [l return nanme of w ndow
virtual void display() const; /1 draw wi ndow and contents
3
cl ass WndowW thScrol | Bars: public Wndow {
publi c:
virtual void display() const;
3

All W ndow objects have a name, which you can get at through the name function, and all windows can be displayed, which
you can bring about by invoking thedi spl ay function. The fact that di spl ay isvirtual tells you that the way in which
simple base class W ndow objects are displayed is apt to differ from the way in which the fancy, high-priced

W ndowW t hScr ol | Bar s objects are displayed (see Items 36, 37, and M33).

Now suppose you'd like to write afunction to print out a window's name and then display the window. Here's the wrong way to
write such a function:

/1 a function that suffers fromthe slicing problem
voi d print NameAndDi spl ay(W ndow w)
{

cout << w. name();

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (81 / 189) [2003-6-11 20:02:42]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cstandard
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#45310
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#10947

Effective C++, 2E

w. di splay();
}

Consider what happens when you call this function withaW ndowW t hScr ol | Bar s object:
W ndowW t hScr ol | Bars wasb;
pri nt NanmeAndDi spl ay(wasb) ;

The parameter wwill be constructed — it's passed by value, remember? — asa W ndow object, and al the specialized
information that made wws b act likeaW ndowW t hScr ol | Bar s object will be sliced off. Inside

pri nt NanmeAndDi spl ay, wwill always act like an object of class W ndow (because it is an object of class W ndow),
regardless of the type of object that is passed to the function. In particular, the call to di spl ay inside

pri nt NaneAndDi spl ay will alwayscal W ndow: : di spl ay, never W ndowW t hScr ol | Bar s: : di spl ay.

The way around the slicing problem isto pass w by reference:

/1 a function that doesn't suffer fromthe slicing problem
voi d print NameAndDi spl ay(const W ndow& w)

{

cout << w. nane();
w. di spl ay();
}

Now wwill act like whatever kind of window is actually passed in. To emphasize that wisn't modified by this function even
though it's passed by reference, you've followed the advice of Item 21 and carefully declared it to be const ; how good of you.

Passing by reference is awonderful thing, but it leads to certain complications of its own, the most notorious of which is
aliasing, atopic that isdiscussed in Item 17. In addition, it's important to recognize that you sometimes can't pass things by

reference; see Item 23. Finally, the brutal fact of the matter is that references are almost always implemented as pointers, so

passing something by reference usually means really passing a pointer. As aresult, if you have asmall object — ani nt , for
example — it may actually be more efficient to passit by value than to passit by reference.

Back to Item 22: Prefer pass-by-reference to pass-by-value.
Continue to Item 24: Choose carefully between function overloading and parameter defaulting.

Item 23: Don't try to return a reference when you must return an object.

It issaid that Albert Einstein once offered this advice: make things as simple as possible, but no simpler. The C++ analogue
might well be to make things as efficient as possible, but no more efficient.

Once programmers grasp the efficiency implications of pass-by-value for objects (see Item 22), they become crusaders,
determined to root out the evil of pass-by-value wherever it may hide. Unrelenting in their pursuit of pass-by-reference purity,

they invariably make afatal mistake: they start to pass references to objects that don't exist. Thisis not agood thing.

Consider aclass for representing rational numbers, including a friend function (see Item 19) for multiplying two rationals
together:

cl ass Rational {
publi c:

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (82 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

Rational (int nunmerator = 0, int denom nator = 1);

private:
int n, d; /1 numerator and denom nat or
friend
const Rati onal /'l see Item 21 for why
operat or*(const Rational & | hs, /1l the return value is
const Rational & rhs) /'l const
1

inline const Rational operator*(const Rational & | hs,
const Rational & rhs)
{

return Rational (lhs.n * rhs.n, Ihs.d * rhs.d);

}

Clearly, thisversion of oper at or * isreturning its result object by value, and you'd be shirking your professional dutiesif you
failed to worry about the cost of that object's construction and destruction. Another thing that's clear is that you're cheap and
you don't want to pay for such atemporary object (see Item M19) if you don't have to. So the question isthis: do you have to

pay?

WEell, you don't haveto if you can return areference instead. But remember that areferenceisjust a name, a name for some
existing object. Whenever you see the declaration for areference, you should immediately ask yourself what it is another name
for, because it must be another name for something (see Item M1). In the case of oper at or *, if the functionisto return a
reference, it must return areference to some other Rat i onal object that already exists and that contains the product of the two
objects that are to be multiplied together.

There is certainly no reason to expect that such an object exists prior to the call to oper at or *. That is, if you have

Rational a(l, 2); /[l a=1/2
Rational b(3, 5); // b =3/5
Rational ¢ = a * b; // ¢ should be 3/10

it seems unreasonable to expect that there already exists arational number with the value three-tenths. No, if oper at or * isto
return areference to such anumber, it must create that number object itself.

A function can create a new object in only two ways: on the stack or on the heap. Creation on the stack is accomplished by
defining alocal variable. Using that strategy, you might try to write your oper at or * asfollows:

/1l the first wong way to wite this function
inline const Rational & operator*(const Rational & I hs,
const Rational & rhs)

{
Rational result(lhs.n * rhs.n, Ihs.d * rhs.d);

return result;

}

Y ou can reject this approach out of hand, because your goal was to avoid a constructor call, and r esul t will have to be

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (83 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41177
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#11029

Effective C++, 2E

constructed just like any other object. In addition, this function has a more serious problem in that it returns areference to a
local object, an error that is discussed in depth in Item 31.

That leaves you with the possibility of constructing an object on the heap and then returning areference to it. Heap-based
objects come into being through the use of new. Thisis how you might write oper at or * in that case:

/'l the second wong way to wite this function
inline const Rational & operator*(const Rational & | hs,
const Rational & rhs)

{

Rational *result =
new Rational (lhs.n * rhs.n, Ihs.d * rhs.d);
return *result;

}

Well, you still have to pay for a constructor call, because the memory alocated by newisinitialized by calling an appropriate
constructor (see Items 5 and M8), but now you have a different problem: who will apply del et e to the object that was

conjured up by your use of new?

In fact, thisis a guaranteed memory leak. Even if callers of oper at or * could be persuaded to take the address of the
function'sresult and use del et e on it (astronomically unlikely — Item 31 shows what the code would have to ook like),

complicated expressions would yield unnamed temporaries that programmers would never be able to get at. For example, in
Rational w, x, vy, z;
W=XxX%*y* z;

both callsto oper at or * yield unnamed temporaries that the programmer never sees, hence can never delete. (Again, see ltem
31)

But perhaps you think you're smarter than the average bear — or the average programmer. Perhaps you notice that both the on-
the-stack and the on-the-heap approaches suffer from having to call a constructor for each result returned from oper at or *.
Perhaps you recall that our initial goal was to avoid such constructor invocations. Perhaps you think you know of away to
avoid all but one constructor call. Perhaps the following implementation occurs to you, an implementation based on

oper at or * returning areferenceto astatic Rat i onal object, one defined inside the function:

/1 the third wong way to wite this function
inline const Rational & operator*(const Rational & | hs,
const Rational & rhs)

{

static Rational result; /] static object to which a
I/l reference will be returned

somehow nultiply | hs and rhs and put the
resulting value inside result;

return result;

}

This looks promising, though when you try to compose real C++ for the italicized pseudocode above, you'll find that it's all but

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (84 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#33985

Effective C++, 2E

impossibleto giver esul t the correct value without invoking aRat i onal constructor, and avoiding such acall isthe whole
reason for this game. Let us posit that you manage to find a way, however, because no amount of cleverness can ultimately save
this star-crossed design.

To see why, consider this perfectly reasonable client code:

bool operator==(const Rational & | hs, /1 an operator==
const Rational & rhs); /1l for Rationals

Rational a, b, c, d;

if ((a* b) == (c * d)) {
do whatever's appropriate when the products are equal;
} else {

do whatever's appropriate when they're not;

}

Now ponder this: the expression ((a*b) == (c*d)) will alwaysevaluatetot r ue, regardless of the values of a, b, ¢, and d!
It's easiest to understand this vexing behavior by rewriting the test for equality in its equivalent functional form:
i f (operator==(operator*(a, b), operator*(c, d)))

Notice that when oper at or == is called, there will already be two active calsto oper at or *, each of which will return a
reference to the static Rat i onal objectinsideoper at or *. Thus, oper at or == will be asked to compare the value of the
static Rat i onal objectinside oper at or * with the value of the static Rat i onal object inside oper at or *. It would be
surprising indeed if they did not compare equal. Always.

With luck, thisis enough to convince you that returning areference from afunction like oper at or * isawaste of time, but
I'm not so naive asto believe that luck is always sufficient. Some of you — and you know who you are — are at this very
moment thinking, "Well, if one static isn't enough, maybe a static array will do thetrick..."

Stop. Please. Haven't we suffered enough already?

| can't bring myself to dignify this design with example code, but | can sketch why even entertaining the notion should cause
you to blush in shame. First, you must choose n, the size of the array. If nistoo small, you may run out of placesto store
function return values, in which case you'll have gained nothing over the single-st at i ¢ design we just discredited. But if nis
too big, you'll decrease the performance of your program, because every object in the array will be constructed the first time the
functionis called. That will cost you n constructors and n destructors, even if the function in question is called only once. If
"optimization” isthe process of improving software performance, this kind of thing should be called "pessimization.” Finally,
think about how you'd put the values you need into the array's objects and what it would cost you to do it. The most direct way
to move avalue between objectsis via assignment, but what is the cost of an assignment? In general, it's about the same as a
call to adestructor (to destroy the old value) plus acall to a constructor (to copy over the new value). But your goal isto avoid
the costs of construction and destruction! Face it: this approach just isn't going to pan out.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (85 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

No, the right way to write afunction that must return a new object is to have that function return anew object. For Rat i onal 's
oper at or *, that means either the following code (which we first saw back on page 102) or something essentially equivalent:

inline const Rational operator*(const Rational & | hs,
const Rational & rhs)
{

return Rational (lhs.n * rhs.n, Ihs.d * rhs.d);

}

Sure, you may incur the cost of constructing and destructing oper at or *'sreturn value, but in the long run, that's a small price
to pay for correct behavior. Besides, the bill that so terrifies you may never arrive. Like all programming languages, C++ allows
compiler implementers to apply certain optimizations to improve the performance of the generated code, and it turns out that in
some cases, oper at or *'sreturn value can be safely eliminated (see Item M20). When compilers take advantage of that fact
(and current compilers often do), your program continues to behave the way it's supposed to, it just does it faster than you
expected.

It all boils down to this: when deciding between returning a reference and returning an object, your job is to make the choice
that does the right thing. Let your compiler vendors wrestle with figuring out how to make that choice as inexpensive as
possible.

Back to Item 23: Don't try to return areference when you must return an object.
Continue to Item 25: Avoid overloading on a pointer and a numerical type.

Item 24: Choose carefully between function overloading and parameter defaulting.

The confusion over function overloading and parameter defaulting stems from the fact that they both allow a single function
name to be called in more than one way:

void f(); /1l f is overloaded
void f(int x);

f(); Il calls f()
f(10); [l calls f(int)
void g(int x = 0); /'l g has a default
/| paraneter val ue
a(); /1l calls g(0)
g(10); /1l calls g(10)
So which should be used when?

The answer depends on two other questions. First, isthere a value you can use for a default? Second, how many algorithms do
you want to use? In general, if you can choose a reasonable default value and you want to employ only a single algorithm, you'll
use default parameters (see also Item 38). Otherwise you'll use function overloading.

Here's afunction to compute the maximum of up to fivei nt s. This function uses — take a deep breath and steel yourself —
std::nuneric_limts<int>::mn() asadefault parameter value. I'll have more to say about that in a moment, but
first, here's the code:

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (86 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#45310

Effective C++, 2E

int max(int a,

int b =std::nuneric_limts<int>:mn(),
int ¢ = std::nuneric_limts<int>:mn(),
int d =std::nunmeric_limts<int>:mn(),
int e =std::nunmeric_limts<int>:mn())

int tenp =a>b ? a: b;
tenp = tenp > c ? tenp : c;
tenp = tenp >d ? tenp : d;
return tenp > e ? tenp : e,

}

Now, calmyourself. st d: : nuneric_lim ts<int>::mn() isjustthefancy new-fangled way the standard C++ library
sayswhat C saysviathel NT_M Nmacroin<l i m t s. h>: it'sthe minimum possible value for ani nt in whatever compiler
happens to be processing your C++ source code. True, it's a deviation from the terseness for which C is renowned, but there'sa
method behind all those colons and other syntactic strychnine.

Suppose you'd like to write a function template taking any built-in numeric type as its parameter, and you'd like the functions
generated from the template to print the minimum value representable by their instantiation type. Y our template would look
something like this:

t enpl at e<cl ass T>
voi d printM ni munval ue()
{

cout << the m nimum val ue representable by T;

}

Thisisadifficult function to writeif al you haveto work withis<l i m t s. h>and <f | oat . h>. You don't know what T is,
so you don't know whether to print out | NT_M Nor DBL_M N or what.

To sidestep these difficulties, the standard C++ library (see Item 49) definesin the header <l i m t s> aclass template,
nunmeric_limts,whichitself defines several static member functions. Each function returns information about the type
instantiating the template. That is, the functionsinnumeri ¢c_| i m t s<i nt > return information about typei nt , the
functionsinnuneri c_l i m t s<doubl e> return information about type doubl e, etc. Among the functionsin

nunmeri c_limtsism n.m n returnsthe minimum representable value for the instantiating type, so
numeric_limts<int>::mn() returnsthe minimum representable integer value.

Givennuneric_| i m ts (which, like nearly everything in the standard library, isin namespace st d — see Item 28;
nuneric_limtsitsefisintheheader <l i m t s>), writing pri nt M ni munval ue isaseasy as can be:

t enpl at e<cl ass T>
voi d printM nimunval ue()
{

cout << std::nuneric_limts<T>:mn();

}

Thisnuneri c_I| i m t s-based approach to specifying type-dependent constants may look expensive, but it's not. That's
because the long-windedness of the source code fails to be reflected in the resultant object code. In fact, callsto functionsin
nuneri c_limts generate noinstructions at all. To see how that can be, consider the following, which is an obvious way to
implement numeric_limts<int> :mn:

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (87 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

#include <limts. h>
nanmespace std {

inline int numeric_limts<int>:mn() throw ()
{ return INT_MN, }

}

Because this function is declared inline, callsto it should be replaced by its body (see Item 33). That'sjust | NT_M N, whichis
itself asimple #def i ne for some implementation-defined constant. So even though the max function at the beginning of this
Item looks like it's making a function call for each default parameter value, it's just using a clever way of referring to a type-
dependent constant, in this case the value of | NT_M N. Such efficient cleverness aboundsin C++'s standard library. Y ou really
should read [tem 49.

Getting back to the max function, the crucial observation isthat max uses the same (rather inefficient) algorithm to computeits
result, regardless of the number of arguments provided by the caller. Nowhere in the function do you attempt to figure out
which parameters are "real" and which are defaults. Instead, you have chosen a default value that cannot possibly affect the
validity of the computation for the algorithm you're using. That's what makes the use of default parameter values aviable
solution.

For many functions, there is no reasonable default value. For example, suppose you want to write a function to compute the
average of up tofivei nt s. You can't use default parameter values here, because the result of the function is dependent on the
number of parameters passed in: if 3 values are passed in, you'll divide their sum by 3; if 5 values are passed in, you'll divide
their sum by 5. Furthermore, there is no "magic number" you can use as a default to indicate that a parameter wasn't actually
provided by the client, because all possiblei nt sare valid values for the parameters. In this case, you have no choice: you must
use overloaded functions:

doubl e avg(int a);

doubl e avg(int a, int b);

doubl e avg(int a, int b, int c);

doubl e avg(int a, int b, int ¢, int d);

doubl e avg(int a, int b, int ¢, int d, int e);

LY YD

The other case in which you need to use overloaded functions occurs when you want to accomplish a particular task, but the
algorithm that you use depends on the inputs that are given. Thisis commonly the case with constructors. a default constructor
will construct an object from scratch, whereas a copy constructor will construct one from an existing object:

/Il A class for representing natural nunbers
cl ass Natural {
publi c:

Nat ural (i nt initValue);

Nat ural (const Natural & rhs);

private:
unsi gned int val ue;

void init(int initValue);

voi d error(const string& nsg);

}

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (88 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

inline
void Natural::init(int initValue) { value = initValue; }

Nat ural :: Natural (i nt initValue)

{
If (initValue > 0) init(initValue);
else error("Illegal initial value");

}

inline Natural::Natural (const Natural & x)
{ init(x.value); }

The constructor taking ani nt hasto perform error checking, but the copy constructor doesn't, so two different functions are
needed. That means overloading. However, note that both functions must assign an initial value for the new object. This could
lead to code duplication in the two constructors, so you maneuver around that problem by writing a private member function

i ni t that contains the code common to the two constructors. This tactic — using overloaded functions that call acommon
underlying function for some of their work — is worth remembering, because it's frequently useful (see e.g., Item 12).

Back to Item 24: Choose carefully between function overloading and parameter defaulting.
Continue to Item 26: Guard against potential ambiguity.

Item 25: Avoid overloading on a pointer and a numerical type.
Triviaquestion for the day: what is zero?
More specifically, what will happen here?

void f(int x);
void f(string *ps);

f(0); /1 calls f(int) or f(string*)?

Theanswer isthat 0 isani nt — aliteral integer constant, to be precise— sof (i nt) will always be called. Therein liesthe
problem, because that's not what people always want. Thisis a situation unique in the world of C++: a place where people think
acall should be ambiguous, but compilers do not.

It would be niceif you could somehow tiptoe around this problem by use of a symbolic name, say, NULL for null pointers, but
that turns out to be a lot tougher than you might imagine.

Y our first inclination might be to declare a constant called NULL, but constants have types, and what type should NULL have? It
needs to be compatible with all pointer types, but the only type satisfying that requirement isvoi d*, and you can't passvoi d*
pointers to typed pointers without an explicit cast. Not only isthat ugly, at first glanceit's not awhole lot better than the original
sSituation:

void * const NULL = O; /1 potential NULL definition
f(0); [l still calls f(int)
f(static_cast<string*>(NULL)); [l calls f(string*)
f(static_cast<string*>(0)); /1 calls f(string*)

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (89 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

On second thought, however, the use of NULL asavoi d* constant is a shade better than what you started with, because you
avoid ambiguity if you use only NULL to indicate null pointers:

f(0); /1 calls f(int)
f (NULL) ; /1l error! —type m s-match
f(static_cast<string*>(NULL)); /'l okay, calls f(string*)

At least now you've traded a runtime error (the call to the "wrong" f for 0) for a compile-time error (the attempt to pass a
voi d* intoast ri ng* parameter). Thisimproves matters somewhat (see Iltem 46), but the cast is still unsatisfying.

If you shamefacedly crawl back to the preprocessor, you find that it doesn't really offer away out, either, because the obvious
choices seem to be

#define NULL O
and
#define NULL ((void*) 0)

and thefirst possibility isjust the literal O, which isfundamentally an integer constant (your original problem, asyou'll recall),
while the second possibility gets you back into the trouble with passing voi d* pointers to typed pointers.

If you've boned up on the rules governing type conversions, you may know that C++ views aconversion fromal ong i nt to
ani nt asneither better nor worse than aconversion fromthel ong i nt 0 to the null pointer. Y ou can take advantage of that
to introduce the ambiguity into the i nt /pointer question you probably believe should be therein the first place:

#define NULL OL /1 NULL is now a long int

void f(int x);
void f(string *p);

f (NULL) ; /'l error! —amnbi guous
However, thisfailsto help if you overload on al ong i nt and a pointer:
#def i ne NULL OL

void f(long int Xx); /1 this f now takes a | ong
void f(string *p);

f (NULL) ; /1 fine, calls f(long int)
In practice, thisis probably safer than defining NULL to beani nt , but it's more away of moving the problem around than of
eliminating it.

The problem can be exterminated, but it requires the use of alate-breaking addition to the language: member function templates
(often simply called member templates). Member function templates are exactly what they sound like: templates within classes
that generate member functions for those classes. In the case of NULL, you want an object that acts like the expression
static_cast <T*>(0) for every type T. That suggests that NULL should be an object of a class containing an implicit
conversion operator for every possible pointer type. That's alot of conversion operators, but a member template lets you force

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (90 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

C++ into generating them for you:

/1l a first cut at a class yielding NULL pointer objects

class Null d ass {
publi c:
t enpl at e<cl ass T>
operator T*() const { return O; }

b

const Null C ass NULL; /1
[/

void f(int x); Il

void f(string *p); /1

f (NULL) ; !/
[/

11
11
11
11
11

gener at es
operator T* for
all types T; each
function returns
the null pointer

NULL is an object of
type Nul I d ass

sanme as we originally had

ditto
fine, converts NULL to
string*, then calls f(string*)

Thisisagood initial draft, but it can be refined in several ways. First, we don't really need more than one Nul | Cl ass object,
so there's no reason to give the class a name; we can just use an anonymous class and make NULL of that type. Second, aslong
aswe're making it possible to convert NULL to any type of pointer, we should handle pointers to members, too. That callsfor a
second member template, one to convert O totype T C. : * ("pointer to member of type T in class C") for all classes Cand all
types T. (If that makes no sense to you, or if you've never heard of — much less used — pointers to members, relax. Pointers to
members are uncommon beasts, rarely seen in the wild, and you'll probably never have to deal with them. The terminally
curious may wish to consult Item 30, which discusses pointers to membersin abit more detail.) Finally, we should prevent
clients from taking the address of NULL, because NULL isn't supposed to act like a pointer, it's supposed to act like a pointer
value, and pointer values (e.g., 0x453AB002) don't have addresses.

The jazzed-up NULL definition looks like this:

const 11
class {
publi c:
t enpl at e<cl ass T> Il
operator T*() const /1
{ return O; } /1
tenpl ate<cl ass C, class T> /1
operator T C.:*() const Il
{ return O; }
private:
voi d operatoré&() const; /1
11l
} NULL; /1

this is a const object...

convertible to any type
of null non-nmenber
poi nter...

or any type of null
nmenber pointer...

whose address can't be
taken (see ltem 27)...

and whose nane i s NULL

Thisistruly asight to behold, though you may wish to make aminor concession to practicality by giving the class a name after

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (91 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

al. If you don't, compiler messages referring to NULL's type are likely to be pretty unintelligible.

For another example of how member templates can be useful, take alook at Item M28.

An important point about all these attempts to come up with aworkable NULL isthat they help only if you're the caller. If
you're the author of the functions being called, having a foolproof NULL won't help you at all, because you can't compel your
callersto useit. For example, even if you offer your clients the space-age NULL we just developed, you still can't keep them
from doing this,

f(0); /1 still calls f(int),
/] because 0 is still an int

and that's just as problematic now asit was at the beginning of this Item.

Asadesigner of overloaded functions, then, the bottom line is that you're best off avoiding overloading on anumerical and a
pointer type if you can possibly avoid it.

Back to Item 25: Avoid overloading on a pointer and a numerical type.
Continue to Item 27: Explicitly disallow use of implicitly generated member functions you don't want.

Item 26: Guard against potential ambiguity.

Everybody has to have a philosophy. Some people believe in laissez faire economics, others believe in reincarnation. Some
people even believe that COBOL isarea programming language. C++ has a philosophy, too: it believes that potential
ambiguity isnot an error.

Here's an example of potential ambiguity:

cl ass B; [/l forward declaration for
/'l class B
class A {
publi c:
A(const B&); /1 an A can be
/!l constructed froma B
};
class B {
publi c:
operator A() const; /!l a B can be
/1l converted to an A
};

There's nothing wrong with these class declarations — they can coexist in the same program without the slightest trouble.
However, look what happens when you combine these classes with afunction that takes an A object, but is actually passed aB
object:

voi d f(const A&);

B b;

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (92 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#61766

Effective C++, 2E

f(b); /'l error! —anbi guous

Seeing the call to f , compilers know they must somehow come up with an object of type A, even though what they have in hand
isan object of type B. There are two equally good waysto do this (see Item M5). On one hand, the class A constructor could be

called; thiswould construct a new A object using b as an argument. On the other hand, b could be converted into an A object by
calling the client-defined conversion operator in class B. Because these two approaches are considered equally good, compilers
refuse to choose between them.

Of course, you could use this program for some time without ever running across the ambiguity. That's the insidious peril of
potential ambiguity. It can lie dormant in a program for long periods of time, undetected and inactive, until the day when some
unsuspecting programmer does something that actually is ambiguous, at which point pandemonium breaks out. This givesrise
to the disconcerting possibility that you might release alibrary that can be called ambiguously without even being aware that
you're doing it.

A similar form of ambiguity arises from standard conversions in the language — you don't even need any classes:

void f(int);
void f(char);

double d = 6.02;
f(d); /'l error! —amnbi guous

Should d be converted into ani nt or achar ? The conversions are equally good, so compilers won't judge. Fortunately, you
can get around this problem by using an explicit cast:

f(static_cast<int>(d)); /1 fine, calls f(int)
f(static_cast<char>(d)); /1l fine, calls f(char)

Multiple inheritance (see Item 43) isrife with possibilities for potential ambiguity. The most straightforward case occurs when a
derived class inherits the same member name from more than one base class:

cl ass Basel {

publi c:

int dolt();
b
cl ass Base2 {
publ i c:

void dolt ();
b
cl ass Derived: public Basel, /1l Derived doesn't declare
public Base2 { /1l a function called dolt

1
Derived d;

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (93 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5970

Effective C++, 2E

d.dolt(); /'l error! —anbi guous

When class Der i ved inherits two functions with the same name, C++ utters not a whimper; at this point the ambiguity is only
potential. However, the call to dol t forces compilersto face the issue, and unless you explicitly disambiguate the call by
specifying which base class function you want, the call is an error:

d. Basel::dolt(); /1l fine, calls Basel::dolt
d. Base2::dolt(); /1 fine, calls Base2::dolt

That doesn't upset too many people, but the fact that accessibility restrictions don't enter into the picture has caused more than
one otherwise pacifistic soul to contemplate distinctly unpacifistic actions:

class Basel { ... }; /| sanme as above

cl ass Base2 {

private:
void dolt(); /1 this function is now
}i /'l private
cl ass Derived: public Basel, public Base2
{ ... }; /| same as above
Derived d;
int i =d.dolt(); /1l error! —still anbi guous!

Thecall todol t continues to be ambiguous, even though only the function in Basel is accessible! The fact that only
Basel: : dol t returnsavaluethat can be used toinitializeani nt isalso irrelevant — the call remains ambiguous. If you
want to make this call, you simply must specify which classsdol t isthe one you want.

Asisthe case for most initially unintuitive rules in C++, there is a good reason why access restrictions are not taken into
account when disambiguating references to multiply inherited members. It boils down to this: changing the accessibility of a
class member should never change the meaning of a program.

For example, assume that in the previous example, access restrictions were taken into account. Then the expressiond. dol t ()
would resolveto acall to Basel: : dol t , because Base?2's version was inaccessible. Now assume that Base 1l was changed
so that its version of dol t was protected instead of public, and Base2 was changed so that its version was public instead of
private.

Suddenly the same expression, d. dol t () , would result in acompletely different function call, even though neither the calling
code nor the functions had been modified! Now that's unintuitive, and there would be no way for compilers to issue even a
warning. Considering your choices, you may decide that having to explicitly disambiguate references to multiply inherited
members isn't quite as unreasonable as you originally thought.

Given that there are al these different ways to write programs and libraries harboring potential ambiguity, what's a good
software developer to do? Primarily, you need to keep an eye out for it. It's next to impossible to root out all the sources of
potential ambiguity, particularly when programmers combine libraries that were devel oped independently (see also Item 28),

but by understanding the situations that often lead to potential ambiguity, you're in a better position to minimize its presence in

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (94 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

the software you design and devel op.

Back to Item 26: Guard against potential ambiguity.
Continue to Item 28: Partition the global namespace.

Item 27: Explicitly disallow use of implicitly generated member functions you don't want.

Suppose you want to write a class template, Ar r ay, whose generated classes behave like built-in C++ arraysin every way,
except they perform bounds checking. One of the design problems you would face is how to prohibit assignment between
Ar r ay objects, because assignment isn't legal for C++ arrays:

doubl e val ues1[10];
doubl e val ues2[10];

val uesl = val ues2; // error!

For most functions, this wouldn't be a problem. If you didn't want to allow a function, you simply wouldn't put it in the class.
However, the assignment operator is one of those distinguished member functions that C++, aways the helpful servant, writes
for you if you neglect to write it yourself (see Item 45). What then to do?

The solution is to declare the function, oper at or = in this case, private. By declaring a member function explicitly, you
prevent compilers from generating their own version, and by making the function private, you keep people from calling it.

However, the scheme isn't fool proof; member and friend functions can still call your private function. Unless, that is, you are
clever enough not to define the function. Then if you inadvertently call the function, you'll get an error at link-time (see Item

46).
For Ar r ay, your template definition would start out like this:

t enpl at e<cl ass T>

class Array {

private:
/1 Don't define this function!
Array& operator=(const Array& rhs);

b

Now if aclient tries to perform assignments on Ar r ay objects, compilers will thwart the attempt, and if you inadvertently try it
in amember or afriend function, the linker will yelp.

Don't assume from this example that this Item applies only to assignment operators. It doesn't. It applies to each of the compiler-
generated functions described in Item 45. In practice, you'll find that the behavioral similarities between assignment and copy

construction (see Items 11 and 16) almost always mean that anytime you want to disallow use of one, you'll want to disallow
use of the other, too.

Back to Item 27: Explicitly disallow use of implicitly generated member functions you don't want.
Continue to Classes and Functions. |mplementation

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (95 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

Item 28: Partition the global namespace.

The biggest problem with the global scope is that there's only one of them. In alarge software project, there is usually a bevy of
people putting names in this singular scope, and invariably this leads to name conflicts. For example, | i braryl. h might
define anumber of constants, including the following:

const double LIB VERSION = 1. 204,
Dittofor | i brary?2. h:

const int LIB VERSION = 3;
It doesn't take great insight to see that there is going to be a problem if a program triesto include both | i brary1. h and
I'i brary2. h. Unfortunately, outside of cursing under your breath, sending hate mail to the library authors, and editing the
header files until the name conflicts are eliminated, there islittle you can do about this kind of problem.
Y ou can, however, take pity on the poor souls who'll have your libraries foisted on them. Y ou probably already prepend some
hopefully-unique prefix to each of your global symbols, but surely you must admit that the resulting identifiers are less than

pleasing to gaze upon.

A better solution isto use a C++ nanespace. Boiled down to its essence, ananespace isjust afancy way of letting you use
the prefixes you know and love without making people look at them al the time. So instead of this,

const doubl e sdnBOOK VERSI ON = 2. 0; /1l in this library,

/'l each synbol begins
class sdnHandle { ... }; [l with "sdnf
sdrmHandl e& sdntGet Handl e() ; /'l see Item 47 for why you

/1 mght want to decl are
/1l a function like this

you write this:

nanespace sdm {
const doubl e BOOK VERSI ON = 2. 0;
class Handle { ... };
Handl e& get Handl e() ;

}

Clients then access symbols in your namespace in any of the usual three ways: by importing all the symbols in a namespace into
a scope, by importing individual symbolsinto a scope, or by explicitly qualifying a symbol for one-time use. Here are some
examples:

void f1()
{
usi ng nanespace sdm /1 make all synbols in sdm
/1l available w o qualification
/1 in this scope
cout << BOOK_VERSI ON, /'l okay, resolves to

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (96 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

Handl e h = get Handl e();

}

void f2()

{
usi ng sdm : BOOK_VERSI ON,

cout << BOOK VERSI ON;

Handl e h = get Handl e();

}

voi d f3()

{
cout << sdm : BOOK_VERSI ON,

doubl e d

BOOK_VERSI ON;

Handl e h = get Handl e();

}

(Some namespaces have no names. Such unnamed namespaces are used to limit the visibility of the elements inside the

namespace. For details, see [tem M31.)

One of the nicest things about namespaces is that potential ambiguity is not an error (see Item 26). As aresult, you can import
the same symbol from more than one namespace, yet till live a carefree life (provided you never actually use the symbol). For

11

Il
Il
/11

11
/11
11

/11
/11

Il
Il
Il

/11
/11
11

Il
Il

11
11
I

sdm : BOOK_VERSI ON

okay, Handl e resolves to
sdm : Handl e, get Handl e
resol ves to sdm : get Handl e

make only BOOK_VERSI ON
avai lable w o qualification
in this scope

okay, resolves to
sdm : BOOK_VERSI ON

error! neither Handl e
nor getHandl e were
inported into this scope

okay, nmakes BOCOK VERSI ON
avail able for this one use
only

error! BOOK VERSION is
not in scope

error! neither Handl e
nor getHandl e were
inmported into this scope

instance, if, in addition to namespace sdm you had need to make use of this namespace,

nanmespace AcnmeW ndowSystem {

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (97 / 189) [2003-6-11 20:02:42]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#34883

Effective C++, 2E

t ypedef int Handl e;

}

you could use both sdmand AcmreW ndowSy st emwithout conflict, provided you never referenced the symbol Handl e. If
you did refer to it, you'd have to explicitly say which namespace's Handl e you wanted:

void f()
{
usi ng nanespace sdm /1 inport sdm synbols
usi ng nanmespace AcneW ndowSyst em /1l inport Acnme synbol s
/[l freely refer to sdm
/1 and Acrme synbol s
/1 other than Handl e
Handl e h; [l error! which Handl e?
sdm : Handl e h1; /1l fine, no anbiguity
AcmeW ndowSyst em : Handl e h2; /1 also no anbiguity
}

Contrast this with the conventional header-file-based approach, where the mere inclusion of both sdm h and acne. h would
cause compilersto complain about multiple definitions of the symbol Handl e.

Namespaces were added to C++ relatively late in the standardization game, so perhaps you think they're not that important and
you can live without them. Y ou can't. Y ou can't, because amost everything in the standard library (see Item 49) livesinside the
namespace st d. That may strike you as aminor detail, but it affects you in avery direct manner: it's why C++ now sports
funny-looking extensionless header names like <i ost r ean®, <st ri ng>, etc. For details, turn to Item 49.

Because namespaces were introduced comparatively recently, your compilers might not yet support them. If that's the case,
there's still no reason to pollute the global namespace, because you can approximate nanmespaceswith st ruct s. You do it
by creating a struct to hold your global names, then putting your global hames inside this struct as static members:

/1 definition of a struct emul ati ng a nanespace
struct sdm{

static const doubl e BOOK VERSI ON,

class Handle { ... };

static Handl e& get Handl e();

}l

const doubl e sdm : BOOK_VERSI ON = 2. 0; /'l obligatory defn
/1l of static data
/Il menber

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (98 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

Now when people want to access your global names, they simply prefix them with the struct name:

void f()

{
cout << sdm : BOOK VERSI ON;

sdm : Handl e h = sdm : get Handl e() ;

}

If there are no name conflicts at the global level, clients of your library may find it cumbersome to use the fully qualified
names. Fortunately, there is away you can let them have their scopes and ignore them, too.

For your type names, provide typedefs that remove the need for explicit scoping. That is, for atype name T in your namespace-
like struct S, provide a (global) typedef such that T isasynonymfor S: : T:

t ypedef sdm : Handl e Handl e;
For each (static) object X in your struct, provide a (global) reference X that isinitialized with S: : X:
const doubl e& BOOK VERSI ON = sdm : BOOK_VERSI ON,

Frankly, after you've read Item 47, the thought of defining a non-local static object like BOOK _VERSI ONwill probably make
you queasy. (You'll want to replace such objects with the functions described in Item 47.)

Functions are treated much like objects, but even though it's legal to define references to functions, future maintainers of your
code will dislikeyou alot lessif you employ pointers to functions instead:

sdm : Handl e& (* const getHandle)() = /1l getHandle is a
sdm : get Handl e; /'l const pointer (see
/1l 1tem?21) to

/1 sdm : get Handl e

Note that get Handl e isaconst pointer. Y ou don't really want to let clients make it point to something other than
sdm : get Handl e, do you?

(If you're dying to know how to define a reference to afunction, this should revitalize you:

sdm : Handl e& (&get Handl e) () = /1l getHandle is a reference
sdm : get Handl e; /1l to sdm:get Handl e

Personally, | think thisiskind of cool, but there's a reason you've probably never seen this before. Except for how they're
initialized, references to functions and const pointers to functions behave identically, and pointers to functions are much more
readily understood.)

Given these typedefs and references, clients not suffering from global name conflicts can just use the unqualified type and

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (99 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

object names, while clients who do have conflicts can ignore the typedef and reference definitions and use fully qualified
names. It's unlikely that all your clients will want to use the shorthand names, so you should be sure to put the typedefs and
references in adifferent header file from the one containing your nanespace-emulating struct.

st ruct sareanice approximation to nanmespaces, but they're along trek from the real thing. They fall short in avariety of
ways, one of the most obvious of which istheir treatment of operators. Simply put, operators defined asst at i ¢ member
functions of structs can be invoked only through afunction call, never viathe natural infix syntax that operators are designed to
support:

/1 define a nanespace-enul ating struct containing
/'l types and functions for Wdgets. Wdget objects
/| support addition via operator+
struct w dgets {

class Wdget { ... };

/] see Item 21 for why the return value is const

static const Wdget operator+(const Wdget& | hs,
const Wdget& rhs);

b

/1 attenpt to set up global (unqualified) names for
/'l Wdget and operator+ as described above

t ypedef wi dgets::Wdget W dget;

const Wdget (* const operator+)(const Wdget§&, /'l error!
const W dget &) ; /'l operator+
/'l can't be a
/| pointer nane

Wdget wl, w2, sum

sum = wl + w2; /1l error! no operator+
/1l taking Wdgets is
/'l declared at this
/'l scope

sum = wi dget s:: operator+(wl, w2); /'l legal, but hardly

/1 "natural" syntax

Such limitations should spur you to adopt real namespaces as soon as your compilers make it practical.

Back to Item 28: Partition the global namespace.
Continueto ltem 29: Avoid returning "handles’ to internal data.

Classes and Functions: Implementation

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (100 / 189) [2003-6-11 20:02:42]

Effective C++, 2E

Because C++ is strongly typed, coming up with appropriate definitions for your classes and templates and appropriate
declarations for your functionsis the lion's share of the battle. Once you've got those right, it's hard to go wrong with the
template, class, and function implementations. Y et, somehow, people manage to do it.

Some problems arise from inadvertently violating abstraction: accidentally allowing implementation details to peek out from
behind the class and function boundaries that are supposed to contain them. Others originate in confusion over the length of an
object's lifetime. Still others stem from premature optimization, typically traceable to the seductive nature of thei nl i ne
keyword. Finally, some implementation strategies, while fine on alocal scale, result in levels of coupling between source files
that can make it unacceptably costly to rebuild large systems.

Each of these problems, aswell as others like them, can be avoided if you know what to watch out for. The items that follow
identify some situations in which you need to be especially vigilant.

Back to Classes and Functions. |mplementation
Continue to Item 30: Avoid member functions that return non-const pointers or references to members less accessible than themselves.

Item 29: Avoid returning "handles" to internal data.
A scene from an object-oriented romance:

Object A: Darling, don't ever change!

Object B: Don't worry, dear, I'mconst .

Yetjust asinred life, A wonders, "Can B be trusted?' And just asin readl life, the answer often hinges on B's nature: the
constitution of its member functions.

Suppose B isaconstant St r i ng object:

class String {

publ i c:
String(const char *val ue); /1l see Item 11 for pos-
~String(); /1 sible inplenentations;
/1l see Item Mb for comments
/1 on the first constructor
operator char *() const; /1l convert String -> char*;
/'l see also Item Mo
private:
char *dat a;
1
const String B("Hello World"); /1 Bis a const object

Because Bisconst , it had better be the case that the value of B now and evermore is "Hello World". Of course, this supposes
that programmers working with B are playing the gamein acivilized fashion. In particular, it depends on the fact that nobody is
"casting away the constness’ of B through nefarious ploys such as this (see Item 21):

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (101 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5970
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5970

Effective C++, 2E

String& al soB = /'l make al soB anot her nane
const _cast<Stri ng&(B); /1 for B, but wthout the
/| constness

Given that no one is doing such evil deeds, however, it seems a safe bet that B will never change. Or doesit? Consider this
sequence of events:

char *str = B; /1 calls B.operator char*()

strcpy(str, "H MmM); /1 nodifies what str
/]l points to

Does B till have the value "Hello World", or has it suddenly mutated into something you might say to your mother? The
answer depends entirely on the implementation of St ri ng: : oper at or char *.

Here's a carel ess implementation, one that does the wrong thing. However, it doesit very efficiently, which is why so many
programmers fall into this trap:

/1 a fast, but incorrect inplenmentation
inline String::operator char*() const
{ return data; }

Theflaw in thisfunction isthat it's returning a "handle" — in this case, a pointer — to information that should be hidden inside
the St r i ng object on which the function isinvoked. That handle gives callers unrestricted access to what the private field
dat a pointsto. In other words, after the statement

char *str = B;
the situation looks like this:

Clearly, any modification to the memory pointed to by st r will also change the effective value of B. Thus, even though B is
declared const , and even though only const member functions are invoked on B, B might still acquire different values as the
program runs. In particular, if st r modifies what it points to, B will aso change.

There's nothing inherently wrong with theway St ri ng: : oper at or char * iswritten. What's troublesome is that it can be
applied to constant objects. If the function weren't declared const , there would be no problem, because it couldn't be applied
to objectslike B.

Y et it seems perfectly reasonable to turn a St r i ng object, even a constant one, into its equivalent char *, so you'd like to
keep this function const . If you want to do that, you must rewrite your implementation to avoid returning a handle to the
object'sinternal data:

/1 a slower, but safer inplenentation
inline String::operator char*() const

{

char *copy = new char[strlen(data) + 1];
strcpy(copy, data);

return copy;

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (102 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

}

Thisimplementation is safe, because it returns a pointer to memory that contains a copy of the datato which the St r i ng object
points; there is no way to change the value of the St r i ng object through the pointer returned by this function. As usual, such
safety commands a price: thisversion of St ri ng: : oper at or char * issower than the simple version above, and callers of
this function must remember to use del et e on the pointer that's returned.

If you think thisversion of oper at or char * istoo slow, or if the potential memory leak makes you nervous (as well it
should), adlightly different tack isto return a pointer to constant char s.

class String {
publi c:
operat or const char *() const;

b

inline String::operator const char*() const
{ return data; }

Thisfunction isfast and safe, and, though it's not the same as the function you originally specified, it suffices for most
applications. It's also the moral equivalent of the -C++ standardization committee's solution to the st r i ng/char * conundrum:
the standard st r i ng type contains amember function c_st r that returnsaconst char * version of thestri ngin
guestion. For more information on the standard st r i ng type, turn to Item 49.

A pointer isn't the only way to return ahandle to internal data. References are just as easy to abuse. Here's acommon way to do
it, againusing the St r i ng class:

class String {
publi c:

char & operator[] (int index) const
{ return data[index]; }

private:
char *dat a;
1
String s = "I'"mnot constant”;
s[0] = "Xx"; /1l fine, s isn't const
const String cs = "l'mconstant”;
cs[0] = "x'; /1 this nodifies the const

/1l string, but conpilers
/1 won't notice

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (103 / 189) [2003-6-11 20:02:43]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=committee

Effective C++, 2E

Noticehow St ri ng: : oper at or [] returnsitsresult by reference. That means that the caller of this function gets back
another name for the internal element dat a[i ndex] , and that other name can be used to modify the internal data of the
supposedly constant object. Thisis the same problem you saw before, but this time the culprit is areference as areturn value,
not a pointer.

The general solutions to this kind of problem are the same as they were for pointers: either make the function non-const , or
rewrite it so that no handle is returned. For a solution to this particular problem — how towrite St ri ng: : operator[] so
that it works for both const and non-const objects — see Item 21.

const member functions aren't the only ones that need to worry about returning handles. Even non-const member functions
must reconcile themselves to the fact that the validity of a handle expires at the same time as the object to which it corresponds.
This may be sooner than a client expects, especially when the object in question is a compiler-generated temporary object.

For example, take alook at thisfunction, which returnsa St r i ng object:

String soneFanousAut hor () /1l randomy chooses and
{ /1l returns an author's nane
switch (rand() % 3) { /1 rand() is in <stdlib.h>
/1l (and <cstdlib> —see
/1 1tem 49)
case O:
return "Margaret Mtchel I "; /1 Wote "Gone with the
/[l Wnd," a true classic
case 1:
return " Stephen King"; /1l Hi's stories have kept
/1 mllions from sl eeping
/1 at night
case 2:
return "Scott Meyers"; /1 Ahem one of these
} /1 things is not like the
/'l others...
return ""; /1 we can't get here, but
[l all paths in a val ue-
[l returning function nust
} /[l return a value, sigh

Kindly set aside your concerns about how "random” the values returned from r and are, and please humor my delusions of
grandeur in associating myself with real writers. Instead, focus on the fact that the return value of soneFanousAut hor isa
St ri ng object, atemporary St r i ng object (see Item M19). Such objects are transient — their lifetimes generally extend only
until the end of the expression containing the call to the function creating them. In this case, that would be until the end of the
expression containing the call to sonmeFanousAut hor .

Now consider thisuse of someFanousAut hor , in which we assumethat St r i ng declaresan oper at or const char*
member function as described above:

const char *pc = soneFanousAut hor();

cout << pc; /1 uh oh...

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (104 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41177

Effective C++, 2E

Believeit or not, you can't predict what this code will do, at least not with any certainty. That's because by the time you try to
print out the sequence of characters pointed to by pc, that sequence is undefined. The difficulty arises from the events that
transpire during the initialization of pc:

1. Atemporary St ri ng object is created to hold sonmeFanousAut hor 'sreturn value.

2. That Stri ngisconvertedtoaconst char* viaStri ng'soper at or const char * member function, and pc is
initialized with the resulting pointer.

3. Thetemporary St r i ng object is destroyed, which means its destructor is called. Within the destructor, its dat a pointer
is deleted (the code is shown in Item 11). However, dat a points to the same memory as pc does, so pc how pointsto

deleted memory — memory with undefined contents.

Because pc wasinitialized with a handle into a temporary object and temporary objects are destroyed shortly after they're
created, the handle became invalid before pc could do anything with it. For all intents and purposes, pc was dead on arrival.
Such isthe danger of handlesinto temporary objects.

For const member functions, then, returning handlesisill-advised, because it violates abstraction. Even for non-const
member functions, however, returning handles can lead to trouble, especially when temporary objects get involved. Handles can
dangle, just like pointers, and just as you labor to avoid dangling pointers, you should strive to avoid dangling handles, too.

Still, there's no reason to get fascist about it. It's not possible to stomp out all possible dangling pointersin nontrivial programs,
and it'srarely possible to eliminate all possible dangling handles, either. Nevertheless, if you avoid returning handles when
there's no compelling need, your programs will benefit, and so will your reputation.

Back to Item 29: Avoid returning "handles' to internal data.
Continue to Item 31: Never return areference to alocal object or to a dereferenced pointer initialized by new within the function.

Item 30: Avoid member functions that return non-const pointers or references to members less
accessible than themselves.

The reason for making a member private or protected isto limit accessto it, right? Y our overworked, underpaid C++ compilers
go to lots of trouble to make sure that your access restrictions aren't circumvented, right? So it doesn't make alot of sense for
you to write functions that give random clients the ability to freely access restricted members, now, doesit? If you think it does
make sense, please reread this paragraph over and over until you agree that it doesn't.

It's easy to violate this ssimple rule. Here's an example:
class Address { ... }; /'l where sonmeone |ives
cl ass Person {

publi c:
Addr ess& personAddress() { return address; }

private:
Addr ess addr ess;

};...

The member function per sonAddr ess provides the caller with the Addr ess object contained in the Per son object, but,
probably due to efficiency considerations, the result is returned by reference instead of by value (see Item 22). Unfortunately,

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (105 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

the presence of this member function defeats the purpose of making Per son: : addr ess private:

Person scott(...); /| paranmeters omtted for
Il sinplicity

Addr ess& addr = /1l assume that addr is
scott. personAddress(); /1 gl obal

Now the global object addr isanother namefor scot t . addr ess, and it can be used to read and writescot t . addr ess at
will. For all practical purposes, scot t . addr ess isno longer private; it is public, and the source of this promotionin
accessibility isthe member function per sonAddr ess. Of course, there is nothing specia about the accesslevel pri vat e in
thisexample; if addr ess were protected, exactly the same reasoning would apply.

References aren't the only cause for concern. Pointers can play this game, too. Here's the same example, but using pointers this
time:

cl ass Person {

publ i c:
Address * personAddress() { return &address; }

private:
Addr ess addr ess;

b

Address *addrPtr =
scott. personAddress(); /'l same problem as above

With pointers, however, you have to worry not only about data members, but also about member functions. That's because it's
possible to return a pointer to a member function:

cl ass Person; /] forward decl aration

/1 PPMF = "pointer to Person nenber function”
typedef void (Person::*PPM)();

cl ass Person {
publ i c:

static PPMF verificationFunction()
{ return &Person::verifyAddress; }

private:
Addr ess addr ess;

voi d verifyAddress();
1

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (106 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

If you're not used to socializing with pointers to member functions and typedefs thereof, the declaration for
Per son: :veri ficati onFuncti on may seem daunting. Don't be intimidated. All it saysis

. verificationFuncti onisamember function that takes no parameters,

. itsreturn valueis apointer to amember function of the Per son class;

. the pointed-to function (i.e., veri f i cat i onFunct i on'sreturn value) takes no parameters and returns nothing, i.e.,
voi d.

Asfor theword st at i ¢, that means what it always means in a member declaration: there is only one copy of the member for
the entire class, and the member can be accessed without an object. For the compl ete story, consult your favorite introductory
C++ textbook. (If your favorite introductory C++ textbook doesn't discuss static members, carefully tear out all its pages and
recycle them. Dispose of the book's cover in an environmentally sound manner, then borrow or buy a better textbook.)

In thislast example, ver i f yAddr ess isaprivate member function, indicating that it's really an implementation detail of the
class; only class members should know about it (and friends, too, of course). However, the public member function
verificationFuncti on returnsapointertoveri f yAddr ess, so clients can again pull thiskind of thing:

PPMF pnf = scott.verificationFunction();

(scott.*pnf)(); /1l same as calling
/] scott.verifyAddress

Here, pnf has become a synonym for Per son: : veri f yAddr ess, with the crucial difference that there are no restrictions
onitsuse.

In spite of the foregoing discussion, you may someday be faced with a situation in which, pressed to achieve performance
constraints, you honestly need to write a member function that returns a reference or a pointer to aless-accessible member. At
the same time, however, you won't want to sacrifice the access restrictions that pr i vat e and pr ot ect ed afford you. In
those cases, you can amost always achieve both goals by returning a pointer or areferenceto aconst object. For details, take
alook at Item 21.

Back to Item 30: Avoid member functions that return non-const pointers or references to members less accessible than themselves.
Continue to Item 32: Postpone variable definitions as long as possible.

Item 31: Never return a reference to a local object or to a dereferenced pointer initialized by new
within the function.

This Item may sound complicated, but it's not. It's simple common sense. Really. Honest. Trust me.

Consider first the matter of returning areference to alocal object. The problem here is that local objects are just that, local. That
means they're constructed when they're defined, and they're destructed when they go out of scope. Their scope, however, is that
of the function body in which they're located. When the function returns, control leaves its scope, so the objects local to that
function are automatically destructed. As aresult, if you return areference to alocal object, that local object has been destructed
before the caller of the function ever gets its computational hands on it.

This problem usually raisesits ugly head when you try to improve the efficiency of afunction by returning its result by

reference instead of by value. The following example is the same as the one in Item 23, which pursuesin detail the question of
when you can return areference and when you can't:

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (107 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

cl ass Rational { /'l class for rational nunbers
publi c:
Rational (int numerator = 0, int denom nator = 1);
~Rat i onal ();
private:
int n, d; /1 numnerator and denom nat or

/'l notice that operator* (incorrectly) returns a reference
friend const Rational & operator*(const Rational & | hs,
const Rational & rhs);

b

/1 an incorrect inplenentation of operator*
inline const Rational & operator*(const Rational & | hs,
const Rational & rhs)
{
Rational result(lhs.n * rhs.n, Ihs.d * rhs.d);
return result;

}

Here, thelocal object r esul t isconstructed upon entry into the body of oper at or *. However, local objects are
automatically destroyed when they go out of scope. r esul t will go out of scope after execution of ther et ur n statement, so
when you write this,

Rational two = 2;

Rational four = two * two; /] sane as
/1l operator*(two, two)

what happens during the function call isthis:

=

Thelocal object r esul t isconstructed.

2. A referenceisinitialized to be another name for r esul t , and thisreferenceis squirreled away asoper at or *'sreturn
value.

3. Thelocal object r esul t isdestroyed, and the space it used to occupy on the stack is made available for use by other
parts of the program or by other programs.

4. Theobject f our isinitialized using the reference of step 2.

Everything is fine until step 4, at which point there occurs, as they say in the highest of high-tech circles, "amajor lossage." The
reference initialized in step 2 ceased to refer to avalid object as of the end of step 3, so the outcome of the initialization of
object f our iscompletely undefined.

The lesson should be clear: don't return areference to alocal object.

"Okay," you say, "the problem is that the object | want to use goes out of scope too soon. | can fix that. I'll just call newinstead
of using alocal object.” Likethis:

/'l another incorrect inplenentation of operator*

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (108 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

inline const Rational & operator*(const Rational & | hs,
const Rational & rhs)

{
/'l create a new object on the heap
Rational *result =
new Rational (I hs.n * rhs.n, lhs.d * rhs.d);
[l return it
return *result;
}

This approach does indeed avoid the problem of the previous example, but it introduces a new oneinits place. To avoid a
memory leak in your software, you know you must ensure that del et e is applied to every pointer conjured up by new, but ay,
there's the rub: who's to make the matching call to del et e for this function's use of new?

Clearly, the caller of oper at or * must seetoit that del et e isapplied. Clear, yes, and even easy to document, but
nonetheless the cause is hopeless. There are two reasons for this pessimistic assessment.

First, it's well-known that programmers, as a breed, are sloppy. That doesn't mean that you're sloppy or that I'm sloppy, but rare
is the programmer who doesn't work with someone who is— shall we say? — alittle on the flaky side. What are the odds that
such programmers — and we al know that they exist — will remember that whenever they call oper at or *, they must take
the address of the result and then use del et e onit? That is, they must use oper at or * likethis:

const Rational & four = two * two; /'l get dereferenced

/1l pointer; store it in
/'l a reference

del ete &four; /'l retrieve pointer
/1l and delete it

The odds are vanishingly small. Remember, if only asingle caller of oper at or * failsto follow the rules, you have a memory
leak.

Returning dereferenced pointers has a second, more serious, problem, because it persists even in the presence of the most
conscientious of programmers. Often, the result of oper at or * isatemporary intermediate value, an object that exists only for
the purposes of evaluating a larger expression. For example:

Rati onal one(1l), two(2), three(3), four(4);
Rati onal product;

product = one * two * three * four;

Evaluation of the expression to be assigned to pr oduct requires three separate callsto oper at or *, afact that becomes more
evident when you rewrite the expression in its equivalent functional form:

product = operator*(operator*(operator*(one, tw), three), four);

Y ou know that each of the callsto oper at or * returns an object that needs to be deleted, but there is no possibility of applying
del et e, because none of the returned objects has been saved anywhere.

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (109 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

The only solution to this difficulty isto ask clientsto code like this:

const Rational & tenpl = one * two;
const Rational & tenp2 = tenpl * three;
const Rational & tenp3 = tenp2 * four;

del ete &t enpl;
del ete &t enp2;
del ete &t enp3;

Do that, and the best you can hope for is that people will ignore you. More realistically, you'd be skinned alive, or possibly
sentenced to ten years hard labor writing microcode for waffle irons and toaster ovens.

Learn your lesson now, then: writing a function that returns a dereferenced pointer is amemory leak just waiting to happen.

By the way, if you think you've come up with away to avoid the undefined behavior inherent in returning a reference to alocal
object and the memory leak haunting the return of areference to a heap-allocated object, turn to Item 23 and read why returning
areferenceto aloca st at i ¢ object also failsto work correctly. It may save you the trouble of seeking medical care for the
arm you're likely to strain trying to pat yourself on the back.

Back to Item 31: Never return areference to alocal object or to a dereferenced pointer initialized by new within the function.
Continue to Item 33: Use inlining judiciously.

Item 32: Postpone variable definitions as long as possible.

So you subscribe to the C philosophy that variables should be defined at the beginning of ablock. Cancel that subscription! In
C++, it's unnecessary, unnatural, and expensive.

Remember that when you define a variable of atype with a constructor or destructor, you incur the cost of construction when
control reaches the variable's definition, and you incur the cost of destruction when the variable goes out of scope. This means
there's a cost associated with unused variables, so you want to avoid them whenever you can.

Suave and sophisticated in the ways of programming as | know you to be, you're probably thinking you never define unused
variables, so thisItem's advice isinapplicable to your tight, lean coding style. Y ou may need to think again. Consider the
following function, which returns an encrypted version of a password, provided the password is long enough. If the password is
too short, the function throws an exception of typel ogi c¢_er r or, which isdefined in the standard C++ library (see Item 49):

/1 this function defines the variable "encrypted” too soon
string encrypt Password(const string& password)

{

string encrypted,

if (password.length() < M N MUM PASSWORD LENGTH) ({
throw | ogic_error("Password is too short");

}

do whatever is necessary to place an encrypted
version of password in encrypted;

return encrypted;

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (110 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

}

The object encr ypt ed isn't completely unused in this function, but it's unused if an exception isthrown. That is, you'll pay for
the construction and destruction of encr ypt ed evenif encr ypt Passwor d throws an exception (see also Item M15). Asa

result, you're better off postponing encr ypt ed’s definition until you know you'll need it:

/1 this function postpones "encrypted"'s definition until
/1l it's truly necessary
string encrypt Password(const string& password)

{
if (password.length() < M N MUM PASSWORD LENGTH) ({

throw | ogic_error("Password is too short");

}

string encrypted,

do whatever is necessary to place an encrypted
version of password in encrypted;

return encrypted;

}

This code still isn't astight asit might be, because encr ypt ed is defined without any initialization arguments. That means its
default constructor will be used. In many cases, the first thing you'll do to an object is give it some value, often viaan
assignment. Item 12 explains why default-constructing an object and then assigning to it isalot less efficient than initializing it

with the value you really want it to have. That analysis applies here, too. For example, suppose the hard part of
encr ypt Passwor d is performed in this function:
voi d encrypt(string& s); /'l encrypts s in place

Then encr ypt Passwor d could be implemented like this, though it wouldn't be the best way to do it:

/1 this function postpones "encrypted"'s definition until

/1 it's necessary, but it's still needlessly inefficient
string encrypt Password(const string& password)
{
/'l check |length as above
string encrypted, /| default-construct encrypted
encrypted = password; /'l assign to encrypted

encrypt (encrypted);
return encrypted;

}

A preferable approach isto initialize encr ypt ed with passwor d, thus skipping the (pointless) default construction:

/1 finally, the best way to define and initialize encrypted
string encrypt Password(const string& password)

{
/'l check | ength

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (111 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#40989

Effective C++, 2E

string encrypted(password); /1l define and initialize
/'l via copy constructor

encrypt (encrypted);
return encrypted;

}

This suggests the real meaning of "as long as possible” in this Item'stitle. Not only should you postpone a variabl€e's definition
until right before you have to use the variable, you should try to postpone the definition until you have initialization arguments
for it. By doing so, you avoid not only constructing and destructing unneeded objects, you also avoid pointless default
constructions. Further, you help document the purpose of variables by initializing them in contexts in which their meaning is
clear. Remember how in C you're encouraged to put a short comment after each variable definition to explain what the variable
will eventually be used for? Well, combine decent variable names (see also Item 28) with contextually meaningful initialization

arguments, and you have every programmer's dream: a solid argument for eliminating some comments.

By postponing variable definitions, you improve program efficiency, increase program clarity, and reduce the need to document
variable meanings. It looks like it's time to kiss those block-opening variable definitions good-bye.

Back to Item 32: Postpone variable definitions as long as possible.
Continue to Item 34: Minimize compilation dependencies between files.

Item 33: Use inlining judiciously.

Inline functions -- what a wonderful ideal They look like functions, they act like functions, they're ever so much better than
macros (see Item 1), and you can call them without having to incur the overhead of afunction call. What more could you

possibly ask for?

Y ou actually get more than you might think, because avoiding the cost of afunction call isonly half the story. Compiler
optimization routines are typically designed to concentrate on stretches of code that lack function calls, so when you inline a
function, you may enable compilers to perform context-specific optimizations on the body of the function. Such optimizations
would be impossible for "normal™ function calls.

However, let's not get carried away. In programming, asin life, there is no free lunch, and inline functions are no exception. The
whole idea behind an inline function isto replace each call of that function with its code body, and it doesn't takea Ph.D. in
statistics to see that thisislikely to increase the overall size of your object code. On machines with limited memory,
overzealous inlining can give rise to programs that are too big for the available space. Even with virtual memory, inline-induced
code bloat can lead to pathological paging behavior (thrashing) that will slow your program to a crawl. (It will, however,
provide your disk controller with a nice exercise regimen.) Too much inlining can also reduce your instruction cache hit rate,
thus reducing the speed of instruction fetch from that of cache memory to that of primary memory.

On the other hand, if an inline function body is very short, the code generated for the function body may actually be smaller
than the code generated for afunction call. If that is the case, inlining the function may actually lead to smaller object code and
a higher cache hit rate!

Bear in mind that thei nl i ne directive, liker egi st er , isahint to compilers, not acommand. That means compilers are free
to ignore your inline directives whenever they want to, and it's not that hard to make them want to. For example, most compilers
refuse to inline "complicated" functions (e.g., those that contain loops or are recursive), and all but the most trivial virtual
function calls stop inlining routines dead in their tracks. (This shouldn't be much of asurprise. vi r t ual means "wait until
runtime to figure out which functionto call,” and i nl i ne means "during compilation, replace the call site with the called
function.” If compilers don't know which function will be called, you can hardly blame them for refusing to make an inline call
toit.) It al adds up to this: whether a given inline function is actualy inlined is dependent on the implementation of the

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (112 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

compiler you're using. Fortunately, most compilers have a diagnostic level that will result in awarning (see Item 48) if they fail
to inline afunction you've asked them to.

Suppose you've written some function f and you've declared iti nl i ne. What happens if acompiler chooses, for whatever
reason, not to inline that function? The obvious answer isthat f will be treated like a non-inline function: code for f will be
generated asif it were anormal "outlined” function, and callsto f will proceed as normal function calls.

In theory, thisis precisely what will happen, but thisis one of those occasions when theory and practice may go their separate
ways. That's because this very tidy solution to the problem of what to do about "outlined inlines’ was added to C++ relatively
late in the standardization process. Earlier specifications for the language (such asthe ARM — see Item 50) told compiler

vendors to implement different behavior, and the older behavior is still common enough that you need to understand what it is.

Think about it for aminute, and you'll realize that inline function definitions are virtually always put in header files. This allows
multiple translation units (source files) to include the same header files and reap the advantages of the inline functions that are
defined within them. Here's an example, in which | adopt the convention that source filesend in ".cpp”; thisis probably the
most prevalent of the file naming conventionsin the world of C++:

/1 This is file exanple.h
inline void f() { ... } /1l definition of f

/1 This is file sourcel.cpp
#i ncl ude "exanpl e. h" /1 includes definition of f
/1l contains calls to f

/1 This is file source2.cpp

#i ncl ude "exanpl e. h" /1 also includes definition
Il of f
/1l also calls f

Under the old "outlined inline" rules and the assumption that f isnot being inlined, when sour cel. cpp iscompiled, the
resulting object file will contain afunction called f , just asif f had never been declared i nl i ne. Similarly, when

sour ce2. cpp iscompiled, its generated object file will also hold afunction called f . When you try to link the two object
files together, you can reasonably expect your linker to complain that your program contains two definitions of f , an error.

To prevent this problem, the old rules decreed that compilers treat an un-inlined inline function asif the function had been
declared st at i ¢ —that is, local to the file currently being compiled. In the example you just saw, compilers following the old
ruleswould treat f asif it were staticin sour cel. cpp when that file was being compiled and asif it were static in

sour ce2. cpp when that file was being compiled. This strategy eliminates the link-time problem, but at a cost: each
trandation unit that includes the definition of f (and that callsf) containsits own static copy of f . If f itself defineslocal static
variables, each copy of f getsits own copy of the variables, something sure to astonish programmers who believe that

"st ati ¢" inside afunction means "only one copy."

This leads to a stunning realization. Under both new rules and old, if an inline function isn't inlined, you still pay for the cost of
afunction call at each call site, but under the old rules, you can also suffer an increase in code size, because each trandation
unit that includes and callsf getsits own copy of f 's code and f 's static variables! (To make matters worse, each copy of f and
each copy of f 's static variables tend to end up on different virtual memory pages, so two calls to different copies of f arelikely

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (113 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

to entail one or more page faults.)

There's more. Sometimes your poor, embattled compilers have to generate a function body for an inline function even when
they are perfectly willing to inline the function. In particular, if your program ever takes the address of an inline function,
compilers must generate a function body for it. How can they come up with a pointer to afunction that doesn't exist?

inline void f() {...} /| as above
void (*pf)() =f; [l pf points to f
int main()
{f(); /1 an inline call to f
pf(); /1 a non-inline call to f
/'l through pf
}

In this case, you end up in the seemingly paradoxical situation whereby callstof areinlined, but — under the old rules— each
trandation unit that takes f 's address till generates a static copy of the function. (Under the new rules, only a single out-of-line
copy of f will be generated, regardless of the number of translation unitsinvolved.)

This aspect of un-inlined inline functions can affect you even if you never use function pointers, because programmers aren't
necessarily the only ones asking for pointers to functions. Sometimes compilers do it. In particular, compilers sometimes
generate out-of-line copies of constructors and destructors so that they can get pointers to those functions for use in constructing
and destructing arrays of objects of aclass (see also Item M8).

In fact, constructors and destructors are often worse candidates for inlining than a casual examination would indicate. For
example, consider the constructor for class Der i ved below:

cl ass Base {

publ i c:
private:

string bnl, bn®; /1l base nenbers 1 and 2
1
cl ass Derived: public Base {
publi c:

Derived() {} /1l Derived' s ctor is

/[l enpty -- or is it?

private:

string dnl, dnR, dnS; /1 derived nenbers 1-3
3

This constructor certainly looks like an excellent candidate for inlining, since it contains no code. But looks can be deceiving.
Just because it contains no code doesn't necessarily mean it contains no code. In fact, it may contain afair amount of code.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (114 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#33985

Effective C++, 2E

C++ makes various guarantees about things that happen when objects are created and destroyed. Items 5 and M 8 describes how

when you use new, your dynamically created objects are automatically initialized by their constructors, and how when you use
del et e, the corresponding destructors are invoked. Item 13 explains that when you create an object, each base class of and
each data member in that object is automatically constructed, and the reverse process regarding destruction automatically occurs
when an object is destroyed. Those items describe what C++ says must happen, but C++ does not say how they happen. That's
up to compiler implementers, but it should be clear that those things don't just happen by themselves. There has to be some code
in your program to make those things happen, and that code — the code written by compiler implementers and inserted into
your program during compilation — has to go somewhere. Sometimes, it ends up in your constructors and destructors, so some
implementations will generate code equivalent to the following for the allegedly empty Der i ved constructor above:

/'l possible inplenmentation of Derived constructor

Derived: : Deri ved()

{
/'l allocate heap nenory for this object if it's supposed
/'l to be on the heap; see Item8 for info on operator new

if (this object is on the heap)

this = ::operator new(sizeof (Derived));
Base: : Base(); /1 initialize Base part
dml. string(); /1l construct dml
dnR. string(); /| construct dng
dnB. string(); /1l construct dnB

}

Y ou could never hope to get code like this to compile, because it's not legal C++ — not for you, anyway. For one thing, you
have no way of asking whether an object is on the heap from inside its constructor. (For an examination of what it takes to
reliably determine whether an object is on the heap, see Item M27.) For another, you're forbidden from assigningtot hi s. And
you can't invoke constructors viafunction calls, either. Y our compilers, however, labor under no such constraints — they can
do whatever they like. But the legality of the code is not the point. The point isthat codeto call oper at or new (if necessary),
to construct base class parts, and to construct data members may be silently inserted into your constructors, and when it is, those
constructors increase in size, thus making them less attractive candidates for inlining. Of course, the same reasoning applies to
the Base constructor, so if it'sinlined, all the code inserted into it is also inserted into the Der i ved constructor (viathe

Der i ved constructor's call to the Base constructor). And if the st r i ng constructor aso happens to be inlined, the

Der i ved constructor will gain five copies of that function's code, one for each of the five stringsin aDer i ved object (the
two it inherits plus the three it declares itself). Now do you see why it's not necessarily a no-brain decision whether to inline

Der i ved's constructor? Of course, similar considerations apply to Der i ved's destructor, which, one way or another, must see
toit that al the objectsinitialized by Der i ved's constructor are properly destroyed. It may also need to free the dynamically
allocated memory formerly occupied by the just-destroyed Der i ved object.

Library designers must evaluate the impact of declaring functionsi nl i ne, because inline functions make it impossible to
provide binary upgradesto the inline functionsin alibrary. In other words, if f isaninline function in alibrary, clients of the
library compile the body of f into their applications. If alibrary implementer later decidesto changef , al clients who've used

f must recompile. Thisis often highly undesirable (see aso Item 34). On the other hand, if f isanon-i nl i ne function, a
modificationto f requiresonly that clients relink. Thisis a substantially less onerous burden than recompiling and, if the library
containing the function is dynamically linked, one that may be absorbed in away that's completely transparent to clients.

Static objects inside inline functions often exhibit counterintuitive behavior. For this reason, it's generally agood ideato avoid
declaring functionsi nl i ne if those functions contain static objects. For details, consult Iltem M 26.

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (115 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#33985
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#22627
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5350

Effective C++, 2E

For purposes of program devel opment, it isimportant to keep all these considerations in mind, but from a purely practical point
of view during coding, one fact dominates all others: most debuggers have trouble with inline functions.

This should be no great revelation. How do you set a breakpoint in a function that isn't there? How do you step through such a
function? How do you trap callsto it? Without being unreasonably clever (or deviously underhanded), you simply can't.
Happily, thisleadsto alogical strategy for determining which functions should be declared i nl i ne and which should not.

Initially, don't inline anything, or at least limit your inlining to those functions that are truly trivial, such asage below:

cl ass Person {
publi c:
I nt age() const { return personAge; }

private:
i nt personAge;

}

By employing inlines cautiously, you facilitate your use of a debugger, but you also put inlining in its proper place: as a hand-
applied optimization. Don't forget the empirically determined rule of 80-20 (see Item M 16), which states that atypical program
spends 80 percent of its time executing only 20 percent of its code. It's an important rule, because it reminds you that your goal
as a software devel oper is to identify the 20 percent of your code that is actually capable of increasing your program's overall
performance. Y ou can inline and otherwise tweak your functions until the cows come home, but it's all wasted effort unless
you're focusing on the right functions.

Once you've identified the set of important functions in your application, the ones whose inlining will actually make a
difference (a set that isitself dependent on the architecture on which you're running), don't hesitate to declarethemi nl i ne. At
the same time, however, be on the lookout for problems caused by code bloat, and watch out for compiler warnings (see Item

48) that indicate that your inline functions haven't been inlined.

Used judicioudly, inline functions are an invaluable component of every C++ programmer's toolbox, but, as the foregoing
discussion has revealed, they're not quite as simple and straightforward as you might have thought.

Back to Item 33: Useinlining judiciously.
Continue to |nheritance and Object-Oriented Design

Item 34: Minimize compilation dependencies between files.

So you go into your C++ program and you make a minor change to the implementation of a class. Not the class interface, mind
you, just the implementation; only the private stuff. Then you get set to rebuild the program, figuring that the compilation and
linking should take only afew seconds. After all, only one class has been modified. Y ou click on Rebuild or type make (or its
moral equivalent), and you are astonished, then mortified, as you realize that the whole world is being recompiled and relinked!

Don't you just hate it when that happens?

The problem isthat C++ doesn't do a very good job of separating interfaces from implementations. In particular, class
definitions include not only the interface specification, but also afair number of implementation details. For example:

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (116 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#40995

Effective C++, 2E

cl ass Person {
publi c:
Per son(const string& nane, const Date& birthday,
const Address& addr, const Country& country);
virtual ~Person();

/'l copy constructor and assi gnment
/| operator omtted for sinplicity
string name() const;
string birthDate() const;
string address() const;
string nationality() const;

private:
string nanme_,; /1 inplenmentation detail
Date birthDate_; /1 inplenmentation detail
Addr ess address_; /1 inplenmentation detail
Country citizenship_; /1 inplenmentation detail
1

Thisis hardly aNobel Prize-winning class design, athough it doesillustrate an interesting naming convention for
distinguishing private data from public functions when the same name makes sense for both: the former are tagged with a
trailing underbar. The important thing to observe isthat class Per son can't be compiled unless the compiler also has access to
definitions for the classes in terms of which Per son isimplemented, namely, st ri ng, Dat e, Addr ess, and Count ry.
Such definitions are typically provided through #i ncl ude directives, so at the top of the file defining the Per son class, you
arelikely to find something like this:

#i ncl ude <string> /1l for type string (see Iltem 49)
#i ncl ude "date. h"

#i ncl ude "address. h"

#i ncl ude "country. h"

Unfortunately, this sets up a compilation dependency between the file defining Per son and these include files. As aresult, if
any of these auxiliary classes changesits implementation, or if any of the classes on which it depends changes its
implementation, the file containing the Per son class must be recompiled, as must any files that use the Per son class. For
clients of Per son, this can be more than annoying. It can be downright incapacitating.

Y ou might wonder why C++ insists on putting the implementation details of a classin the class definition. For example, why
can't you define Per son thisway,

class string; /1 "conceptual"” forward declaration for the
/1l string type. See Item 49 for details.

cl ass Dat e; /] forward decl aration
cl ass Address; /] forward decl aration
class Country; /1 forward declaration

cl ass Person {
publ i c:
Per son(const string& nane, const Date& birthday,

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (117 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

const Address& addr, const Country& country);
virtual ~Person();

/'l copy ctor, operator=

string name() const;

string birthDate() const;
string address() const;
string nationality() const;

3
specifying the implementation details of the class separately? If that were possible, clients of Per son would have to recompile
only if the interface to the class changed. Because interfaces tend to stabilize before implementations do, such a separation of
interface from implementation could save untold hours of recompilation and linking over the course of alarge software effort.

Alas, the real world intrudes on thisidyllic scenario, as you will appreciate when you consider something like this:

int main()
{
int Xx; /1 define an int
Person p(...); /1 define a Person
/1 (arguments omitted for
/'l sinplicity)
}

When compilers see the definition for x, they know they must allocate enough space to hold ani nt . No problem. Each
compiler knows how big ani nt is. When compilers see the definition for p, however, they know they have to allocate enough
space for aPer son, but how are they supposed to know how big a Per son object is? The only way they can get that
information is to consult the class definition, but if it were legal for a class definition to omit the implementation details, how
would compilers know how much space to alocate?

In principle, thisis no insuperable problem. Languages such as Smalltalk, Eiffel, and Java get around it all the time. The way
they do it is by allocating only enough space for a pointer to an object when an object is defined. That is, they handle the code
above asif it had been written like this:

int main()
{ int x; /1 define an int
Person *p; /| define a pointer
/'l to a Person
}

It may have occurred to you that thisisin fact legal C++, and it turns out that you can play the "hide the object implementation
behind a pointer" game yourself.

Here's how you employ the technique to decouple Per son'sinterface from its implementation. First, you put only the
following in the header file declaring the Per son class:

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (118 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

/'l conpilers still need to know about these type
/'l names for the Person constructor
class string; /1l again, see Item49 for information

/1 on why this isn't correct for string
cl ass Dat e;
cl ass Address;
class Country;

/'l class Personlnpl will contain the inplenentation
/'l details of a Person object; this is just a

/'l forward declaration of the class nane

cl ass Personl npl;

cl ass Person {
publi c:
Per son(const string& nane, const Date& birthday,
const Address& addr, const Country& country);
virtual ~Person();

/1l copy ctor, operator=

string name() const;

string birthDate() const;
string address() const;
string nationality() const;

private:
Per sonl npl *inpl; /1l pointer to inplenentation

}

Now clients of Per son are completely divorced from the details of strings, dates, addresses, countries, and persons. Those
classes can be modified at will, but Per son clients may remain blissfully unaware. More to the point, they may remain
blissfully un-recompiled. In addition, because they're unable to see the details of Per son'simplementation, clients are unlikely
to write code that somehow depends on those details. Thisis atrue separation of interface and implementation.

The key to this separation is replacement of dependencies on class definitions with dependencies on class declarations. That's
all you need to know about minimizing compilation dependencies: make your header files self-sufficient whenever it's practical,
and when it's not practical, be dependent on class declarations, not class definitions. Everything else flows from this simple
design strategy.

There are three immediate implications:

. Avoid using objects when object references and pointerswill do. You may define references and pointersto atype
with only a declaration for the type. Defining objects of atype necessitates the presence of the type's definition.

. Useclassdeclarationsinstead of class definitions whenever you can. Note that you never need a class definition to
declare afunction using that class, not even if the function passes or returns the class type by value:

cl ass Dat e; /] class declaration

Dat e returnADat e(); /1l fine —no definition

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (119 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

voi d takeADat e(Date d);

/] of Date is needed

Of course, pass-by-valueis generally abad idea (see Item 22), but if you find yourself forced to use it for some reason,
there's still no justification for introducing unnecessary compilation dependencies.

If you're surprised that the declarations for r et ur nADat e and t akeADat e compile without a definition for Dat e,
join the club; so was . It's not as curious as it seems, however, because if anybody calls those functions, Dat e's
definition must be visible. Oh, I know what you're thinking: why bother to declare functions that nobody calls? Simple.
It's not that nobody calls them, it's that not everybody calls them. For example, if you have alibrary containing hundreds
of function declarations (possibly spread over several namespaces — see Item 28), it's unlikely that every client calls
every function. By moving the onus of providing class definitions (via#i ncl ude directives) from your header file of
function declarationsto clients files containing function calls, you eliminate artificial client dependencies on type

definitions they don't really need.

. Don't #i ncl ude header filesin your header filesunlessyour headerswon't compile without them. Instead,
manually declare the classes you need, and let clients of your header files#i ncl ude the additional headers necessary
to make their code compile. A few clients may grumble that thisisinconvenient, but rest assured that you are saving
them much more pain than you're inflicting. In fact, this technique is so well-regarded, it's enshrined in the standard C++
library (see Item 49); the header <i osf wd> contains declarations (and only declarations) for the typesin the iostream

library.

Classes like Per son that contain only a pointer to an unspecified implementation are often called Handle classes or Envelope
classes. (In the former case, the classes they point to are called Body classes; in latter case, the pointed-to classes are known as
Letter classes.) Occasionaly, you may hear people refer to such classes as Cheshire Cat classes, an allusion to the cat in Alice
in Wonderland that could, when it chose, leave behind only its smile after the rest of it had vanished.

Lest you wonder how Handle classes actually do anything, the answer is simple: they forward al their function calls to the
corresponding Body classes, and those classes do the real work. For example, here's how two of Per son's member functions

would be implemented:

#i ncl ude "Person. h" [/
/1
/1

#i ncl ude "Personl npl . h" /1l
Il
/1
Il
Il
/1l
/1l
/1l

Per son: : Person(const string& nane,
const Address& addr,

{
i npl = new Per sonl npl (name, birthday,
}
string Person::nane() const
{

return inpl->name();

because we're inplenmenting
t he Person cl ass, we nust
#include its class definition

we nust al so #incl ude
Personlnpl's class definition,
ot herwi se we couldn't cal

its nenmber functions. Note

t hat Personl npl has exactly

t he sane nmenber functions as
Person —their interfaces

are identica

const Dateé& birthday,
const Country& country)

addr, country);

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (120 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

}

Note how the Per son constructor callsthe Per sonl npl constructor (implicitly, by using new— see Items 5 and M 8) and
how Per son: : nane calsPer sonl npl : : nane. Thisisimportant. Making Per son ahandle class doesn't change what
Per son does, it just changes where it doesit.

An alternative to the Handle class approach isto make Per son a special kind of abstract base class called a Protocol class. By
definition, a Protocol class has no implementation; itsraison d'étreisto specify an interface for derived classes (see Item 36).

Asaresult, it typically has no data members, no constructors, avirtual destructor (see Item 14), and a set of pure virtual
functions that specify the interface. A Protocol classfor Per son might look like this:

cl ass Person {
publi c:
virtual ~Person();

virtual string nanme() const = 0;
virtual string birthDate() const = 0;
virtual string address() const = 0;
virtual string nationality() const = 0;

b

Clients of thisPer son class must program in terms of Per son pointers and references, because it's not possible to instantiate
classes containing pure virtual functions. (It is, however, possible to instantiate classes derived from Per son — see below.)
Like clients of Handle classes, clients of Protocol classes need not recompile unless the Protocol class's interface is modified.

Of course, clients of a Protocol class must have some way of creating new objects. They typically do it by calling a function that
plays the role of the constructor for the hidden (derived) classes that are actually instantiated. Such functions go by several
names (among them factory functions and virtual constructors), but they all behave the same way: they return pointers to
dynamically allocated objects that support the Protocol class'sinterface (see also Iltem M 25). Such afunction might be declared

like this,

/'l makePerson is a "virtual constructor" (aka, a "factory
/1 function") for objects supporting the Person interface

Per son*
makePer son(const string& nane, /[l return a ptr to
const Date& birthday, /'l a new Person
const Address& addr, /1l initialized with
const Country& country); /'l the given parans

and used by clients like this:

string nane;

Date dateOBirth;
Addr ess address;
Country nati on;

/'l create an object supporting the Person interface
Person *pp = makePerson(nanme, dateOBirth, address, nation);

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (121 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#33985
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5341

Effective C++, 2E

<<
<<
<<
<<
<<

cout pp- >nane()
" was born on
pp- >bi rt hDat e()
" and now lives at

pp- >address();

del ete pp;

/1 use the object via the
/! Person interface

/1l delete the object when
/1l it's no | onger needed

Because functions like makePer son are closely associated with the Protocol class whose interface is supported by the objects
they create, it's good style to declare them st at i ¢ inside the Protocol class:

cl ass Person {
publi c:

/'l makePerson is now a nenber of
static Person * makePerson(const
const
const
const

b

/] as above

t he cl ass

string& nane,

Dat e& bi rt hday,
Addr ess& addr,
Countryé& country);

This avoids cluttering the global namespace (or any other namespace) with lots of functions of this nature (see also Item 28).

At some point, of course, concrete classes supporting the Protocol class's interface must be defined and real constructors must
be called. That all happens behind the scenes inside the implementation files for the virtual constructors. For example, the

Protocol class Per son might have a concrete derived
functionsit inherits

cl ass Real Person:
publi c:

Real Per son(const string& nane,

const Addressé& addr

name_(nanme), birthday_(birt

address_(addr),

{}

publ i ¢ Person

virtual ~Real Person() {}

string
string
string
string

nane() const;

bi rthDat e() const;
address() const;
nationality() const;

private:
string nane_;
Dat e birthday_;

class Real Per son that provides implementations for the virtual

{

const Dateé& birthday,
, const Country& country)
hday) ,

country_(country)

/11
11
11
Il

of
are not
are

i mpl ement ati ons
t hese functions
shown, but they
easy to imagine

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (122 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

Addr ess address_;
Country country_;

b
Given Real Per son, itistruly trivial to write Per son: : makePer son:

Person * Person:: makePer son(const string& nane,
const Date& birthday,
const Address& addr,
const Country& country)

{

return new Real Person(name, birthday, addr, country);

}

Real Per son demonstrates one of the two most common mechanisms for implementing a Protocol class: it inheritsits
interface specification from the Protocol class (Per son), then it implements the functions in the interface. A second way to
implement a Protocol class involves multiple inheritance, atopic explored in Item 43.

Okay, so Handle classes and Protocol classes decouple interfaces from implementations, thereby reducing compilation
dependencies between files. Cynic that you are, | know you're waiting for the fine print. "What does al this hocus-pocus cost
me?" you mutter. The answer is the usual one in Computer Science: it costs you some speed at runtime, plus some additional
memory per object.

In the case of Handle classes, member functions have to go through the implementation pointer to get to the object's data. That
adds one level of indirection per access. And you must add the size of this implementation pointer to the amount of memory
required to store each object. Finaly, the implementation pointer hasto be initialized (in the Handle class's constructors) to
point to a dynamically allocated implementation object, so you incur the overhead inherent in dynamic memory allocation (and
subsequent deallocation) — see Item 10.

For Protocol classes, every function call isvirtual, so you pay the cost of an indirect jump each time you make a function call
(see Items 14 and M 24). Also, objects derived from the Protocol class must contain avirtual pointer (again, see Items 14 and

M24). This pointer may increase the amount of memory needed to store an object, depending on whether the Protocol classis
the exclusive source of virtual functions for the object.

Finally, neither Handle classes nor Protocol classes can get much use out of inline functions. All practical uses of inlines require
access to implementation details, and that's the very thing that Handle classes and Protocol classes are designed to avoid in the
first place.

It would be a serious mistake, however, to dismiss Handle classes and Protocol classes ssimply because they have a cost
associated with them. So do virtual functions, and you wouldn't want to forgo those, would you? (If so, you're reading the
wrong book.) Instead, consider using these techniques in an evolutionary manner. Use Handle classes and Protocol classes
during development to minimize the impact on clients when implementations change. Replace Handl e classes and Protocol
classes with concrete classes for production use when it can be shown that the difference in speed and/or size is significant
enough to justify the increased coupling between classes. Someday, we may hope, tools will be available to perform this kind of
transformation automatically.

A skillful blending of Handle classes, Protocol classes, and concrete classes will allow you to devel op software systems that
execute efficiently and are easy to evolve, but there is a serious disadvantage: you may have to cut down on the long breaks
you've been taking while your programs recompile.

Back to Item 34: Minimize compilation dependencies between files.

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (123 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41284
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41284

Effective C++, 2E

Continue to Item 35: Make sure public inheritance models "isa."

Inheritance and Object-Oriented Design

Many people are of the opinion that inheritance is what object-oriented programming is all about. Whether that'sso is
debatable, but the number of Items in the other sections of this book should convince you that as far as effective C++
programming is concerned, you have alot more tools at your disposal than simply specifying which classes inherit from which
other classes.

Still, designing and implementing class hierarchies is fundamentally different from anything found in the world of C. Certainly
itisin the area of inheritance and object-oriented design that you are most likely to radically rethink your approach to the
construction of software systems. Furthermore, C++ provides a bewildering assortment of object-oriented building blocks,
including public, protected, and private base classes; virtual and nonvirtual base classes; and virtual and nonvirtual member
functions. Each of these features interacts not only with one another, but also with the other components of the language. Asa
result, trying to understand what each feature means, when it should be used, and how it is best combined with the non-object-
oriented aspects of C++ can be a daunting endeavor.

Further complicating the matter is the fact that different features of the language appear to do more or less the same thing.
Examples:

. You need a collection of classes with many shared characteristics. Should you use inheritance and have all the classes
derived from a common base class, or should you use templates and have them all generated from a common code
skeleton?

. Class A isto beimplemented in terms of class B. Should A have a data member of type B, or should A privately inherit
from B?

. You need to design atype-safe homogeneous container class, one not present in the standard library. (See Item 49 for a
list of containersthe library does provide.) Should you use templates, or would it be better to build type-safe interfaces
around aclassthat isitself implemented using generic (voi d*) pointers?

In the Itemsin this section, | offer guidance on how to answer questions such as these. However, | cannot hope to address every
aspect of object-oriented design. Instead, | concentrate on explaining what the different featuresin C++ really mean, on what
you are really saying when you use a particular feature. For example, public inheritance means "isa' (see Item 35), and if you
try to make it mean anything else, you will run into trouble. Similarly, avirtual function means "interface must be inherited,”
while anonvirtual function means "both interface and implementation must be inherited." Failing to distinguish between these
meanings has caused many a C++ programmer untold grief.

If you understand the meanings of C++'s varied features, you'll find that your outlook on object-oriented design shifts. Instead
of it being an exercise in differentiating between language constructs, it will properly become a matter of figuring out what it is
you want to say about your software system. Once you know what you want to say, you'll be able to trandlate that into the
appropriate C++ features without too much difficulty.

The importance of saying what you mean and understanding what you're saying cannot be overestimated. The items that follow
provide a detailed examination of how to do this effectively. Item 44 summarizes the correspondence between C++'s object-
oriented constructs and what they mean. It serves as a nice capstone for this section, as well as a concise reference for future
consultation.

Back to Inheritance and Object-Oriented Design
Continue to Item 36: Differentiate between inheritance of interface and inheritance of implementation.

Item 35: Make sure public inheritance models "isa."

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (124 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

In his book, Some Must Watch While Some Must Seep (W. H. Freeman and Company, 1974), William Dement rel ates the story
of hisattempt to fix in the minds of his students the most important lessons of his course. It is claimed, he told his class, that the
average British schoolchild remembers little more history than that the Battle of Hastings was in 1066. If a child remembers
little else, Dement emphasized, he or she remembers the date 1066. For the students in his course, Dement went on, there were
only afew central messages, including, interestingly enough, the fact that sleeping pills cause insomnia. He implored his
students to remember these few critical facts even if they forgot everything else discussed in the course, and he returned to these
fundamental precepts repeatedly during the term.

At the end of the course, the last question on the final exam was, "Write one thing from the course that you will surely
remember for the rest of your life." When Dement graded the exams, he was stunned. Nearly everyone had written "1066."

It isthus with great trepidation that | proclaim to you now that the single most important rule in object-oriented programming
with C++ isthis: public inheritance means "isa." Commit this rule to memory.

If you write that class D ("Derived") publicly inherits from class B ("Base"), you aretelling C++ compilers (as well as human
readers of your code) that every object of type D is also an object of type B, but not vice versa. Y ou are saying that B represents
amore general concept than D, that D represents a more specialized concept than B. Y ou are asserting that anywhere an object
of type B can be used, an object of type D can be used just as well, because every object of type D is an object of type B. On the
other hand, if you need an object of type D, an object of type B will not do: every D isaB, but not vice versa.

C++ enforces thisinterpretation of public inheritance. Consider this example:
class Person { ... };
class Student: public Person { ... };

We know from everyday experience that every student is a person, but not every person is a student. That is exactly what this
hierarchy asserts. We expect that anything that is true of a person — for example, that he or she has a date of birth— isaso
true of a student, but we do not expect that everything that is true of a student — that he or sheis enrolled in a particular school,
for instance — is true of peoplein general. The notion of a person is more general than is that of a student; a student isa
specialized type of person.

Within the realm of C++, any function that expects an argument of type Per son (or pointer-to-Per son or reference-to-
Per son) will instead take a St udent object (or pointer-to-St udent or reference-to-St udent):

voi d dance(const Person& p); /| anyone can dance

voi d study(const Student& s); /1 only students study
Per son p; /[l pis a Person

St udent s; /1l s is a Student
dance(p); /1l fine, pis a Person
dance(s); /1l fine, s is a Student,

/1 and a Student isa Person
study(s); /[l fine
study(p); /[l error! pisn't a Student

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (125 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

Thisistrue only for public inheritance. C++ will behave as I've described only if St udent is publicly derived from Per son.
Private inheritance means something entirely different (see Item 42), and no one seems to know what protected inheritance is
supposed to mean. Furthermore, the fact that a St udent isaPer son does not mean that an array of St udent isaarray of
Per son. For more information on that topic, see ltem M3.

The equivalence of public inheritance and isa sounds simple, but in practice, things aren't always so straightforward. Sometimes
your intuition can mislead you. For example, it isafact that a penguinisabird, and it isafact that birds can fly. If we naively
try to express thisin C++, our effort yields:

class Bird {

publi c:

virtual void fly(); /1 birds can fly
1
class Penguin:public Bird { /] penguins are birds
1

Suddenly we are in trouble, because this hierarchy says that penguins can fly, which we know is not true. What happened?

In this case, we are the victims of an imprecise language (English). When we say that birds can fly, we don't really mean that all
birds can fly, only that, in general, birds have the ability to fly. If we were more precise, we'd recognize that there are in fact
severa types of non-flying birds, and we would come up with the following hierarchy, which models reality much better:

class Bird {

/1 no fly function is
}; /'l decl ared

class FlyingBird: public Bird {
publi c:
virtual void fly();
b
cl ass NonFlyingBird: public Bird {

/1 no fly function is
/'l decl ared

i
cl ass Penguin: public NonFlyingBird {

/1 no fly function is
/'l decl ared

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (126 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#84818

Effective C++, 2E
1
This hierarchy is much more faithful to what we really know than was the original design.

Even now we're not entirely finished with these fowl matters, because for some software systems, it may be entirely appropriate
to say that apenguinisabird. In particular, if your application has much to do with beaks and wings and nothing to do with
flying, the original hierarchy might work out just fine. Irritating though this may seem, it's asimple reflection of the fact that
thereisno oneideal design for all software. The best design depends on what the system is expected to do, both now and in the
future (see Item M32). If your application has no knowledge of flying and isn't expected to ever have any, making Pengui n a
derived class of Bi r d may be a perfectly valid design decision. In fact, it may be preferable to a decision that makes a
distinction between flying and non-flying birds, because such a distinction would be absent from the world you are trying to
model. Adding superfluous classes to a hierarchy can be just as bad a design decision as having the wrong inheritance
relationships between classes.

There is another school of thought on how to handle what | call the "All birds can fly, penguins are birds, penguins can't fly, uh
oh" problem. That isto redefinethe f | y function for penguins so that it generates a runtime error:

voi d error(const string& nmsq); /1 defined el sewhere
cl ass Penguin: public Bird {

publi c:
virtual void fly() { error("Penguins can't fly!"); }

1
Interpreted languages such as Smalltalk tend to adopt this approach, but it's important to recognize that this says something
entirely different from what you might think. This does not say, "Penguins can't fly." This says, "Penguins can fly, but it's an
error for them to try to do so."

How can you tell the difference? From the time at which the error is detected. The injunction, "Penguins can't fly," can be
enforced by compilers, but violations of the statement, "It's an error for penguinsto try to fly," can be detected only at runtime.

To express the constraint, "Penguins can't fly," you make sure that no such function is defined for Pengui n objects:
class Bird {

/1 no fly function is
/'l decl ared

3
cl ass NonFlyingBird: public Bird {

/1 no fly function is
/| decl ared

b

cl ass Penguin: public NonFlyingBird {

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (127 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5373

Effective C++, 2E
/1 no fly function is
/1 decl ared
1
If you try to make a penguin fly, compilers will reprimand you for your transgression:
Pengui n p;

p.fly(); /1 error!

Thisisvery different from the behavior you get if you use the Smalltalk approach. With that methodology, compilers won't say
aword.

The C++ philosophy is fundamentally different from the Smalltalk philosophy, so you're better off doing things the C++ way as
long as you're programming in C++. In addition, there are certain technical advantages to detecting errors during compilation
instead of at runtime — see [tem 46.

Perhaps you'll concede that your ornithological intuition may be lacking, but you can rely on your mastery of elementary
geometry, right? | mean, how complicated can rectangles and squares be?

WEell, answer this simple question: should class Squar e publicly inherit from class Rect angl e?

"Duh!" you say, "Of course it should! Everybody knows that a square is arectangle, but generally not vice versa." True enough,
at least in high school. But | don't think we're in high school anymore.

Consider this code:

cl ass Rectangle {

publi c:
virtual void setHeight(int newHei ght);
virtual void setWdth(int newWdth);

virtual int height() const; [l return current
virtual int width() const; /'l val ues

i

voi d makeBi gger (Rect angl e& r) /1 function to

{ /'l increase r's area
i nt ol dHei ght = r. height();
r.setWdth(r.width() + 10); /1 add 10 to r's width
assert(r.height() == ol dHei ght); /[l assert that r's

} /1l height is unchanged

Clearly, the assertion should never fail. makeBi gger only changesr 'swidth. Its height is never modified.

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (128 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

Now consider this code, which uses public inheritance to allow squares to be treated like rectangles:

cl ass Square: public Rectangle { ... };
Square s;
assert(s.width() == s.height()); /] this must be true

/1l for all squares

makeBi gger (s); /'l by inheritance, s
/'l isa Rectangle, so
/1 we can increase its
/] area

assert(s.wdth() == s.height()); /1l this must still be
/[l true for all squares

It'sjust as clear here as it was above that this last assertion should also never fail. By definition, the width of asquareisthe
same asits height.

But now we have a problem. How can we reconcile the following assertions?

. Beforecaling makeBi gger , s'sheight isthe same asits width;

. InsidemakeBi gger, s'swidth is changed, but its height is not;

. After returning from nakeBi gger, s's height is again the same as its width. (Note that s is passed to makeBi gger
by reference, so makeBi gger modifiess itself, not acopy of s.)

Well?

Welcome to the wonderful world of public inheritance, where the instincts you've developed in other fields of study —
including mathematics — may not serve you as well as you expect. The fundamental difficulty in this case is that something
applicable to arectangle (its width may be modified independently of its height) is not applicable to a square (its width and
height are constrained to be the same). But public inheritance asserts that everything applicable to base class objects —
everything! — is also applicable to derived class objects. In the case of rectangles and squares (and a similar example involving
sets and lists in [tem 40), that assertion fails to hold, so using public inheritance to model their relationship isjust plain wrong.
Compilerswill let you do it, of course, but as we've just seen, that's no guarantee the code will behave properly. As every
programmer must learn (some more often than others), just because the code compiles doesn't mean it will work.

Now, don't fret that the software intuition you've developed over the years will fail you as you approach object-oriented design.
That knowledgeis still valuable, but now that you've added inheritance to your arsenal of design alternatives, you'll have to
augment your intuition with new insights to guide you in inheritance's proper application. In time, the notion of having

Pengui n inherit from Bi r d or Squar e inherit from Rect angl e will give you the same funny feeling you probably get
now when somebody shows you a function several pages long. It's possible that it's the right way to approach things, it's just not
very likely.

Of course, the isarelationship is not the only one that can exist between classes. Two other common inter-class relationships are
"has-a' and "is-implemented-in-terms-of." These relationships are considered in Items 40 and 42. It's not uncommon for C++

designsto go awry because one of these other important relationships was incorrectly modeled as isa, so you should make sure
that you understand the differences between these relationships and that you know how they are best modeled in C++.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (129 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

Back to Item 35: Make sure public inheritance models "isa."
Continue to Item 37: Never redefine an inherited nonvirtual function.

Item 36: Differentiate between inheritance of interface and inheritance of implementation.

The seemingly straightforward notion of (public) inheritance turns out, upon closer examination, to be composed of two
separable parts: inheritance of function interfaces and inheritance of function implementations. The difference between these
two kinds of inheritance corresponds exactly to the difference between function declarations and function definitions discussed
in the Introduction to this book.

Asaclass designer, you sometimes want derived classes to inherit only the interface (declaration) of a member function;
sometimes you want derived classes to inherit both the interface and the implementation for a function, but you want to allow
them to override the implementation you provide; and sometimes you want them to inherit both interface and implementation
without allowing them to override anything.

To get abetter feel for the differences among these options, consider a class hierarchy for representing geometric shapesin a
graphics application:

cl ass Shape {
publi c:
virtual void draw() const = O;

virtual void error(const string& nsg);

I nt objectl D) const;

1
cl ass Rectangle: public Shape { ... };
class Ellipse: public Shape { ... };

Shape isan abstract class; its pure virtual function dr aw marks it as such. As aresult, clients cannot create instances of the
Shape class, only of the classes derived from it. Nonetheless, Shape exerts astrong influence on all classes that (publicly)
inherit from it, because

. Member function interfaces are always inherited. As explained in Item 35, public inheritance means isa, so anything that
istrue of abase class must also be true of its derived classes. Hence, if afunction appliesto aclass, it must also apply to
its subclasses.

Three functions are declared in the Shape class. Thefirst, dr aw, draws the current object on an implicit display. The second,
error,iscaled by member functionsif they need to report an error. The third, obj ect | D, returns a unique integer identifier
for the current object; Item 17 gives an example of how such afunction might be used. Each function is declared in adifferent

way: dr awisapure virtual function; er r or isasimple (impure?) virtual function; and obj ect | Disanonvirtual function.
What are the implications of these different declarations?

Consider first the pure virtual function dr aw. The two most salient features of pure virtual functions are that they must be

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (130 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

redeclared by any concrete class that inherits them, and they typically have no definition in abstract classes. Put these two traits
together, and you redlize that

. The purpose of declaring a pure virtual function is to have derived classes inherit a function interface only.

This makes perfect sense for the Shape: : dr awfunction, because it is areasonable demand that all Shape objects must be
dr awable, but the Shape class can provide no reasonable default implementation for that function. The algorithm for drawing
an ellipse is very different from the algorithm for drawing a rectangle, for example. A good way to interpret the declaration of
Shape: : dr awis as saying to designers of subclasses, "Y ou must provide adr aw function, but | have no idea how you're
going to implement it."

Incidentally, it is possible to provide a definition for a pure virtual function. That is, you could provide an implementation for
Shape: : dr aw, and C++ wouldn't complain, but the only way to call it would be to fully specify the call with the class name:

Shape *ps = new Shape; /[l error! Shape is abstract
Shape *psl = new Rectangl e; /'l fine

psl->draw); /1l calls Rectangle::draw
Shape *ps2 = new El|ipse; Il fine

ps2->draw() ; /1l calls Ellipse::draw
psl- >Shape::draw); /1 calls Shape::draw

ps2- >Shape: : draw) ; /1l calls Shape::draw

Aside from helping impress fellow programmers at cocktail parties, knowledge of thisfeature is generally of limited utility. As
you'll see below, however, it can be employed as a mechanism for providing a safer-than-usual default implementation for
simple (impure) virtual functions.

Sometimes it's useful to declare a class containing nothing but pure virtual functions. Such a Protocol class can provide only
function interfaces for derived classes, never implementations. Protocol classes are described in Item 34 and are mentioned
againin Item 43.

The story behind simple virtual functionsis abit different from that behind pure virtuals. As usual, derived classes inherit the
interface of the function, but simple virtual functions traditionally provide an implementation that derived classes may or may
not choose to override. If you think about this for aminute, you'll realize that

. The purpose of declaring asimple virtual function isto have derived classes inherit afunction interface aswell asa
default implementation.

In the case of Shape: : err or, the interface says that every class must support afunction to be called when an error is
encountered, but each classisfreeto handle errors in whatever way it seesfit. If a class doesn't want to do anything special, it
can just fall back on the default error-handling provided in the Shape class. That is, the declaration of Shape: : error says
to designers of subclasses, "Y ou've got to support an er r or function, but if you don't want to write your own, you can fall
back on the default version in the Shape class.”

It turns out that it can be dangerous to allow simple virtual functions to specify both a function declaration and a default
implementation. To see why, consider a hierarchy of airplanesfor XY Z Airlines. XY Z has only two kinds of planes, the Model
A and the Model B, and both are flown in exactly the same way. Hence, XY Z designs the following hierarchy:

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (131 / 189) [2003-6-11 20:02:43]

Effective C++, 2E
class Airport { ... }; /'l represents airports

class Airplane {
publi c:
virtual void fly(const Airporté& destination);

b

void Airplane::fly(const Airport& destination)

{

default code for flying an airplane to
t he gi ven destination

}
cl ass Model A: public Airplane { ... };
cl ass Model B: public Airplane { ... };

To expressthat al planes have to support af | y function, and in recognition of the fact that different models of plane could, in
principle, require different implementationsfor f | y, Ai r pl ane: : f | y isdeclared virtual. However, in order to avoid writing
identical code in the Model A and Mbdel B classes, the default flying behavior is provided asthe body of Ai r pl ane: : fly,
which both Model A and Mbdel B inherit.

Thisisaclassic object-oriented design. Two classes share a common feature (the way they implement f | y), so the common
feature is moved into a base class, and the feature is inherited by the two classes. This design makes common features explicit,
avoids code duplication, facilitates future enhancements, and eases long-term maintenance — all the things for which object-
oriented technology is so highly touted. XY Z Airlines should be proud.

Now suppose that XY Z, its fortunes on the rise, decides to acquire a new type of airplane, the Model C. The Model C differs
from the Model A and the Model B. In particular, it is flown differently.

XY Z's programmers add the class for Model C to the hierarchy, but in their haste to get the new model into service, they forget
to redefinethef | y function:

cl ass Model C. public Airplane {

/1 no fly function is
/'l decl ared

i
In their code, then, they have something akin to the following:

Airport JFK(...); /1 JFK is an airport in
/1 New York City

Ai rpl ane *pa = new Model C

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (132 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

pa- >f | y(JFK) ; /1l calls Airplane::fly!

Thisisadisaster: an attempt is being made to fly aModel Coaobject asif it wereaModel Aor aMbdel B. That's not the kind of
behavior that inspires confidence in the traveling public.

The problem hereisnot that Ai r pl ane: : f | y has default behavior, but that Model Cwas allowed to inherit that behavior
without explicitly saying that it wanted to. Fortunately, it's easy to offer default behavior to subclasses, but not give it to them
unless they ask for it. The trick isto sever the connection between the interface of the virtual function and its default
implementation. Here's one way to do it:

class Airplane {
publi c:
virtual void fly(const Airporté& destination) = O;

pr ot ect ed:
voi d defaul t Fl y(const Airporté& destination);

b

voi d Airplane::defaultFly(const Airport& destination)
{

default code for flying an airplane to
the gi ven destination

}

Notice how Ai r pl ane: : f | y has been turned into a pure virtual function. That provides the interface for flying. The default
implementation is also present in the Ai r pl ane class, but now it'sin the form of an independent function, def aul t Fl y.
Classeslike Model A and Mbdel B that want to use the default behavior simply make an inline call to def aul t FI y inside
their body of f | y (but see Item 33 for information on the interaction of inlining and virtual functions):

cl ass Model A: public Airplane {

publi c:
virtual void fly(const Airporté& destination)
{ defaultFly(destination); }

1
cl ass Model B: public Airplane {
publi c:

virtual void fly(const Airport& destination)
{ defaultFly(destination); }

1
For the Model Cclass, thereisno possibility of accidentally inheriting the incorrect implementation of f | y, because the pure

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (133 / 189) [2003-6-11 20:02:43]

Effective C++, 2E
virtual in Ai r pl ane forces Model Cto provideitsown version of f | y.
cl ass Model C. public Airplane {

publi c:
virtual void fly(const Airport& destination);

1
void Model C. :fly(const Airporté& destination)
{
code for flying a Model C airplane to the given destination
}

This scheme isn't foolproof (programmers can still copy-and-paste themselves into trouble), but it's more reliable than the
original design. Asfor Ai r pl ane: : def aul t Fl y, it's protected because it's truly an implementation detail of Ai r pl ane
and its derived classes. Clients using airplanes should care only that they can be flown, not how the flying isimplemented.

It'salso important that Ai r pl ane: : def aul t FI y isanonvirtual function. Thisis because no subclass should redefine this
function, atruth to which Item 37 isdevoted. If def aul t FI y were virtual, you'd have a circular problem: what if some

subclass forgets to redefine def aul t Fl y when it's supposed to?

Some people object to the idea of having separate functions for providing interface and default implementation, such asf | y
and def aul t Fl y above. For one thing, they note, it pollutes the class namespace with a proliferation of closely-related
function names. Y et they still agree that interface and default implementation should be separated. How do they resolve this
seeming contradiction? By taking advantage of the fact that pure virtual functions must be redeclared in subclasses, but they
may also have implementations of their own. Here's how the Ai r pl ane hierarchy could take advantage of the ability to define
apure virtual function:

class Airplane {
publi c:
virtual void fly(const Airport& destination) = 0;

b

void Airplane::fly(const Airport& destination)

{

default code for flying an airplane to
t he gi ven destination

}

cl ass Model A public Airplane {

publi c:
virtual void fly(const Airport& destination)
{ Airplane::fly(destination); }

b

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (134 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

cl ass Model B: public Airplane {

publi c:
virtual void fly(const Airport& destination)
{ Airplane::fly(destination); }

b

cl ass Model C. public Airplane {
publi c:
virtual void fly(const Airporté& destination);

1
void Model C :fly(const Airporté& destination)
{
code for flying a Mddel C airplane to the given destination
}

Thisis amost exactly the same design as before, except that the body of the pure virtual function Ai r pl ane: : f | y takesthe
place of the independent function Ai r pl ane: : def aul t Fl y. Inessence, f | y has been broken into its two fundamental
components. Its declaration specifiesits interface (which derived classes must use), while its definition specifies its default
behavior (which derived classes may use, but only if they explicitly request it). Inmerging f | y and def aul t Fl y, however,
you've lost the ability to give the two functions different protection levels: the code that used to be pr ot ect ed (by beingin
def aul t Fl y)isnow publ i ¢ (becauseit'sinfly).

Finally, we come to Shape's nonvirtual function, obj ect I D. When a member function is nonvirtual, it's not supposed to
behave differently in derived classes. In fact, a nonvirtual member function specifies an invariant over specialization, because it
identifies behavior that is not supposed to change, no matter how specialized a derived class becomes. As such,

. The purpose of declaring a nonvirtual function isto have derived classes inherit afunction interface aswell asa
mandatory implementation.

Y ou can think of the declaration for Shape: : obj ect | Dassaying, "Every Shape object has a function that yields an object
identifier, and that object identifier is always computed in the same way. That way is determined by the definition of

Shape: : obj ect | D, and no derived class should try to change how it's done." Because a nonvirtual function identifies an
invariant over specialization, it should never be redefined in a subclass, a point that is discussed in detail in Item 37.

The differences in declarations for pure virtual, smple virtual, and nonvirtual functions allow you to specify with precision
what you want derived classes to inherit: interface only, interface and a default implementation, or interface and a mandatory
implementation, respectively. Because these different types of declarations mean fundamentally different things, you must
choose carefully among them when you declare your member functions. If you do, you should avoid the two most common
mi stakes made by inexperienced class designers.

Thefirst mistake isto declare all functions nonvirtual. That leaves no room for specialization in derived classes; nonvirtual
destructors are particularly problematic (see Item 14). Of course, it's perfectly reasonable to design a class that is not intended to

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (135 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

be used as a base class. Item M 34 gives an example of a case where you might want to. In that case, a set of exclusively
nonvirtual member functions is appropriate. Too often, however, such classes are declared either out of ignorance of the
differences between virtual and nonvirtual functions or as aresult of an unsubstantiated concern over the performance cost of
virtual functions (see [tem M24). The fact of the matter is that almost any class that's to be used as a base class will have virtua

functions (again, see ltem 14).

If you're concerned about the cost of virtual functions, allow me to bring up the rule of 80-20 (see [tem M 16), which states that
inatypical program, 80 percent of the runtime will be spent executing just 20 percent of the code. Thisruleisimportant,
because it means that, on average, 80 percent of your function calls can be virtual without having the slightest detectable impact
on your program's overall performance. Before you go gray worrying about whether you can afford the cost of avirtual
function, then, take the simple precaution of making sure that you're focusing on the 20 percent of your program where the
decision might really make a difference.

The other common problem is to declare all member functions virtual. Sometimes thisis the right thing to do — witness
Protocol classes (see Item 34), for example. However, it can also be asign of a class designer who lacks the backbone to take a
firm stand. Some functions should not be redefinable in derived classes, and whenever that's the case, you've got to say so by
making those functions nonvirtual. It serves no one to pretend that your class can be all thingsto all peopleif they'll just take
the time to redefine all your functions. Remember that if you have a base class B, aderived class D, and a member function nf ,
then each of the following callsto nf must work properly:

D *pd = new D

B *pb = pd;

pb->nf () ; /1l call nf through a
/'l pointer-to-base

pd->nf () ; /1l call nf through a

/'l pointer-to-derived

Sometimes, you must make nf anonvirtual function to ensure that everything behaves the way it's supposed to (see Item 37). If
you have an invariant over specialization, don't be afraid to say so!

Back to Item 36: Differentiate between inheritance of interface and inheritance of implementation.
Continue to Item 38: Never redefine an inherited default parameter value.

Item 37: Never redefine an inherited nonvirtual function.

There are two ways of looking at thisissue: the theoretical way and the pragmatic way. Let's start with the pragmatic way. After
all, theoreticians are used to being patient.

Suppose | tell you that aclass Dis publicly derived from a class B and that there is a public member function nf defined in
class B. The parameters and return type of nf are unimportant, so let's just assume they're both voi d. In other words, | say
this:

class B {
publi c:

void nf();
b

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (136 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#33950
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41284
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#40995

Effective C++, 2E

class D public B{ ... };
Even without knowing anything about B, D, or nf , given an object x of type D,
D x; /1 x is an object of type D

you would probably be quite surprised if this,

B *pB = &x; /1l get pointer to x

pB->nf () ; /1 call nf through pointer
behaved differently from this:

D *pD = &x; /1l get pointer to X

pD->nf () ; /1 call nf through pointer

That's because in both cases you're invoking the member function nf on the object x. Because it's the same function and the
same object in both cases, it should behave the same way, right?

Right, it should. But it might not. In particular, it won't if nf isnonvirtual and D has defined its own version of nf :

class D. public B {

publi c:
void nf(); /1 hides B::nf; see Item 50
1
pB->nf () ; Il calls B::nf
pD->nf () ; /] calls D::nf

The reason for this two-faced behavior isthat nonvirtual functionslike B: : nf and D: : nf are statically bound (see Item 38).

That means that because pB is declared to be of type pointer-to-B, nonvirtual functions invoked through pB will always be
those defined for class B, even if pB points to an object of a class derived from B, asit does in this example.

Virtual functions, on the other hand, are dynamically bound (again, see Item 38), so they don't suffer from this problem. If nf

were avirtual function, acall to nf through either pB or pD would result in an invocation of D: : nf , because what pB and pD
really point to is an object of type D.

The bottom line, then, isthat if you are writing class D and you redefine a nonvirtual function nf that you inherit from class B,
D objects will likely exhibit schizophrenic behavior. In particular, any given D object may act like either aB or aDwhen nf is
called, and the determining factor will have nothing to do with the object itself, but with the declared type of the pointer that
points to it. References exhibit the same baffling behavior as do pointers.

So much for the pragmatic argument. What you want now, | know, is some kind of theoretical justification for not redefining
inherited nonvirtual functions. I am pleased to oblige.

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (137 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

[tem 35 explains that public inheritance meansisa, and Item 36 describes why declaring a nonvirtual function in a class
establishes an invariant over specialization for that class. If you apply these observations to the classes B and D and to the
nonvirtual member function B: : nf , then

. Everything that is applicable to B objectsis also applicable to D objects, because every D object isa B object;
. Subclasses of B must inherit both the interface and the implementation of nf , because nf isnonvirtual in B.

Now, if Dredefines nf , there is a contradiction in your design. If Dreally needs to implement nf differently from B, and if
every B object — no matter how specialized — really has to use the B implementation for nf , then it's simply not true that
every DisaB. In that case, D shouldn't publicly inherit from B. On the other hand, if Dreally has to publicly inherit from B, and
if Dreally needsto implement nf differently from B, then it's just not true that nf reflects an invariant over specialization for
B. In that case, nf should be virtua. Finally, if every Dreally isaB, and if nf really corresponds to an invariant over
speciaization for B, then D can't honestly need to redefine nf , and it shouldn't try to do so.

Regardless of which argument applies, something has to give, and under no conditionsisit the prohibition on redefining an
inherited nonvirtual function.

Back to Item 37: Never redefine an inherited nonvirtual function.
Continue to Item 39: Avoid casts down the inheritance hierarchy.

Item 38: Never redefine an inherited default parameter value.

Let'ssimplify this discussion right from the start. A default parameter can exist only as part of afunction, and you can inherit
only two kinds of functions: virtual and nonvirtual. Therefore, the only way to redefine a default parameter value is to redefine
an inherited function. However, it's always a mistake to redefine an inherited nonvirtual function (see Item 37), so we can safely

limit our discussion here to the situation in which you inherit a virtual function with a default parameter value.

That being the case, the justification for this Item becomes quite straightforward: virtual functions are dynamically bound, but
default parameter values are statically bound.

What's that? Y ou say you're not up on the latest object-oriented lingo, or perhaps the difference between static and dynamic
binding has slipped your already overburdened mind? Let's review, then.

An object's static type is the type you declare it to have in the program text. Consider this class hierarchy:
enum ShapeCol or { RED, GREEN, BLUE };
/'l a class for geonetric shapes
cl ass Shape {
publi c:

/1 all shapes nust offer a function to draw t hensel ves
virtual void draw ShapeCol or color = RED) const = O;

b

cl ass Rectangl e: public Shape {
publi c:

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (138 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

/'l notice the different default paraneter value - bad!
virtual void draw ShapeCol or col or = GREEN) const;

1
class Crcle: public Shape {

publ i c:
virtual void draw(ShapeCol or col or) const;

1
Graphically, it looks like this:

Now consider these pointers:

Shape *ps; /]l static type = Shape*
Shape *pc = new Circle; /]l static type = Shape*
Shape *pr = new Rectangl e; /'l static type = Shape*

In thisexample, ps, pc, and pr are all declared to be of type pointer-to-Shape, so they all have that as their static type. Notice
that it makes absolutely no difference what they're really pointing to — their static typeis Shape* regardless.

An object's dynamic type is determined by the type of the object to which it currently refers. That is, its dynamic type indicates
how it will behave. In the example above, pc'sdynamic typeisCi r cl e*, and pr 'sdynamic typeisRect angl e*. Asfor ps,
it doesn't really have a dynamic type, because it doesn't refer to any object (yet).

Dynamic types, as their name suggests, can change as a program runs, typically through assignments:

ps = pcC; /1l ps's dynamc type is
/'l now Circle*

pr; Il ps's dynamic type is
/'l now Rect angl e*

ps

Virtual functions are dynamically bound, meaning that the particular function called is determined by the dynamic type of the
object through which it's invoked:

pc- >dr aw(RED) ; /1l calls Circle::draw RED)
pr - >dr aw(RED) ; /'l calls Rectangl e:: draw(RED)
Thisisall old hat, | know; you surely understand virtual functions. (If you'd like to understand how they're implemented, turn to

I[tem M24.) The twist comes in when you consider virtual functions with default parameter values, because, as | said above,
virtual functions are dynamically bound, but default parameters are statically bound. That means that you may end up invoking

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (139 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41284

Effective C++, 2E

avirtual function defined in aderived class but using a default parameter value from a base class:
pr->draw) ; /1l calls Rectangle::draw(RED)!

Inthiscase, pr'sdynamic typeis Rect angl e*, sothe Rect angl e virtual function is called, just as you would expect. In
Rect angl e: : dr aw, the default parameter value is GREEN. Because pr 's static type is Shape* , however, the default
parameter value for this function call istaken from the Shape class, not the Rect angl e class! Theresult isacall consisting
of astrange and almost certainly unanticipated combination of the declarations for dr awin both the Shape and Rect angl e
classes. Trust me when | tell you that you don't want your software to behave thisway, or at |east believe me when | tell you
that your clients won't want your software to behave this way.

Needlessto say, the fact that ps, pc, and pr are pointersis of no consequence in this matter. Were they references, the problem
would persist. The only important things are that dr awis avirtua function, and one of its default parameter valuesiis redefined
in asubclass.

Why does C++ insist on acting in this perverse manner? The answer has to do with runtime efficiency. If default parameter
values were dynamically bound, compilers would have to come up with away of determining the appropriate default value(s)
for parameters of virtual functions at runtime, which would be slower and more complicated than the current mechanism of
determining them during compilation. The decision was made to err on the side of speed and simplicity of implementation, and
the result is that you now enjoy execution behavior that is efficient, but, if you fail to heed the advice of this Item, confusing.

Back to Item 38: Never redefine an inherited default parameter value.
Continue to Item 40: Model "has-a" or "is-implemented-in-terms-of" through layering.

Item 39: Avoid casts down the inheritance hierarchy.

In these tumultuous economic times, it's agood idea to keep an eye on our financial institutions, so consider a Protocol class
(see Item 34) for bank accounts:

class Person { ... };
cl ass BankAccount ({
publi c:
BankAccount (const Person *pri maryOaner,
const Person *joi nt Ower);
virtual ~BankAccount();

virtual void makeDeposit(doubl e anbunt) = O;
virtual void makeWthdrawal (doubl e ambunt) = O;

virtual doubl e bal ance() const = 0;

b

Many banks now offer a bewildering array of account types, but to keep things simple, let's assume there is only one type of
bank account, namely, a savings account:

cl ass Savi ngsAccount: public BankAccount ({

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (140 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

publi c:
Savi ngsAccount (const Person *pri maryOaner,
const Person *joi nt Owner);
~Savi ngsAccount () ;

void creditlnterest(); /1 add interest to account

1
Thisisn't much of a savings account, but then again, what is these days? At any rate, it's enough for our purposes.

A bank islikely to keep alist of al its accounts, perhapsimplemented viathel i st class template from the standard library
(see Item 49). Suppose thislist isimaginatively named al | Account s:

| i st <BankAccount *> al | Accounts; /] all accounts at the
/] bank

Like all standard containers, | i st s store copies of the things placed into them, so to avoid storing multiple copies of each
BankAccount , the bank has decided to have al | Account s hold pointersto BankAccount sinstead of BankAccount s
themselves.

Now imagine you're supposed to write the code to iterate over all the accounts, crediting the interest due each one. Y ou might
try this,

/1l a loop that won't conpile (see below if you've never
/1l seen code using "iterators" before)
for (list<BankAccount*>::iterator p = all Accounts. begin();

p !'= allAccounts. end();
++p) |
(*p)->creditinterest(); /1 error!

}

but your compilers would quickly bring you to your senses: al | Account s contains pointers to Bank Account objects, not
to Savi ngsAccount objects, so each time around the loop, p pointsto aBankAccount . That makesthe call to

credi tlnterest invalid, becausecr edi t | nt er est isdeclared only for Savi ngsAccount objects, not
BankAccount s.

If "l i st<BankAccount*>::iterator p=all Accounts. begi n()" lookstoyou more like transmission line noise
than C++, you've apparently never had the pleasure of meeting the container class templates in the standard library. This part of
the library is usually known as the Standard Template Library (the"STL"), and you can get an overview of it in Iltems 49 and

M35. For the time being, al you need to know is that the variable p acts like a pointer that loops through the elements of
al | Account s from beginning to end. That is, p actsasif itstype were BankAccount ** and the list elements were stored
inan array.

It's frustrating that the loop above won't compile. Sure, al | Account s isdefined as holding BankAccount * s, but you know
that it actually holds Savi ngsAccount * sin the loop above, because Savi ngsAccount isthe only classthat can be

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (141 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5473

Effective C++, 2E

instantiated. Stupid compilers! Y ou decide to tell them what you know to be obvious and what they are too dense to figure out
ontheir own: al | Account s really contains Savi ngsAccount * s

/1l a loop that will conpile, but that is nonethel ess evil
for (list<BankAccount*>::iterator p = all Accounts. begin();
p !'= allAccounts.end();
++p) {

static_cast <Savi ngsAccount *>(*p)->creditlinterest();

}

All your problems are solved! Solved clearly, solved elegantly, solved concisely, all by the simple use of a cast. Y ou know what

type of pointer al | Account s really holds, your dopey compilers don't, so you use a cast to tell them. What could be more
logical?

Thereisabiblical analogy I'd like to draw here. Casts are to C++ programmers what the apple was to Eve.

Thiskind of cast — from a base class pointer to a derived class pointer — is called a downcast, because you're casting down the

inheritance hierarchy. In the example you just looked at, downcasting happens to work, but it leads to a maintenance nightmare,
as you will soon see.

But back to the bank. Buoyed by the success of its savings accounts, let's suppose the bank decides to offer checking accounts,
too. Furthermore, assume that checking accounts also bear interest, just like savings accounts:

cl ass Checki ngAccount: public BankAccount {
publi c:
void creditlnterest(); /1 add interest to account

}

Needlessto say, al | Account s will now be alist containing pointers to both savings and checking accounts. Suddenly, the
interest-crediting loop you wrote above isin serious trouble.

Your first problem isthat it will continue to compile without your changing it to reflect the existence of Checki ngAccount
objects. Thisis because compilers will foolishly believe you when you tell them (through thest at i c_cast) that * p really
pointsto aSavi ngsAccount *. After al, you're the boss. That's Maintenance Nightmare Number One. Maintenance
Nightmare Number Two iswhat you're tempted to do to fix the problem, which istypically to write code like this:

for (list<BankAccount*>::iterator p = all Accounts. begin();
p !'= allAccounts.end();

++p) {

If (*p points to a Savi ngsAccount)
static_cast <Savi ngsAccount *>(*p)->creditlnterest();
el se

stati c_cast <Checki ngAccount *>(*p)->creditlnterest();

}

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (142 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

Anytime you find yourself writing code of the form, "if the object is of type T1, then do something, but if it's of type T2, then
do something else," slap yourself. That isn't The C++ Way. Yes, it's areasonable strategy in C, in Pascal, even in Smalltalk, but
not in C++. In C++, you use virtual functions.

Remember that with avirtual function, compilers are responsible for making sure that the right function is called, depending on
the type of the object being used. Don't litter your code with conditionals or switch statements; let your compilers do the work
for you. Here's how:

cl ass BankAccount { ... }; /'l as above

/'l new class representing accounts that bear interest

cl ass I nterestBeari ngAccount: public BankAccount {

publi c:
virtual void creditlinterest() = 0;

3
cl ass Savi ngsAccount: public InterestBearingAccount {
/'l as above
1
cl ass Checki ngAccount: public InterestBearingAccount ({
/'l as above
1
Graphically, it looks like this:
Because both savings and checking accounts earn interest, you'd naturally like to move that common behavior up into a
common base class. However, under the assumption that not all accounts in the bank will necessarily bear interest (certainly a
valid assumption in my experience), you can't moveit into the Bank Account class. Asaresult, you've introduced a new
subclass of BankAccount called | nt er est Bear i ngAccount , and you've made Savi ngsAccount and

Checki ngAccount inherit from it.

The fact that both savings and checking accounts bear interest isindicated by the | nt er est Bear i ngAccount pure virtual
functioncr edi t | nt er est , which is presumably redefined in its subclasses Savi ngsAccount and Checki ngAccount .

This new class hierarchy allows you to rewrite your loop as follows:

/'l better, but still not perfect

for (list<BankAccount*>::iterator p = all Accounts. begin();
p !'= allAccounts.end();
++p) {

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (143 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

static_cast<lnterestBeari ngAccount*>(*p)->creditlnterest();

}

Although thisloop still contains a nasty little cast, it's much more robust than it used to be, because it will continue to work
even if new subclassesof | nt er est Bear i ngAccount are added to your application.

To get rid of the cast entirely, you must make some additional changes to your design. One approach is to tighten up the
specification of your list of accounts. If you could get alist of | nt er est Bear i ngAccount objectsinstead of
BankAccount objects, everything would be peachy:

/1 all interest-bearing accounts in the bank
| i st<lnterestBearingAccount*> al | | BAccounts;

/1 a loop that conpiles and works, both now and forever
for (list<lnterestBearingAccount*>::iterator p =
al I I BAccount s. begi n() ;
p !'= alllBAccounts.end();

++p) {

(*p)->creditinterest();

}

If getting a more specialized list isn't an option, it might make sense to say that thecr edi t | nt er est operation appliesto all
bank accounts, but that for non-interest-bearing accounts, it's just a no-op. That could be expressed this way:

cl ass BankAccount {
publ i c:
virtual void creditinterest() {}

1
cl ass Savi ngsAccount: public BankAccount { ... };
cl ass Checki ngAccount: public BankAccount { ... };

| i st <BankAccount *> al | Accounts;

/1 1 ook ma, no cast!

for (list<BankAccount*>::iterator p = all Accounts. begin();
p !'= allAccounts.end();
++p) {

(*p)->creditinterest();

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (144 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

Notice that the virtual function BankAccount : : credi t | nt er est providesan empty default implementation. Thisisa
convenient way to specify that its behavior is ano-op by default, but it can lead to unforeseen difficultiesin its own right. For
the inside story on why, as well as how to eliminate the danger, consult Item 36. Noticeasothat cr edi t | nt er est is
(implicitly) an inline function. There's nothing wrong with that, but because it's also virtual, the inline directive will probably be
ignored. Item 33 explains why.

Asyou have seen, downcasts can be eliminated in a number of ways. The best way is to replace such casts with calls to virtual
functions, possibly also making each virtual function a no-op for any classes to which it doesn't truly apply. A second method is
to tighten up the typing so that there is no ambiguity between the declared type of a pointer and the pointer type that you know
isreally there. Whatever the effort required to get rid of downcasts, it's effort well spent, because downcasts are ugly and error-
prone, and they lead to code that's difficult to understand, enhance, and maintain (see Item M32).

What I've just written is the truth and nothing but the truth. It is not, however, the whole truth. There are occasions when you
really do have to perform a downcast.

For example, suppose you faced the situation we considered at the outset of thisItem, i.e., al | Account s holds

BankAccount pointers, cr edi t | nt er est isdefined only for Savi ngsAccount objects, and you must write aloop to
credit interest to every account. Further suppose that all those things are beyond your control; you can't change the definitions
for BankAccount , Savi ngsAccount , or al | Account s. (Thiswould happen if they were defined in alibrary to which
you had read-only access.) If that were the case, you'd have to use downcasting, no matter how distasteful you found the idea.

Nevertheless, there is a better way to do it than through araw cast such as we saw above. The better way is called "safe
downcasting,” and it'simplemented via C++'sdynam c_cast operator (see ltem M2). When you usedynani c_cast ona

pointer, the cast is attempted, and if it succeeds (i.e., if the dynamic type of the pointer (see Item 38) is consistent with the type
towhich it's being cast), avalid pointer of the new typeisreturned. If thedynam c_cast fails, the null pointer is returned.

Here's the banking example with safe downcasting added:

cl ass BankAccount { ... }; /1l as at the begi nning of
/[l this Item

cl ass Savi ngsAccount : /[l ditto
public BankAccount { ... };
cl ass Checki ngAccount : /] ditto again
publ i ¢ BankAccount { ... };
| i st <BankAccount *> al | Accounts; /1 this should | ook

[/ famliar...

void error(const string& nsg); /'l error-handling function;
/'l see bel ow

/1 well, ma, at |least the casts are safe...

for (list<BankAccount*>::iterator p = all Accounts. begin();
p !'= allAccounts.end();
++p) {

/'l try safe-downcasting *p to a Savi ngsAccount*; see
/'l below for information on the definition of psa

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (145 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5373
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#77216

Effective C++, 2E

i f (SavingsAccount *psa =
dynam c_cast <Savi ngsAccount *>(*p)) {
psa->creditlnterest();

}

/1l try safe-downcasting it to a Checki ngAccount
el se if (Checki ngAccount *pca =
dynam c_cast <Checki ngAccount *>(*p)) {
pca->creditlnterest();

}
/1 uh oh —unknown account type
el se {

error (" Unknown account type!");
}

}

This schemeisfar from ideal, but at |east you can detect when your downcasts fail, something that's impossible without the use
of dynam c_cast . Note, however, that prudence dictates you also check for the case where all the downcasts fail. That's the
purpose of the final el se clausein the code above. With virtual functions, there'd be no need for such atest, because every
virtual call must resolve to some function. When you start downcasting, however, all bets are off. If somebody added a new
type of account to the hierarchy, for example, but failed to update the code above, all the downcasts would fail. That's why it's
important you handle that possibility. In all likelihood, it's not supposed to be the case that al the casts can fail, but when you
allow downcasting, bad things start to happen to good programmers.

Did you check your glasses in a panic when you noticed what looks like variable definitions in the conditions of thei f
statements above? If so, worry not; your vision's fine. The ability to define such variables was added to the language at the same
timeasdynam c_cast . Thisfeature lets you write neater code, because you don't really need psa or pca unlessthe

dynam c_cast sthat initialize them succeed, and with the new syntax, you don't have to define those variables outside the
conditionals containing the casts. (Item 32 explains why you generally want to avoid superfluous variable definitions, anyway.)

If your compilers don't yet support this new way of defining variables, you can do it the old way:

for (list<BankAccount*>::iterator p = all Accounts. begin();

p !'= allAccounts.end();

++p) {
Savi ngsAccount *psa; /1 traditional definition
Checki ngAccount *pca,; /1 traditional definition

i f (psa = dynam c_cast <Savi ngsAccount *>(*p)) {
psa->creditinterest();

}

else if (pca = dynam c_cast <Checki ngAccount*>(*p)) ({
pca->creditlnterest();

}

el se {
error (" Unknown account type!");

}

}

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (146 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

In the grand scheme of things, of course, where you place your definitions for variables like psaand pcais of little consequence.
The important thing isthis: thei f -t hen-el se style of programming that downcasting invariably leadsto is vastly inferior to
the use of virtual functions, and you should reserve it for situations in which you truly have no alternative. With any luck, you
will never face such a bleak and desolate programming landscape.

Back to Item 39: Avoid casts down the inheritance hierarchy.
Continue to Item 41 Differentiate between inheritance and templ ates.

Item 40: Model "has-a" or "is-implemented-in-terms-of" through layering.

Layering isthe process of building one class on top of another class by having the layering class contain an object of the layered
class as a data member. For example:

class Address { ... }; /'l where soneone |ives
cl ass PhoneNunber { ... };

cl ass Person {

publ i c:

private:
string nane; /1l layered object
Addr ess address; /] ditto
PhoneNunber voi ceNunber; /] ditto
PhoneNunber faxNunber; /] ditto

}

In this example, the Per son classis said to be layered on top of thest ri ng, Addr ess, and PhoneNunber classes,
because it contains data members of those types. The term layering has lots of synonyms. It's also known as composition,
containment, and embedding.

Item 35 explains that public inheritance means "isa." In contrast, layering means either "has-a' or
"is-implemented-in-terms-of ."

The Per son class above demonstrates the has-arelationship. A Per son object has a name, an address, and telephone
numbers for voice and FAX communication. Y ou wouldn't say that a person is aname or that a person is an address. Y ou would
say that a person has a name and has an address, etc. Most people have little difficulty with this distinction, so confusion
between the roles of isaand has-aisrelatively rare.

Somewhat more troublesome is the difference between isa and is-implemented-in-terms-of. For example, suppose you need a
template for classes representing sets of arbitrary objects, i.e., collections without duplicates. Because reuse is a wonderful
thing, and because you wisely read Item 49's overview of the standard C++ library, your first instinct isto employ the library's

set template. After all, why write a new template when you can use an established one written by somebody else?

Asyou delveinto set 's documentation, however, you discover alimitation your application can't live with: aset requires that
the elements contained within it be totally ordered, i.e., for every pair of objectsa and b in the set, it must be possible to
determine whether a<b or b<a. For many types, this requirement is easy to satisfy, and having atotal ordering among objects
allowsset to offer certain attractive guarantees regarding its performance. (See Item 49 for more on performance guaranteesin

the standard library.) Y our need, however, is for something more general: aset -like class where objects need not be totally

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (147 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

ordered, they need only be what the °C++ standard colorfully terms "EqualityComparable”: it's possible to determine whether
a==Db for objectsa and b of the same type. This more modest requirement is better suited to types representing things like
colors. Isred less than green or is green less than red? For your application, it seems you'll need to write your own template
after all.

Still, reuse is awonderful thing. Being the data structure maven you are, you know that of the nearly limitless choices for
implementing sets, one particularly smple way isto employ linked lists. But guesswhat? Thel i st template (which generates
linked list classes) isjust sitting there in the standard library! Y ou decide to (re)useit.

In particular, you decide to have your nascent Set template inherit from| i st . That is, Set <T> will inherit from | i st <T>.
After al, in your implementation, a Set object will infact beal i st object. You thus declare your Set template like this:

/1 the wong way to use |ist for Set
t enpl at e<cl ass T>
class Set: public list<T> { ... };

Everything may seem fine and dandy at this point, but in fact there is something quite wrong. As Item 35 explains, if D isaB,
everything true of B isalso true of D. However, al i st object may contain duplicates, so if the value 3051 isinserted into a

| i st <int>twice, that list will contain two copies of 3051. In contrast, aSet may not contain duplicates, so if the value 3051
isinserted into a Set <i nt > twice, the set contains only one copy of the value. It isthusaviciousliethat aSet isal i st
because some of the thingsthat aretruefor | i st objects are not true for Set objects.

Because the relationship between these two classesisn't isa, public inheritance is the wrong way to model that relationship. The
right way isto realize that a Set object can beimplemented intermsof al i st object:

/1 the right way to use |list for Set
t enpl at e<cl ass T>
class Set {
publi c:
bool nenber(const T& item const;

void insert(const T& item;
voi d renove(const T& iten);

int cardinality() const;

private:
list<T> rep; /'l representation for a set

b

Set 'smember functions can lean heavily on functionality already offered by | i st and other parts of the standard library, so
the implementation is neither difficult to write nor thrilling to read:

t enpl at e<cl ass T>
bool Set<T>::nmenber(const T& iten) const
{ return find(rep.begin(), rep.end(), item !=rep.end(); }

t enpl at e<cl ass T>
void Set<T>::insert(const T& item
{ if (!menber(iten)) rep.push_back(item; }

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (148 / 189) [2003-6-11 20:02:43]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cstandard

Effective C++, 2E

t enpl at e<cl ass T>
voi d Set<T>::renove(const T& item

{
list<T> :iterator it =
find(rep.begin(), rep.end(), item;
if (it '=rep.end()) rep.erase(it);
}

tenpl at e<cl ass T>
int Set<T>::cardinality() const
{ return rep.size(); }

These functions are simple enough that they make reasonable candidates for inlining, though | know you'd want to review the
discussion in Item 33 before making any firm inlining decisions. (In the code above, functionslikef i nd, begi n, end,
push_back, etc., are part of the standard library's framework for working with container templateslikel i st . You'll find an
overview of thisframework in Item 49 and M 35.)

It's worth remarking that the Set class interface fails the test of being complete and minimal (see Item 18). In terms of

compl eteness, the primary omission is that of away to iterate over the contents of a set, something that might well be necessary
for many applications (and that is provided by all members of the standard library, including set). An additional drawback is
that Set failsto follow the container class conventions embraced by the standard library (see Items 49 and M 35), and that
makes it more difficult to take advantage of other parts of the library when working with Set s.

Nits about Set 'sinterface, however, shouldn't be allowed to overshadow what Set got indisputably right: the relationship
between Set and | i st . That relationship is not isa (though it initially looked like it might be), it's "is-implemented-in-terms-
of," and the use of layering to implement that relationship is something of which any class designer may be justly proud.

Incidentally, when you use layering to relate two classes, you create a compile-time dependency between those classes. For
information on why this should concern you, as well as what you can do to allay your worries, turn to Item 34.

Back to Item 40: Model "has-a" or "is-implemented-in-terms-of" through layering.
Continue to ltem 42: Use private inheritance judiciously.

Item 41: Differentiate between inheritance and templates.
Consider the following two design problems:

. Being adevoted student of Computer Science, you want to create classes representing stacks of objects. You'll need
severa different classes, because each stack must be homogeneous, i.e., it must have only a single type of object init.
For example, you might have a class for stacks of i nt s, asecond class for stacks of st ri ngs, athird for stacks of
stacksof st ri ngs, etc. You're interested only in supporting a minimal interface to the class (see Item 18), so you'll
limit your operations to stack creation, stack destruction, pushing objects onto the stack, popping objects off the stack,
and determining whether the stack is empty. For this exercise, you'll ignore the classes in the standard library (including
st ack — see ltem 49), because you crave the experience of writing the code yourself. Reuse is a wonderful thing, but
when your goal is a deep understanding of how something works, there's nothing quite like diving in and getting your
hands dirty.

. Being adevoted feline aficionado, you want to design classes representing cats. You'll need several different classes,
because each breed of cat isalittle different. Like all objects, cats can be created and destroyed, but, as any cat-lover
knows, the only other things cats do are eat and sleep. However, each breed of cat eats and sleepsin its own endearing

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (149 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5473
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5473

Effective C++, 2E
way.
These two problem specifications sound similar, yet they result in utterly different software designs. Why?

The answer has to do with the relationship between each class's behavior and the type of object being manipulated. With both
stacks and cats, you're dealing with a variety of different types (stacks containing objects of type T, cats of breed T), but the
question you must ask yourself isthis: doesthe type T affect the behavior of the class? If T does not affect the behavior, you
can use atemplate. If T does affect the behavior, you'll need virtual functions, and you'll therefore use inheritance.

Here's how you might define alinked-list implementation of a St ack class, assuming that the objects to be stacked are of type
T:

class Stack {

publi c:
St ack();
~St ack();
voi d push(const T& object);
T pop();
bool enpty() const; /[l is stack enpty?
private:
struct StackNode { /1 linked list node
T dat a; // data at this node
St ackNode *next ; /] next node in |ist

/1 StackNode constructor initializes both fields
St ackNode(const T& newbData, StackNode *next Node)
dat a(newDat a) , next (next Node) {}

3

St ackNode *t op; /1l top of stack

St ack(const Stack& rhs); /'l prevent copying and

St ack& operat or=(const Stacké& rhs); /| assignnent (see ltem 27)

b
St ack objects would thus build data structures that look like this:

Thelinked list itself is made up of St ackNode objects, but that's an implementation detail of the St ack class, so

St ackNode has been declared a private type of St ack. Notice that St ackNode has a constructor to make sure al itsfields
areinitialized properly. Just because you can write linked listsin your sleep is no reason to omit technological advances such as
constructors.

Here's areasonable first cut at how you might implement the St ack member functions. As with many prototype
implementations (and far too much production software), there's no checking for errors, because in a prototypical world,
nothing ever goes wrong.

Stack:: Stack(): top(0) {} /1l initialize top to null

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (150 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

voi d Stack::push(const T& object)

{
top = new StackNode(object, top); /1l put new node at

} /[l front of Ilist

T St ack: : pop()

=

St ackNode *topOF Stack = top; /'l remenber top node
top = top->next;

T data = topO St ack- >dat a; /'l renmenber node data
del ete topOF St ack;

return data;

}
St ack: : ~St ack() /1l delete all in stack
{
while (top) {
St ackNode *toDie = top; /1l get ptr to top node
top = top->next; /1l nove to next node
del ete toDie; /1l delete fornmer top node
}
}

bool Stack::enpty() const
{ return top == 0; }

There's nothing riveting about these implementations. In fact, the only interesting thing about them is this: you are able to write
each member function knowing essentially nothing about T. (Y ou assume you can call T's copy constructor, but, as [tem 45

explains, that's a pretty reasonable assumption.) The code you write for construction, destruction, pushing, popping, and
determining whether the stack is empty is the same, no matter what T is. Except for the assumption that you can call T's copy
constructor, the behavior of ast ack does not depend on T in any way. That's the hallmark of atemplate class. the behavior
doesn't depend on the type.

Turning your St ack classinto atemplate, by the way, is so ssimple, even Dilbert's pointy-haired boss could do it:

tenpl at e<cl ass T> class Stack {
/1l exactly the sanme as above
3
But on to cats. Why won't templates work with cats?
Reread the specification and note the requirement that "each breed of cat eats and sleepsin its own endearing way." That means
you're going to have to implement different behavior for each type of cat. Y ou can't just write asingle function to handle all

cats, al you can do is specify an interface for a function that each type of cat must implement. Ahal The way to propagate a
function interface only is to declare a pure virtual function (see Item 36):

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (151 / 189) [2003-6-11 20:02:43]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=dilbert

Effective C++, 2E

class Cat {

publ i c:
virtual ~Cat(); /'l see Iltem 14
virtual void eat() = O; /1 all cats eat
virtual void sleep() = 0; /1 all cats sleep

b

Subclasses of Cat — say, Si anese and Bri t i shShort Hai r edTabby — must of course redefinetheeat and sl eep
function interfaces they inherit:

cl ass Siamese: public Cat {
publi c:

voi d eat();

voi d sl eep();

b

class BritishShortHairedTabby: public Cat {
publ i c:

void eat();

voi d sl eep();

b

Okay, you now know why templates work for the St ack class and why they won't work for the Cat class. Y ou also know why
inheritance works for the Cat class. The only remaining question is why inheritance won't work for the St ack class. To see
why, try to declare the root class of a St ack hierarchy, the single class from which all other stack classes would inherit:

class Stack { /'l a stack of anything
publi c:
virtual void push(const ??? object) = 0;
virtual ??? pop() = O;

b

Now the difficulty becomes clear. What types are you going to declare for the pure virtual functionspush and pop?
Remember that each subclass must redeclare the virtual functions it inherits with exactly the same parameter types and with
return types consistent with the base class declarations. Unfortunately, a stack of i nt swill want to push and pop i nt objects,
whereas a stack of, say, Cat s, will want to push and pop Cat objects. How can the St ack class declare its pure virtual
functionsin such away that clients can create both stacks of i nt sand stacks of Cat s? The cold, hard truth isthat it can't, and
that's why inheritance is unsuitable for creating stacks.

But maybe you're the sneaky type. Maybe you think you can outsmart your compilers by using generic (voi d*) pointers. Asit
turns out, generic pointers don't help you here. Y ou simply can't get around the requirement that a virtual function's declarations

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (152 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

in derived classes must never contradict its declaration in the base class. However, generic pointers can help with a different
problem, one related to the efficiency of classes generated from templates. For details, see [tem 42.

Now that we've dispensed with stacks and cats, we can summarize the lessons of this Item as follows:

. A template should be used to generate a collection of classes when the type of the objects does not affect the behavior of
the class's functions.

. Inheritance should be used for a collection of classes when the type of the objects does affect the behavior of the class's
functions.

Internalize these two little bullet points, and you'll be well on your way to mastering the choice between inheritance and
templates.

Back to Item 41: Differentiate between inheritance and templ ates.
Continue to Item 43: Use multiple inheritance judiciously.

Item 42: Use private inheritance judiciously.

[tem 35 demonstrates that C++ treats public inheritance as an isarelationship. It does this by showing that compilers, when
given ahierarchy in which aclass St udent publicly inherits from aclass Per son, implicitly convert St udent sto

Per sonswhen that is necessary for afunction call to succeed. It's worth repeating a portion of that example using private
inheritance instead of public inheritance:

class Person { ... };

cl ass Student: /1 this tine we use
private Person { ... }; /1 private inheritance

voi d dance(const Person& p); /'l anyone can dance

voi d study(const Studenté& s); /1 only students study

Person p; [l pis a Person

St udent s; /1l s is a Student

dance(p); /1l fine, pis a Person

dance(s); /[l error! a Student isn't

/'l a Person
Clearly, private inheritance doesn't mean isa. What does it mean then?

"Whoa!" you say. "Before we get to the meaning, let's cover the behavior. How does private inheritance behave?' Well, the first
rule governing private inheritance you've just seen in action: in contrast to public inheritance, compilers will generally not
convert aderived class object (such as St udent) into a base class object (such as Per son) if the inheritance relationship
between the classesis private. That's why the call to dance failsfor the object s. The second rule is that members inherited
from a private base class become private members of the derived class, even if they were protected or public in the base class.
So much for behavior.

That brings us to meaning. Private inheritance means is-implemented-in-terms-of. I1f you make a class D privately inherit from a

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (153 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

class B, you do so because you are interested in taking advantage of some of the code that has aready been written for class B,
not because there is any conceptual relationship between objects of type B and objects of type D. As such, private inheritance is
purely an implementation technique. Using the terms introduced in Item 36, private inheritance means that implementation only
should be inherited; interface should be ignored. If D privately inherits from B, it means that D objects are implemented in terms
of B objects, nothing more. Private inheritance means nothing during software design, only during software implementation.

The fact that private inheritance means is-implemented-in-terms-of is alittle disturbing, because Item 40 points out that layering
can mean the same thing. How are you supposed to choose between them? The answer is simple: use layering whenever you
can, use private inheritance whenever you must. When must you? When protected members and/or virtual functions enter the
picture — but more on that in a moment.

Item 41 shows away to write a St ack template that generates classes holding objects of different types. Y ou may wish to
familiarize yourself with that Item now. Templates are one of the most useful featuresin C++, but once you start using them
regularly, you'll discover that if you instantiate a template a dozen times, you are likely to instantiate the code for the template a
dozen times. In the case of the St ack template, the code making up St ack<i nt >'s member functions will be completely
separate from the code making up St ack<doubl e>'s member functions. Sometimes thisis unavoidable, but such code
replication islikely to exist even if the template functions could in fact share code. There is aname for the resultant increase in
object code size: template-induced code bloat. It is not a good thing.

For certain kinds of classes, you can use generic pointers to avoid it. The classes to which this approach is applicable store
pointers instead of objects, and they are implemented by:

1. Creating asingle classthat storesvoi d* pointersto objects.
2. Creating a set of additional classes whose only purpose is to enforce strong typing. These classes all use the generic class
of step 1 for the actual work.

Here's an example using the non-template St ack class of Item 41, except here it stores generic pointers instead of objects:

cl ass GenericStack {

publ i c:
GenericStack();
~Ceneri cStack();

voi d push(void *object);
void * pop();

bool enpty() const;

private:
struct StackNode {
voi d *dat a; // data at this node
St ackNode *next; /'l next node in |ist

St ackNode(voi d *newDat a, StackNode *next Node)
dat a(newDat a), next (next Node) {}

b
St ackNode *t op; /'l top of stack
Generi cStack(const CenericStack& rhs); /'l prevent copying and

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (154 / 189) [2003-6-11 20:02:43]

boat
Highlight

boat
Highlight

boat
Highlight

Effective C++, 2E

Generi cStack& /| assignnent (see
oper at or =(const GenericStack& rhs); /[l 1tem 27)

b

Because this class stores pointers instead of objects, it is possible that an object is pointed to by more than one stack (i.e., has
been pushed onto multiple stacks). It isthus of critical importance that pop and the class destructor not delete the dat a pointer
of any St ackNode object they destroy, although they must continue to delete the St ackNode object itself. After all, the

St ackNode objects are allocated inside the Gener i ¢St ack class, so they must also be deallocated inside that class. Asa
result, the implementation of the St ack classin Item 41 suffices amost perfectly for the Gener i ¢St ack class. The only

changes you need to make involve substitutions of voi d* for T.

The Generi cSt ack classby itself isof little utility — it'stoo easy to misuse. For example, a client could mistakenly push a
pointer to aCat object onto a stack meant to hold only pointersto i nt s, and compilers would merrily accept it. After all, a
pointer's a pointer when it comesto voi d* parameters.

To regain the type safety to which you have become accustomed, you create interface classesto Gener i ¢St ack, like this:

class IntStack { /1l interface class for ints
publi c:

void push(int *intPtr) { s.push(intPtr); }

int * pop() { return static_cast<int*>(s.pop()); }

bool enpty() const { return s.enpty(); }

private:
Generi cStack s; /1 inplementation
3
class Cat Stack { /1l interface class for cats
publi c:

voi d push(Cat *catPtr) { s.push(catPtr); }
Cat * pop() { return static_cast<Cat*>(s.pop()); }
bool enpty() const { return s.enpty(); }

private:
GenericStack s; [l inplenmentation

b

Asyou can see, thel nt St ack and Cat St ack classes serve only to enforce strong typing. Only i nt pointers can be pushed
ontoan | nt St ack or popped from it, and only Cat pointers can be pushed onto a Cat St ack or popped from it. Both

I nt St ack and Cat St ack areimplemented in terms of the class Gener i ¢St ack, arelationship that is expressed through
layering (see Item 40), and | nt St ack and Cat St ack will share the code for the functionsin Gener i ¢St ack that actually
implement their behavior. Furthermore, the fact that all 1 nt St ack and Cat St ack member functions are (implicitly)

i nl 1 ne means that the runtime cost of using these interface classesis zip, zero, nada, nil.

But what if potential clients don't realize that? What if they mistakenly believe that use of Gener i ¢St ack ismore efficient,
or what if they're just wild and reckless and think only wimps need type-safety nets? What's to keep them from bypassing

I nt St ack and Cat St ack and going straight to Gener i ¢St ack, wherethey'll be free to make the kinds of type errors C++
was specifically designed to prevent?

Nothing. Nothing prevents that. But maybe something should.

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (155 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

| mentioned at the outset of this Item that an alternative way to assert an is-implemented-in-terms-of relationship between
classes is through private inheritance. In this case, that technique offers an advantage over layering, because it allows you to
expresstheideathat Gener i ¢St ack istoo unsafe for general use, that it should be used only to implement other classes. Y ou
say that by protecting Gener i ¢St ack's member functions:

cl ass GenericStack {
pr ot ect ed:
Generi cStack();
~CGeneri cStack();

voi d push(voi d *object);
void * pop();

bool enpty() const;

private:
/] sane as above
i
Ceneri cStack s; /] error! constructor is

/'l protected

class IntStack: private GenericStack {

publi c:

void push(int *intPtr) { CGenericStack::push(intPtr); }

int * pop() { return static_cast<int*>(CGenericStack::pop()); }
bool enpty() const { return GenericStack::empty(); }

}

cl ass Cat Stack: private GenericStack {

publi c:

voi d push(Cat *catPtr) { CenericStack::push(catbPtr); }

Cat * pop() { return static_cast<Cat*>(GenericStack::pop()); }
bool enpty() const { return GenericStack::empty(); }

}l
| nt Stack is; /] fine
Cat St ack cs; // also fine

Like the layering approach, the implementation based on private inheritance avoids code duplication, because the type-safe
interface classes consist of nothing but inline calls to the underlying Gener i ¢St ack functions.

Building type-safe interfaces on top of the Gener i cSt ack classis apretty slick maneuver, but it's awfully unpleasant to have
to typein al those interface classes by hand. Fortunately, you don't have to. Y ou can use templates to generate them
automatically. Here's atemplate to generate type-safe stack interfaces using private inheritance:

t enpl at e<cl ass T>
class Stack: private CGenericStack {
publi c:
voi d push(T *objectPtr) { GenericStack::push(objectPtr); }

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (156 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

T * pop() { return static_cast<T*>(GenericStack::pop()); }
bool enpty() const { return GenericStack::empty(); }

b

Thisis amazing code, though you may not realize it right away. Because of the template, compilers will automatically generate
as many interface classes as you need. Because those classes are type-safe, client type errors are detected during compilation.
Because Gener i ¢St ack's member functions are protected and interface classes use it as a private base class, clients are
unable to bypass the interface classes. Because each interface class member function is (implicitly) declared i nl i ne, no
runtime cost isincurred by use of the type-safe classes; the generated code is exactly the same asiif clients programmed with
Generi cSt ack directly (assuming compilersrespect thei nl i ne request — see Item 33). And because Gener i ¢St ack
usesvoi d* pointers, you pay for only one copy of the code for manipulating stacks, no matter how many different types of
stack you use in your program. In short, this design gives you code that's both maximally efficient and maximally type safe. It's
difficult to do better than that.

One of the precepts of this book is that C++'s features interact in remarkable ways. This example, | hope you'll agree, is pretty
remarkable.

Theinsight to carry away from this example isthat it could not have been achieved using layering. Only inheritance gives
access to protected members, and only inheritance allows for virtual functions to be redefined. (For an example of how the
existence of virtual functions can motivate the use of private inheritance, see Item 43.) Because virtual functions and protected
members exist, private inheritance is sometimes the only practical way to express an is-implemented-in-terms-of relationship
between classes. Asaresult, you shouldn't be afraid to use private inheritance when it's the most appropriate implementation
technique at your disposal. At the same time, however, layering is the preferable technique in general, so you should employ it
whenever you can.

Back to Item 42: Use private inheritance judiciously.
Continue to ltem 44: Say what you mean; understand what you're saying.

Item 43: Use multiple inheritance judiciously.

Depending on who's doing the talking, multiple inheritance (MI) is either the product of divine inspiration or the manifest work
of the devil. Proponents hail it as essential to the natural modeling of real-world problems, while critics argue that it is slow,
difficult to implement, and no more powerful than single inheritance. Disconcertingly, the world of object-oriented
programming languages remains split on the issue: C++, Eiffel, and the Common LISP Object System (CLOS) offer MI;
Smalltalk, Objective C, and Object Pascal do not; and Java supports only arestricted form of it. What's a poor, struggling
programmer to believe?

Before you believe anything, you need to get your facts straight. The one indisputable fact about M1 in C++ isthat it opensup a
Pandora's box of complexities that simply do not exist under single inheritance. Of these, the most basic is ambiguity (see Iltem
26). If aderived classinherits amember name from more than one base class, any reference to that name is ambiguous; you
must explicitly say which member you mean. Here's an example that's based on a discussion in the ARM (see Item 50):

class Lottery {
publi c:
virtual int draw);

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (157 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

cl ass Graphical Obj ect {
publi c:
virtual int draw();

b

class LotterySinul ation: public Lottery,
publi ¢ Graphical Qbject {

/| doesn't declare draw
b
LotterySinulation *pls = new LotterySi nul ati on;

pl s->draw); /'l error! —anbi guous
pl s->Lottery::draw); Il fine
pl s->G aphical Gbject::draw); [/ fine

Thislooks clumsy, but at least it works. Unfortunately, the clumsinessis difficult to eliminate. Even if one of the inherited
dr awfunctions were private and hence inaccessible, the ambiguity would remain. (There's a good reason for that, but a
complete explanation of the situation is provided in Item 26, so | won't repeat it here.)

Explicitly qualifying membersis more than clumsy, however, it's also limiting. When you explicitly qualify avirtual function
with aclass name, the function doesn't act virtual any longer. Instead, the function called is precisely the one you specify, even
if the object on which it'sinvoked is of aderived class:

cl ass Special LotterySimul ation: public LotterySinmulation {
publi c:
virtual int draw);

b

pls = new Speci al LotterySi nul ati on;

pl s->draw() ; /[l error! —still anbi guous
pl s->Lottery::draw); /1l calls Lottery::draw
pl s->G aphi cal Obj ect::draw); [l calls G aphical Object::draw

In this case, notice that even though pl s pointsto aSpeci al Lot t er ySi mul at i on object, thereis no way (short of a
downcast — see Item 39) to invoke the dr aw function defined in that class.

But wait, there's more. The dr awfunctionsin both Lot t er y and Gr aphi cal Qbj ect are declared virtual so that subclasses
can redefine them (see Item 36), but what if Lot t er ySi nul at i on would like to redefine both of them? The unpleasant truth

isthat it can't, because aclassis alowed to have only a single function called dr aw that takes no arguments. (There is a special
exception to thisrule if one of the functionsisconst and oneisnot — see ltem 21.)

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (158 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

At one point, this difficulty was considered a serious enough problem to justify a change in the language. The ARM discusses
the possibility of allowing inherited virtual functions to be "renamed,” but then it was discovered that the problem can be
circumvented by the addition of apair of new classes:

cl ass AuxLottery: public Lottery {
publi c:
virtual int lotteryDraw() = O;

virtual int draw() { return lotteryDraw); }
1

cl ass AuxG aphi cal Qoject: public G aphical Object {
publ i c:
virtual int graphical CbjectDraw) = O;

virtual int draw() { return graphical GbjectDraw); }
b

class LotterySi nul ation: public AuxLottery,
publ i ¢ AuxG aphi cal Obj ect {
publi c:
virtual int lotteryDraw);
virtual int graphical CbjectDraw);

b

Each of the two new classes, AuxLot t er y and AuxGr aphi cal Obj ect , essentially declares anew name for thedr aw
function that each inherits. This new name takes the form of a pure virtual function, inthiscasel ot t er yDr awand

gr aphi cal Obj ect Dr aw; the functions are pure virtual so that concrete subclasses must redefine them. Furthermore, each
classredefinesthe dr awthat it inherits to itself invoke the new pure virtual function. The net effect is that within this class
hierarchy, the single, ambiguous name dr aw has effectively been split into two unambiguous, but operationally equivalent,
names: | ot t er yDr awand gr aphi cal Cbj ect Dr aw.

LotterySinul ation *pls = new LotterySi nul ati on;

Lottery *pl = pls;
G aphi cal Obj ect *pgo = pls;

/1l this calls LotterySinulation::|lotteryDraw
pl - >draw() ;

/1l this calls LotterySinmul ation::graphical Qbj ect Draw
pgo- >draw) ;

This strategy, replete asit is with the clever application of pure virtual, ssmple virtual, and inline functions (see Item 33), should

be committed to memory. In the first place, it solves a problem that you may encounter some day. In the second, it can serveto
remind you of the complications that can arise in the presence of multiple inheritance. Y es, this tactic works, but do you really
want to be forced to introduce new classes just so you can redefine avirtual function? The classes AuxLot t ery and

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (159 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

AuxG aphi cal Obj ect are essential to the correct operation of this hierarchy, but they correspond neither to an abstraction
in the problem domain nor to an abstraction in the implementation domain. They exist purely as an implementation device —
nothing more. Y ou aready know that good software is "device independent.” That rule of thumb applies here, too.

The ambiguity problem, interesting though it is, hardly begins to scratch the surface of the issues you'll confront when you flirt
with MI. Another one grows out of the empirical observation that an inheritance hierarchy that starts out looking like this,

has a distressing tendency to evolve into one that looks like this:

Now, it may or may not be true that diamonds are a girl's best friend, but it is certainly true that a diamond-shaped inheritance
hierarchy such asthisis not very friendly. If you create a hierarchy such asthis, you are immediately confronted with the
guestion of whether to make A avirtual base class, i.e., whether inheritance from A should be virtual. In practice, the answer is
amost invariably that it should; only rarely will you want an object of type D to contain multiple copies of the data members of
A. In recognition of thistruth, B and C above declare A as avirtual base class.

Unfortunately, at the time you define B and C, you may not know whether any class will decide to inherit from both of them,
and in fact you shouldn't need to know thisin order to define them correctly. As a class designer, this puts you in a dreadful
quandary. If you do not declare A as avirtual base of B and C, alater designer of D may need to modify the definitions of B and
Cin order to use them effectively. Frequently, thisis unacceptable, often because the definitions of A, B, and C are read-only.
Thiswould be the caseif A, B, and Cwerein alibrary, for example, and D was written by alibrary client.

On the other hand, if you do declare A as avirtual base of B and C, you typically impose an additional cost in both space and
time on clients of those classes. That is because virtual base classes are often implemented as pointers to objects, rather than as
objects themselves. It goes without saying that the layout of objectsin memory is compiler-dependent, but the fact remains that
the memory layout for an object of type Dwith A as anonvirtual baseistypically a contiguous series of memory locations,
whereas the memory layout for an object of type D with A asavirtual base is sometimes a contiguous series of memory
locations, two of which contain pointers to the memory locations containing the data members of the virtual base class:

Even compilers that don't use this particular implementation strategy generally impose some kind of space penalty for using
virtual inheritance.

In view of these considerations, it would seem that effective class design in the presence of MI callsfor clairvoyance on the part
of library designers. Seeing as how run-of-the-mill common sense is an increasingly rare commodity these days, you would be
ill-advised to rely too heavily on alanguage feature that calls for designers to be not only anticipatory of future needs, but
downright prophetic (see also M32).

Of course, this could also be said of the choice between virtual and nonvirtual functionsin a base class, but thereisacrucial
difference. Item 36 explains that avirtual function has awell-defined high-level meaning that is distinct from the equally well-
defined high-level meaning of a nonvirtual function, so it is possible to choose between the two based on what you want to
communicate to writers of subclasses. However, the decision whether a base class should be virtual or nonvirtual lacks awell-
defined high-level meaning. Rather, that decision is usually based on the structure of the entire inheritance hierarchy, and as
such it cannot be made until the entire hierarchy is known. If you need to know exactly how your classis going to be used
before you can define it correctly, it becomes very difficult to design effective classes.

Once you're past the problem of ambiguity and you've settled the question of whether inheritance from your base class(es)
should be virtual, still more complications confront you. Rather than belaboring things, I'll simply mention two other issues you
need to keep in mind:

. Passing constructor argumentsto virtual base classes. Under nonvirtual inheritance, arguments for a base class
constructor are specified in the member initialization lists of the classes that are immediately derived from the base class.
Because single inheritance hierarchies need only nonvirtual bases, arguments are passed up the inheritance hierarchy in a

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (160 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5373

Effective C++, 2E

very natural fashion: the classes at level n of the hierarchy pass arguments to the classes at level n-1. For constructors of
avirtual base class, however, arguments are specified in the member initialization lists of the classes that are most
derived from the base. As aresult, the classinitializing a virtual base may be arbitrarily far from it in the inheritance
graph, and the class performing the initialization can change as new classes are added to the hierarchy. (A good way to
avoid this problem isto eliminate the need to pass constructor arguments to virtual bases. The easiest way to do that isto
avoid putting data membersin such classes. Thisis the essence of the Java solution to the problem: virtual base classes
inJava (i.e., "Interfaces") are prohibited from containing data.)

. Dominance of virtual functions. Just when you thought you had ambiguity all figured out, they change the rules on
you. Consider again the diamond-shaped inheritance graph involving classes A, B, C, and D. Suppose that A defines a
virtual member function nf , and Credefinesit; B and D, however, do not redefine nf :

From our earlier discussion, you'd expect this to be ambiguous:

D *pd = new D
pd->nf () ; /[l A :nf or C:nf?

Which nf should be called for a D object, the one directly inherited from C or the one indirectly inherited (via B) from A? The
answer isthat it depends on how B and Cinherit from A. In particular, if Aisanonvirtual base of B or C, the call is ambiguous,
but if Aisavirtual base of both B and C, the redefinition of nf in Cis said to dominate the original definition in A, and the call
tonf through pd will resolve (unambiguously) to C: : nf . If you sit down and work it all out, it emerges that thisisthe
behavior you want, but it's kind of a pain to have to sit down and work it al out before it makes sense.

Perhaps by now you agree that M| can lead to complications. Perhaps you are convinced that no one in their right mind would
ever use it. Perhaps you are prepared to propose to the international -C++ standardization committee that multiple inheritance be
removed from the language, or at least to propose to your manager that programmers at your company be physically barred
fromusing it.

Perhaps you are being too hasty.

Bear in mind that the designer of C++ didn't set out to make multiple inheritance hard to use, it just turned out that making all
the pieces work together in amore or less reasonable fashion inherently entailed the introduction of certain complexities. In the
above discussion, you may have noticed that the bulk of these complexities arise in conjunction with the use of virtual base
classes. If you can avoid the use of virtual bases— that is, if you can avoid the creation of the deadly diamond inheritance
graph — things become much more manageable.

For example, Item 34 describes how a Protocol class exists only to specify an interface for derived classes; it has no data
members, no constructors, a virtual destructor (see Item 14), and a set of pure virtual functions that specify the interface. A
Protocol Per son class might look like this:

cl ass Person {
publ i c:
virtual ~Person();

virtual string name() const = 0;
virtual string birthDate() const = 0;
virtual string address() const = O;
virtual string nationality() const = O;

b

Clients of this class must program in terms of Per son pointers and references, because abstract classes cannot be instantiated.

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (161 / 189) [2003-6-11 20:02:43]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=committee

Effective C++, 2E

To create objects that can be manipulated as Per son objects, clients of Per son use factory functions (see Item 34) to
instantiate concrete subclasses of that class:

/1l factory function to create a Person object froma

/'l uni que dat abase 1D

Person * nmakePer son(Dat abasel D personldentifier);

Dat abasel D askUser For Dat abasel X) ;

Dat abasel D pi d

askUser For Dat abasel () ;

Person *pp = nmakePerson(pid); /'l create object supporting
/1l the Person interface

del ete pp;

/1 mani pul ate *pp via
/] Person's nenber functions

/1 del ete the object when

/1 it's no | onger

needed

This just begs the question: how does nakePer son create the objects to which it returns pointers? Clearly, there must be some
concrete class derived from Per son that makePer son can instantiate.

Suppose thisclassis called MyPer son. Asa concrete class, MyPer son must provide implementations for the pure virtual
functionsit inherits from Per son. It could write these from scratch, but it would be better software engineering to take
advantage of existing components that already do most or all of what's necessary. For example, let's suppose a creaky old
database-specific class Per sonl nf o aready exists that provides the essence of what MyPer son needs:

cl ass Personlnfo {

publ

ic:

Per sonl nf o(Dat abasel D pi d);
~Per sonl nfo();

Vi

Vi
Vi
Vi
Vi

Vi
Vi

}

rtual

rtual
rtual
rtual
rtual

rtual
rtual

const
const
const
const

const
const

char
char
char
char

char
char

E R R

*

t heNane() const;
theBirthDate() const;

t heAddr ess() const;
theNationality() const;

val ueDel i mOpen() const;
val ueDel i nCl ose() const;

/] see
/] bel ow

Y ou can tell thisis an old class, because the member functionsreturn const char * sinstead of st r i ng objects. Still, if the
shoe fits, why not wear it? The names of this class's member functions suggest that the result islikely to be pretty comfortable.

Y ou come to discover that Per sonl nf o, however, was designed to facilitate the process of printing database fields in various
formats, with the beginning and end of each field value delimited by specia strings. By default, the opening and closing

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (162 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

delimitersfor field values are braces, so the field value "Ring-tailed Lemur" would be formatted this way:
[Ring-tailed Lemur]

In recognition of the fact that braces are not universally desired by clients of Per sonl nf o, the virtual functions

val ueDel i mOpen andval ueDel i nCl ose alow derived classes to specify their own opening and closing delimiter
strings. The implementations of Per sonl nf o'st heNane, t heBi rt hDat e, t heAddr ess, andt heNat i onal i ty call
these virtual functions to add the appropriate delimiters to the values they return. Using Per sonl nf o: : nane as an example,
the code looks like this:

const char * Personlnfo::val uebDel i nOpen() const

{

return "["; /| default opening delimter
}
const char * Personlnfo::val uebDelinC ose() const
{

return "]"; /1 default closing delimter
}

const char * Personlnfo::theNane() const

{

/! reserve buffer for return value. Because this is
/] static, it's automatically initialized to all zeros
static char val ue[MAX_ FORMATTED_FI ELD VALUE_LENGTH] ;

/'l wite opening delimter
strcpy(val ue, val uebDel i nOpen());

append to the string in value this object's nane field

/'l wite closing delimter
strcat (val ue, val uebDelinC ose());

return val ue;

}

One might quibble with the design of Per sonl nf o: : t heNamne (especialy the use of afixed-size static buffer — see Item
23), but set your quibbles aside and focus instead on this: t heNane callsval ueDel i mOpen to generate the opening
delimiter of the string it will return, then it generates the name value itself, then it callsval ueDel i nCl ose. Because

val ueDel i mOpen andval ueDel i nCl ose arevirtual functions, the result returned by t heNane is dependent not only on
Per sonl nf o, but also on the classes derived from Per sonl nf o.

Asthe implementer of MyPer son, that's good news, because while perusing the fine print in the Per son documentation, you
discover that nane and its sister member functions are required to return unadorned values, i.e., no delimiters are allowed. That
is, if aperson isfrom Madagascar, acall to that person'snat i onal i t'y function should return *Madagascar”, not
"[Madagascar]”.

The relationship between MyPer son and Per sonl nf o isthat Per sonl nf o happens to have some functions that make
MyPer son easier to implement. That'sal. There's no isaor has-arelationship anywhere in sight. Their relationship isthusis-

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (163 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

implemented-in-terms-of, and we know that can be represented in two ways: vialayering (see Item 40) and via private
inheritance (see Item 42). Item 42 points out that layering is the generally preferred approach, but private inheritance is

necessary if virtual functions are to be redefined. In this case, MyPer son needsto redefineval ueDel i nOpen and
val ueDel i nCl ose, solayering won't do and private inheritance it must be: MyPer son must privately inherit from
Per sonl nf o.

But MyPer son must also implement the Per son interface, and that calls for public inheritance. This leads to one reasonable
application of multiple inheritance: combine public inheritance of an interface with private inheritance of an implementation:

cl ass Person { /1l this class specifies

publ i c: /1l the interface to be
virtual ~Person(); /1 inplenented
virtual string name() const = 0;
virtual string birthDate() const = 0;
virtual string address() const = O;
virtual string nationality() const = O;
3
cl ass Dat abasel D { }s /] used bel ow, details
/1 are uninportant
cl ass Personlnfo { /1 this class has functions
publ i c: /1 useful in inplenenting
Per sonl nf o(Dat abasel D pi d); /1l the Person interface

virtual ~Personlnfo();

virtual const char * theNane() const;

virtual const char * theBirthDate() const;
virtual const char * theAddress() const;
virtual const char * theNationality() const;
virtual const char * val ueDel i mOpen() const;
virtual const char * val ueDelinCl ose() const;

b

/'l note use of
/1 multiple inheritance

cl ass MyPerson: public Person,
private Personlnfo {
publ i c:

MyPer son(Dat abasel D pid): Personlnfo(pid) {}

delimter functions
return ""; }
return ""; }

/1l redefinitions of inherited virtual
const char * val ueDel i nOpen() const {
const char * val ueDelinCl ose() const {

[l inplenmentations of the required Person nmenber functions
string name() const
{ return Personlnfo::theNane(); }

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (164 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

string birthDate() const
{ return Personinfo::theBirthDate(); }

string address() const
{ return Personlnfo::theAddress(); }

string nationality() const
{ return Personinfo::theNationality(); }

1
Graphically, it looks like this:

This kind of example demonstrates that M| can be both useful and comprehensible, although it's no accident that the dreaded
diamond-shaped inheritance graph is conspicuously absent.

Still, you must guard against temptation. Sometimes you can fall into the trap of using M1 to make a quick fix to an inheritance
hierarchy that would be better served by a more fundamental redesign. For example, suppose you're working with a hierarchy
for animated cartoon characters. At least conceptually, it makes sense for any kind of character to dance and sing, but the way
in which each type of character performs these activities differs. Furthermore, the default behavior for singing and dancing is to
do nothing.

Theway to say al that in C++ islikethis:

cl ass CartoonCharacter {
publi c:
virtual void dance() {}
virtual void sing() {}

1
Virtual functions naturally model the constraint that dancing and singing make sense for all Car t oonChar act er objects. Do-
nothing default behavior is expressed by the empty definitions of those functions in the class (see Item 36). Suppose a particul ar
type of cartoon character is a grasshopper, which dances and singsin its own particular way:

cl ass Grasshopper: public CartoonCharacter {

publi c:
virtual void dance(); /1l definition is el sewhere
virtual void sing(); /1 definition is el sewhere
3

Now suppose that after implementing the G- asshopper class, you decide you also need a class for crickets:

class Cricket: public CartoonCharacter {
publ i c:

virtual void dance();

virtual void sing();

b
Asyou sit down to implement the Cr i cket class, you realize that alot of the code you wrote for the G- asshopper class
can be reused. However, it needs to be tweaked a bit here and there to account for the differences in singing and dancing

between grasshoppers and crickets. Y ou are suddenly struck by a clever way to reuse your existing code: you'll implement the

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (165 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

Cri cket classintermsof the G asshopper class, and you'll use virtual functionsto alow the Cri cket classto customize
G asshopper behavior!

Y ou immediately recognize that these twin requirements — an is-implemented-in-terms-of relationship and the ability to
redefine virtual functions— mean that Cr i cket will haveto privately inherit from Gr asshopper , but of course acricket is
still a cartoon character, so you redefine Cr i cket to inherit from both G- asshopper and Car t oonChar act er :

class Cricket: public CartoonCharacter,
private G asshopper {
publi c:
virtual void dance();
virtual void sing();

b

Y ou then set out to make the necessary modifications to the G- asshopper class. In particular, you need to declare some new
virtual functionsfor Cri cket to redefine:

cl ass Grasshopper: public CartoonCharacter {
publi c:

virtual void dance();

virtual void sing();

pr ot ect ed:
virtual void danceCustom zationl();
virtual void danceCustom zation2();

virtual void singCustom zation();

1
Dancing for grasshoppersis now defined like this:

voi d G asshopper: : dance()

{ per form comon danci ng acti ons;
danceCust om zati onl();
perform nore common danci ng acti ons;

danceCust oni zati on2();

perform final common danci ng actions;

}
Grasshopper singing is similarly orchestrated.
Clearly, the Cri cket class must be updated to take into account the new virtual functions it must redefine:

class Cricket: public CartoonCharacter,
private G asshopper {
publi c:

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (166 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

virtual void dance() { G asshopper::dance(); }
virtual void sing() { Gasshopper::sing(); }

pr ot ect ed:
virtual void danceCustom zationl();
virtual void danceCustom zation2();

virtual void singCustom zation();

}

This seemsto work fine. When aCr i cket object istold to dance, it will execute the common dance codein the
Gr asshopper class, then execute the dance customization codeinthe Cri cket class, then continue with the code in
Grasshopper: : dance, etc.

Thereisaserious flaw in your design, however, and that is that you have run headlong into Occam's razor, a bad ideawith a
razor of any kind, and especially so when it belongs to William of Occam. Occamism preaches that entities should not be
multiplied beyond necessity, and in this case, the entities in question are inheritance relationships. If you believe that multiple
inheritance is more complicated than single inheritance (and | hope that you do), then the design of the Cr i cket classis
needlessly complex.

Fundamentally, the problem isthat it is not true that the Cr i cket class is-implemented-in-terms-of the G asshopper class.
Rather, the Cr i cket classand the G asshopper class share common code. In particular, they share the code that
determines the dancing and singing behavior that grasshoppers and crickets have in common.

The way to say that two classes have something in common is not to have one class inherit from the other, but to have both of
them inherit from a common base class. The common code for grasshoppers and crickets doesn't belong in the G- asshopper
class, nor doesit belong inthe Cr i cket class. It belongsin anew class from which they both inherit, say, | nsect :

cl ass CartoonCharacter { ... };

class Insect: public CartoonCharacter {

publi c:
virtual void dance(); /'l comon code for both
virtual void sing(); /'l grasshoppers and crickets
pr ot ect ed:
virtual void danceCustom zationl() = O;
virtual void danceCustom zation2() = 0;

e

virtual void singCustom zation() =
1
cl ass Grasshopper: public Insect {
pr ot ect ed:

virtual void danceCustom zationl();
virtual void danceCustom zation2();

virtual void singCustom zation();

1
class Cricket: public Insect {

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (167 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

pr ot ect ed:
virtual void danceCustom zationl();
virtual void danceCustom zation2();

virtual void singCustom zation();

b

Notice how much cleaner this design is. Only single inheritance is involved, and furthermore, only public inheritance is used.
Grasshopper and Cri cket define only customization functions; they inherit the dance and si ng functions unchanged
from | nsect . William of Occam would be proud.

Although this design is cleaner than the one involving M1, it may initially have appeared to be inferior. After all, compared to
the M1 approach, this single-inheritance architecture calls for the introduction of abrand new class, a class unnecessary if Ml is
used. Why introduce an extra classif you don't have to?

This brings you face to face with the seductive nature of multiple inheritance. On the surface, Ml seems to be the easier course
of action. It adds no new classes, and though it calls for the addition of some new virtual functionsto the G asshopper class,
those functions have to be added somewhere in any case.

Imagine now a programmer maintaining alarge C++ class library, one in which a new class has to be added, much as the

Cri cket classhad to be added to the existing Car t oonChar act er /G asshopper hierarchy. The programmer knows
that alarge number of clients use the existing hierarchy, so the bigger the change to the library, the greater the disruption to
clients. The programmer is determined to minimize that kind of disruption. Mulling over the options, the programmer realizes
that if asingle private inheritance link from G- asshopper to Cri cket isadded, no other change to the hierarchy will be
needed. The programmer smiles at the thought, pleased with the prospect of alarge increase in functionality at the cost of only a
slight increase in complexity.

Imagine now that that maintenance programmer is you. Resist the seduction.

Back to [tem 43: Use multiple inheritance judicioudly.
Continue to Miscellany

Item 44: Say what you mean; understand what you're saying.

In the introduction to this section on inheritance and object-oriented design, | emphasized the importance of understanding what
different object-oriented constructsin C++ mean. Thisis quite different from just knowing the rules of the language. For
example, the rules of C++ say that if class D publicly inherits from class B, there is a standard conversion from a D pointer to a
B pointer; that the public member functions of B are inherited as public member functions of D, etc. That's all true, but it's close
to useless if you're trying to trandate your design into C++. Instead, you need to understand that public inheritance meansisa,
that if D publicly inherits from B, every object of type D isa object of type B, too. Thus, if you mean isain your design, you
know you have to use public inheritance.

Saying what you mean is only half the battle. The flip side of the coin is understanding what you're saying, and it'sjust as
important. For example, it'sirresponsible, if not downright immoral, to run around declaring member functions nonvirtual
without recognizing that in so doing you are imposing constraints on subclasses. In declaring a nonvirtual member function,
what you're really saying isthat the function represents an invariant over specialization, and it would be disastrousif you didn't
know that.

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (168 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

The equivalence of public inheritance and isa, and of nonvirtual member functions and invariance over specialization, are
examples of how certain C++ constructs correspond to design-level ideas. The list below summarizes the most important of
these mappings.

. A common base class means common traits. If class D1 and class D2 both declare class B as a base, D1 and D2 inherit
common data members and/or common member functions from B. See Item 43.

. Publicinheritance meansisa. If class D publicly inherits from class B, every object of type Dis also an object of type
B, but not vice versa. See Item 35.

. Privateinheritance meansis-implemented-in-terms-of. If class D privately inherits from class B, objects of type D are
simply implemented in terms of objects of type B; no conceptual relationship exists between objects of types B and D.
See Item 42.

. Layering means has-a or is-implemented-in-terms-of. If class A contains a data member of type B, objects of type A
either have a component of type B or are implemented in terms of objects of type B. See Item 40.

The following mappings apply only when public inheritance is involved:

. A purevirtual function meansthat only the function'sinterfaceisinherited. If aclass C declares a pure virtua
member function nf , subclasses of C must inherit the interface for nf , and concrete subclasses of C must supply their
own implementations for it. See Item 36.

. A simplevirtual function meansthat the function'sinterface plus a default implementation isinherited. If aclass
Cdeclaresasimple (not pure) virtual function nf , subclasses of C must inherit the interface for nf , and they may also
inherit a default implementation, if they choose. See Item 36.

. A nonvirtual function meansthat the function'sinterface plusa mandatory implementation isinherited. If aclass
C declares a nonvirtua member function nf , subclasses of C must inherit both the interface for nf and its
implementation. In effect, nf defines an invariant over specialization of C. See Item 36.

Back to Item 44: Say what you mean; understand what you're saying.
Continue to I1tem 45: Know what functions C++ silently writes and calls.

Miscellany

Some guidelines for effective C++ programming defy convenient categorization. This section is where such guidelines come to
roost. Not that that diminishes their importance. If you are to write effective software, you must understand what compilers are
doing for you (to you?) behind your back, how to ensure that non-local static objects are initialized before they are used, what
you can expect from the standard library, and where to go for insights into the language's underlying design philosophy. In this
final section of the book, | expound on these issues, and more.

Back to Miscellany
Continue to Item 46: Prefer compile-time and link-time errors to runtime errors.

Item 45: Know what functions C++ silently writes and calls.

When is an empty class not an empty class? When C++ gets through with it. If you don't declare them yourself, your thoughtful
compilers will declare their own versions of a copy constructor, an assignment operator, a destructor, and a pair of address-of
operators. Furthermore, if you don't declare any constructors, they will declare a default constructor for you, too. All these
functions will be public. In other words, if you write this,

class Empty{};

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (169 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

it'sthe same asif you'd written this:

class Enpty {

publi c:
Empty(); /1l default constructor
Enpty(const Enpty& rhs); /'l copy constructor
~Empty(); /1l destructor —see
/1 bel ow for whether
/[l it's virtual
Empty&
oper at or =(const Enptyé& rhs); /| assignnent operator
Enpt y* operator&(); /| address-of operators
const Enpty* operatoré&() const;
1

Now these functions are generated only if they are needed, but it doesn't take much to need them. The following code will cause
each function to be generated:

const Enpty el; /1 default constructor;
/'l destructor

Enpty e2(el); /'l copy constructor
e2 = el; /| assignnent operator
Enpty *pe2 = &e2; /| address- of

/'l operator (non-const)

const Enpty *pel = ⪙ /1 address- of
/| operator (const)

Given that compilers are writing functions for you, what do the functions do? Well, the default constructor and the destructor
don't really do anything. They just enable you to create and destroy objects of the class. (They aso provide a convenient place
for implementers to place code whose execution takes care of "behind the scenes’ behavior — see Items 33 and M24.) Note that

the generated destructor is nonvirtua (see Item 14) unlessit's for a class inheriting from a base class that itself declares avirtual
destructor. The default address-of operators just return the address of the object. These functions are effectively defined like
this:

inline Enpty:: Empty() {}

inline Enpty::~Enpty() {}

inline Enpty * Enpty::operator&() { return this; }

inline const Enpty * Enpty::operator&() const
{ return this; }

Asfor the copy constructor and the assignment operator, the official rule is this: the default copy constructor (assignment

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (170 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41284

Effective C++, 2E

operator) performs memberwise copy construction (assignment) of the nonstatic data members of the class. That is, if misa
nonstatic data member of type T in aclass C and C declares no copy constructor (assignment operator), mwill be copy
constructed (assigned) using the copy constructor (assignment operator) defined for T, if thereis one. If there isn't, thisrule will
be recursively applied to ms data members until a copy constructor (assignment operator) or built-in type (e.g., i nt , doubl e,
pointer, etc.) isfound. By default, objects of built-in types are copy constructed (assigned) using bitwise copy from the source
object to the destination object. For classes that inherit from other classes, thisruleis applied to each level of the inheritance
hierarchy, so user-defined copy constructors and assignment operators are called at whatever level they are declared.

| hope that's crystal clear.

But just in caseit's not, here's an example. Consider the definition of aNanmedCbj ect template, whose instances are classes
allowing you to associate names with objects:

t enpl at e<cl ass T>

cl ass NanedObj ect {

publi c:
NanedObj ect (const char *nanme, const T& val ue);
NanedObj ect (const string& name, const T& val ue);

private:
string naneVal ue;
T obj ect Val ue;

}

Because the NamedObj ect classes declare at least one constructor, compilers won't generate default constructors, but because
the classes fail to declare copy constructors or assignment operators, compilers will generate those functions (if they are
needed).

Consider the following call to a copy constructor:
NanmedObj ect <i nt > nol("Snall est Prine Nunber", 2);
NanmedObj ect <i nt > no2(nol); /1 calls copy constructor

The copy constructor generated by your compilers must initialize no2. naneVal ue and no2. obj ect Val ue using

nol. nameVal ue and nol. obj ect Val ue, respectively. The type of naneVal ue isst ri ng, and st ri ng has acopy
constructor (which you can verify by examining st r i ng in the standard library — see Item 49), so no2. naneVal ue will be
initialized by calling the st r i ng copy constructor withnol. naneVal ue asits argument. On the other hand, the type of
NanmedQbj ect <i nt >: : obj ect Val ueisi nt (because T isi nt for thistemplate instantiation), and no copy constructor is
defined for i nt s, sono2. obj ect Val ue will beinitialized by copying the bits over fromnol. obj ect Val ue.

The compiler-generated assignment operator for NamedQbj ect <i nt > would behave the same way, but in general, compiler-

generated assignment operators behave as |'ve described only when the resulting code is both legal and has a reasonable chance

of making sense. If either of these testsfails, compilers will refuse to generate an oper at or = for your class, and you'll receive
some lovely diagnostic during compilation.

For example, suppose NamedQbj ect were defined like this, where nanmeVal ue isareference to a string and
obj ect Val ue isaconst T:

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (171 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

tenpl at e<cl ass T>

cl ass NanedQbj ect {

publ i c:
/1l this ctor no | onger takes a const nane, because narme-
/1 Value is now a reference-to-non-const string. The char*
/'l ctor is gone, because we must have a string to refer to
NanedObj ect (stri ng& name, const T& val ue);

/] as above, assune no
/'l operator=is declared

private:
string& naneVal ue; /1 this is now a reference
const T obj ect Val ue; /1 this is now const

1

Now consider what should happen here:

string newbDog(" Persephone");
string ol dDog("Satch");

NanmedQbj ect <i nt > p(newbDog, 2); /[l as | wite this, our dog
/'l -Persephone is about to
/'l have her second birthday

NanmedObj ect <i nt > s(ol dDog, 29); /1l the famly dog Satch
[l (fromny chil dhood)
/1 would be 29 if she were
[l still alive

p =5s; /1 what shoul d happen to
/1 the data nenbers in p?

Before the assignment, p. naneVal ue refersto somest ri ng object and s. nanmeVal ue asoreferstoast ri ng, though
not the same one. How should the assignment affect p. naneVal ue? After the assignment, should p. naneVal ue refer to the
st ri ng referred to by s. naneVal ue, i.e., should the reference itself be modified? If so, that breaks new ground, because
C++ doesn't provide away to make areference refer to a different object (see ltem M1). Alternatively, should thest ri ng

object to which p. naneVal ue refers be modified, thus affecting other objects that hold pointers or referencesto that
string,i.e., objects not directly involved in the assignment? I s that what the compiler-generated assignment operator should
do?

Faced with such a conundrum, C++ refuses to compile the code. If you want to support assignment in a class containing a
reference member, you must define the assignment operator yourself. Compilers behave similarly for classes containing const
members (such asobj ect Val ue inthe modified class above); it's not legal to modify const members, so compilers are
unsure how to treat them during an implicitly generated assignment function. Finally, compilers refuse to generate assignment
operators for derived classes that inherit from base classes declaring the standard assignment operator pri vat e. After al,
compiler-generated assignment operators for derived classes are supposed to handle base class parts, too (see Items 16 and

M33), but in doing so, they certainly shouldn't invoke member functions the derived class has no right to call.

All thistalk of compiler-generated functions gives rise to the question, what do you do if you want to disallow use of those
functions? That is, what if you deliberately don't declare, for example, an oper at or = because you never ever want to allow
assignment of objectsin your class? The solution to that little teaser is the subject of 1tem 27. For a discussion of the often-

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (172 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#11029
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#10947

Effective C++, 2E

overlooked interactions between pointer members and compiler-generated copy constructors and assignment operators, check
out Item 11.

Back to Item 45: Know what functions C++ silently writes and calls.
Continue to ltem 47: Ensure that non-local static objects are initialized before they're used.

Item 46: Prefer compile-time and link-time errors to runtime errors.

Other than in the few situations that cause C++ to throw exceptions (e.g., running out of memory — see Item 7), the notion of a
runtime error isasforeign to C++ asit isto C. There's no detection of underflow, overflow, division by zero, no checking for
array bounds violations, etc. Once your program gets past a compiler and linker, you're on your own — there's no safety net of
any consequence. Much as with skydiving, some people are exhilarated by this state of affairs, others are paralyzed with fear.
The motivation behind the philosophy, of course, is efficiency: without runtime checks, programs are smaller and faster.

There is adifferent way to approach things. Languages like Smalltalk and LISP generally detect fewer kinds of errors during
compilation and linking, but they provide hefty runtime systems that catch errors during execution. Unlike C++, these
languages are almost always interpreted, and you pay a performance penalty for the extra flexibility they offer.

Never forget that you are programming in C++. Even if you find the Smalltalk/L ISP philosophy appealing, put it out of your
mind. There'salot to be said for adhering to the party line, and in this case, that means eschewing runtime errors. Whenever
you can, push the detection of an error back from runtime to link-time, or, ideally, to compile-time.

Such a methodology pays dividends not only in terms of program size and speed, but also in terms of reliability. If your
program gets through compilers and a linker without eliciting error messages, you may be confident there aren't any compiler-
or linker-detectable errorsin your program, period. (The other possibility, of course, is that there are bugs in your compilers or
linkers, but let us not depress ourselves by admitting to such possibilities.)

With runtime errors, the situation is very different. Just because your program doesn't generate any runtime errors during a
particular run, how can you be sure it won't generate errors during a different run, when you do thingsin a different order, use
different data, or run for alonger or shorter period of time? Y ou can test your program until you're blue in the face, but you'll
still never cover al the possibilities. As aresult, detecting errors at runtime is simply less secure than is catching them during
compilation or linking.

Often, by making relatively minor changes to your design, you can catch during compilation what might otherwise be aruntime
error. This frequently involves the addition of new types to the program. (See also Item M 33.) For example, suppose you are
writing a class to represent datesin time. Your first cut might look like this:

class Date {

publi c:
Date(int day, int nonth, int year);

b

If you were to implement this constructor, one of the problems you'd face would be that of sanity checking on the values for the
day and the month. Let's see how you can eliminate the need to validate the value passed in for the month.

One obvious approach isto employ an enumerated type instead of an integer:

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (173 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#10947

Effective C++, 2E

enum Month { Jan = 1, Feb =2, ... , Nov = 11, Dec = 12 };

class Date {
publi c:
Dat e(int day, Month nonth, int year);

i
Unfortunately, this doesn't buy you that much, because enums don't have to be initialized:

Month m
Date d(22, m 1857); /1 mis undefined

Asaresult, the Dat e constructor would still have to validate the value of the nont h parameter.

To achieve enough security to dispense with runtime checks, you've got to use a class to represent months, and you must ensure
that only valid months are created:

class Month {

publi c:
static const Month Jan() { return 1; }
static const Month Feb() { return 2; }

static const Month Dec() { return 12; }

int aslnt() const /'l for conveni ence, nmake
{ return nont hNunber; } /1l it possible to convert
/1 a Month to an int

private:
Mont h(i nt nunber): nont hNunber (nunber) {}

const int nont hNunmber;

}

class Date {
publi c:
Dat e(i nt day, const Monthé& nonth, int year);

};...

Several aspects of this design combine to make it work the way it does. First, the Mont h constructor is private. This prevents
clients from creating new months. The only ones available are those returned by Mont h's static member functions, plus copies
thereof. Second, each Mont h object isconst , so it can't be changed. (Otherwise the temptation to transform January into June
might sometimes prove overwhelming, at least in northern latitudes.) Finally, the only way to get aMont h object isby calling a
function or by copying an existing Mont h (viathe implicit Mont h copy constructor — see Item 45). This makesiit possible to
use Mont h objects anywhere and anytime; there's no need to worry about accidently using one before it's been initialized. (Item

47 explains why this might otherwise be a problem.)

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (174 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

Given these classes, it isall but impossible for a client to specify an invalid month. It would be completely impossible were it
not for the following abomination:

Mont h *pm /1 define uninitialized ptr
Date d(1, *pm 1997); /'l arghhh! use it!

However, thisinvolves dereferencing an uninitialized pointer, the results of which are undefined. (See Item 3 for my feelings

about undefined behavior.) Unfortunately, | know of no way to prevent or detect this kind of heresy. However, if we assume
this never happens, or if we don't care how our software behavesif it does, the Dat e constructor can dispense with sanity
checking on its Mont h parameter. On the other hand, the constructor must still check the day parameter for validity — how
many days hath September, April, June, and November?

This Dat e example replaces runtime checks with compile-time checks. Y ou may be wondering when it is possible to use link-
time checks. In truth, not very often. C++ uses the linker to ensure that needed functions are defined exactly once (see ltem 45

for adescription of what it takesto "need" afunction). It also uses the linker to ensure that static objects (see Item 47) are
defined exactly once. You'll tend to use the linker in the same way. For example, Item 27 describes how the linker's checks can
make it useful to deliberately avoid defining afunction you explicitly declare.

Now don't get carried away. It'simpractical to eliminate the need for all runtime checking. Any program that accepts interactive
input, for example, islikely to have to validate that input. Similarly, a class implementing arrays that perform bounds checking
(see Item 18) is usually going to have to validate the array index against the bounds every time an array access is made.
Nonetheless, shifting checks from runtime to compile- or link-time is always a worthwhile goal, and you should pursue that
goal whenever it is practical. Your reward for doing so is programs that are smaller, faster, and more reliable.

Back to Item 46: Prefer compile-time and link-time errors to runtime errors.
Continue to Item 48: Pay attention to compiler warnings.

Item 47: Ensure that non-local static objects are initialized before they're used.

Y ou're an adult now, so you don't need me to tell you it's foolhardy to use an object before it's been initialized. In fact, the
whole notion may strike you as absurd; constructors make sure objects are initialized when they're created, n'est-ce pas?

WEell, yes and no. Within a particular translation unit (i.e., source file), everything works fine, but things get trickier when the
initialization of an object in one trandation unit depends on the value of another object in adifferent trandation unit and that
second object itself requiresinitialization.

For example, suppose you've authored alibrary offering an abstraction of afile system, possibly including such capabilities as
making files on the Internet look like they're local. Since your library makes the world look like a single file system, you might
create aspecial object, t heFi | eSyst em within your library's namespace (see Item 28) for clients to use whenever they need

to interact with the file system abstraction your library provides:

class FileSystem{ ... }; /1 this class is in your
Il library
Fi |l eSystem t heFi | eSystem /1l this is the object

[l with which library
/] clients interact

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (175 / 189) [2003-6-11 20:02:43]

Effective C++, 2E

Becauset heFi | eSyst emrepresents something complicated, it's no surprise that its construction is both nontrivial and
essential; use of t heFi | eSyst embefore it had been constructed would yield very undefined behavior. (However, consult
Item M 17 for ideas on how the effectiveinitialization of objectsliket heFi | eSyst emcan safely be delayed.)

Now suppose some client of your library creates a class for directoriesin afile system. Naturally, their class uses
t heFi | eSystem

class Directory { /1l created by library client
publi c:
Directory();

b

Directory::Directory()

{
create a Directory object by invoking nenber
functions on theFil eSystem

}

Further suppose this client decides to create a distinguished global Di r ect or y object for temporary files:

Directory tenpDir; /1 directory for tenporary
Il files

Now the problem of initialization order becomes apparent: unlesst heFi | eSyst emisinitialized beforet enpDi r,

t enpDi r's constructor will attempt to uset heFi | eSyst embeforeit's been initialized. But t heFi | eSyst emand

t enpDi r were created by different people at different timesin different files. How can you be surethat t heFi | eSyst em
will be created beforet enpDi r ?

Thiskind of question arises anytime you have non-local static objects that are defined in different trandation units and whose
correct behavior is dependent on their being initialized in a particular order. Non-local static objects are objects that are

. defined at global or namespace scope (e.g., t heFi | eSyst emandt enpDi r),
. declared st ati c inaclass, or
. defined st ati c at file scope.

Regrettably, there is no shorthand term for "non-local static objects," so you should accustom yourself to this somewhat
awkward phrase.

Y ou do not want the behavior of your software to be dependent on the initialization order of non-local static objectsin different
trandlation units, because you have no control over that order. Let me repeat that. You have absolutely no control over the order
in which non-local static objectsin different transation units areinitialized.

It is reasonable to wonder why thisisthe case.

It is the case because determining the "proper" order in which to initialize non-local static objectsis hard. Very hard. Halting-
Problem hard. In its most general form — with multiple translation units and non-local static objects generated through implicit
template instantiations (which may themselves arise viaimplicit template instantiations) — it's not only impossible to determine
the right order of initialization, it's typically not even worth looking for special cases whereit is possible to determine the right
order.

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (176 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41011

Effective C++, 2E

In the field of Chaos Theory, there is a principle known as the "Butterfly Effect." This principle asserts that the tiny atmospheric
disturbance caused by the beating of a butterfly's wings in one part of the world can lead to profound changes in weather
patterns in places far distant. Somewhat more rigoroudly, it asserts that for some types of systems, minute perturbationsin
inputs can lead to radical changesin outputs.

The development of software systems can exhibit a Butterfly Effect of its own. Some systems are highly sensitive to the
particulars of their requirements, and small changes in requirements can significantly affect the ease with which a system can be
implemented. For example, Item 29 describes how changing the specification for an implicit conversion from St r i ng-to-

char* to St ri ng-to-const -char * makesit possible to replace a slow or error-prone function with afast, safe one.

The problem of ensuring that non-local static objects are initialized before use is similarly sensitive to the details of what you
want to achieve. If, instead of demanding access to non-local static objects, you're willing to settle for access to objects that act
like non-local static objects (except for the initialization headaches), the hard problem vanishes. In its stead is left a problem so
easy to solve, it's hardly worth calling a problem any longer.

The technique — sometimes known as the Sngleton pattern — is simplicity itself. First, you move each non-local static object
into its own function, where you declareit st at i c. Next, you have the function return a reference to the object it contains.
Clients call the function instead of referring to the object. In other words, you replace non-local static objects with objects that
arest at i ¢ inside functions. (See also Item M26.)

The basis of this approach is the observation that although C++ says next to nothing about when a non-local static object is
initialized, it specifies quite precisely when a static object inside afunction (i.e. alocal static object) isinitialized: it's when the
object's definition isfirst encountered during a call to that function. So if you replace direct accesses to non-local static objects
with calls to functions that return references to local static objects inside them, you're guaranteed that the references you get
back from the functions will refer to initialized objects. As abonus, if you never call afunction emulating a non-local static
object, you never incur the cost of constructing and destructing the object, something that can't be said for true non-local static
objects.

Here's the technique applied to botht heFi | eSyst emandt enpDi r:

class FileSystem{ ... }; /'l sanme as before

Fil eSystem& t heFi |l eSystem() /1 this function replaces

{ /1l the theFil eSystem object
static FileSystemtfs; /1l define and initialize

/1l a local static object
[l (tfs = "the file systent)

return tfs; /] return a reference to it

}

class Directory { ... }; /'l sane as before

Directory::Directory()
{

sanme as before, except references to theFil eSystem are
repl aced by references to theFil eSystem);

}

Directory& tenpDir() /1 this function replaces

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (177 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5350

Effective C++, 2E

{ /'l the tenpDir object

static Directory td; /1l define/initialize |ocal
/] static object

return td; /] return reference to it

}

Clients of thismodified system program exactly as they used to, except they now refer tot heFi | eSyst enm() and
tenpDir () instead of t heFi | eSyst emandt enpDi r . That is, they refer only to functions returning references to those
objects, never to the objects themselves.

The reference-returning functions dictated by this scheme are always smple: define and initialize alocal static object online 1,
returnit online 2. That'sit. Because they're so simple, you may be tempted to declarethem i nl i ne. Item 33 explains that late-
breaking revisions to the C++ language specification make this a perfectly valid implementation strategy, but it al'so explains
why you'll want to confirm your compilers' conformance with this aspect of -the standard before putting it to use. If you try it
with acompiler not yet in accord with the relevant parts of the standard, you risk getting multiple copies of both the access
function and the static object defined within it. That's enough to make a grown programmer cry.

Now, there's no magic going on here. For this technique to be effective, it must be possible to come up with areasonable
initialization order for your objects. If you set things up such that object A must be initialized before object B, and you also
make A's initialization dependent on B's having already been initialized, you are going to get in trouble, and frankly, you
deserveit. If you steer shy of such pathological situations, however, the scheme described in this Item should serve you quite
nicely.

Back to Item 47: Ensure that non-local static objects are initialized before they're used.
Continue to Item 49: Familiarize yourself with the standard library.

Item 48: Pay attention to compiler warnings.

Many programmers routinely ignore compiler warnings. After al, if the problem were serious, it'd be an error, right? Thiskind
of thinking may be relatively harmless in other languages, but in C++, it's a good bet compiler writers have a better grasp of
what's going on than you do. For example, here's an error everybody makes at one time or another:

class B {
publi c:

virtual void f() const;
b
class D. public B {
publi c:

virtual void f();
b

Theideaisfor D: : f toredefine the virtual function B: : f , but there'samistake: in B, f isaconst member function, but in D
it's not declared const . One compiler | know says this about that:

warning: D::f() hides virtual B::f()

Too many inexperienced programmers respond to this message by saying to themselves, "Of course D: : f hidesB: : f — that's
what it's supposed to do!" Wrong. What this compiler istrying to tell you isthat thef declared in B has not been redeclared in

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (178 / 189) [2003-6-11 20:02:43]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cstandard

Effective C++, 2E

D, it's been hidden entirely (see Item 50 for a description of why thisis so). Ignoring this compiler warning will almost certainly
lead to erroneous program behavior, followed by alot of debugging to find out about something that this compiler detected in
thefirst place.

After you gain experience with the warning messages from a particular compiler, of course, you'll learn to understand what the
different messages mean (which is often very different from what they seem to mean, alas). Once you have that experience,
there may be awhole range of warnings you'll choose to ignore. That's fine, but it's important to make sure that before you
dismiss awarning, you understand exactly what it's trying to tell you.

Aslong as we're on the topic of warnings, recall that warnings are inherently implementation-dependent, so it's not agood idea
to get Sloppy in your programming, relying on compilersto spot your mistakes for you. The function-hiding code above, for
instance, goes through a different (but widely used) compiler with nary a squawk. Compilers are supposed to translate C++ into
an executable format, not act as your personal safety net. Y ou want that kind of safety? Program in Ada

Back to Item 48: Pay attention to compiler warnings.
Continue to Item 50: Improve your understanding of C++.

Item 49: Familiarize yourself with the standard library.

C++'sstandard library isbig. Very big. Incredibly big. How big? Let me put it thisway: the specification takes over 300 closely-
packed pagesin the :C++ standard, and that all but excludes the standard C library, which isincluded in the C++ library "by

reference.”" (That's the term they use, honest.)

Bigger isn't aways better, of course, but in this case, bigger is better, because a big library contains lots of functionality. The
more functionality in the standard library, the more functionality you can lean on as you develop your applications. The C++
library doesn't offer everything (support for concurrency and for graphical user interfacesis notably absent), but it does offer a
lot. You can lean almost anything against it.

Before summarizing what's in the library, | need to tell you a bit about how it's organized. Because the library has so much init,
there's a reasonable chance you (or someone like you) may choose a class or function name that's the same as aname in the
standard library. To shield you from the name conflicts that would result, virtually everything in the standard library is nestled
in the namespace st d (see Item 28). But that leads to a new problem. Gazillions of lines of existing C++ rely on functionality
in the pseudo-standard library that's been in use for years, e.g., functionality declared in the headers<i ost r eam h>,

<conpl ex. h>,<li m ts. h>, etc. That existing software isn't designed to use namespaces, and it would be a shame if
wrapping the standard library by st d caused the existing code to break. (Authors of the broken code would likely use
somewhat harsher language than "shame" to describe their feelings about having the library rug pulled out from underneath
them.)

Mindful of the destructive power of rioting bands of incensed programmers, the *standardization committee decided to create
new header names for the st d-wrapped components. The algorithm they chose for generating the new header namesis as
trivial asthe resultsit produces arejarring: the . h on the existing C++ headers was ssimply dropped. So <i ost r eam h>
became <i ost r eanr, <conpl ex. h> became <conpl ex>, etc. For C headers, the same agorithm was applied, but ac
was prepended to each result. Hence C's<st r i ng. h> became<cst ri ng>, <st di 0. h> became <cst di 0>, etc. For a
final twist, the old C++ headers were officially deprecated (i.e., listed as no longer supported), but the old C headers were not
(to maintain C compatibility). In practice, compiler vendors have no incentive to disavow their customers' legacy software, so
you can expect the old C++ headers to be supported for many years.

Practically speaking, then, thisis the C++ header situation:

. Old C++ header names like <i ost r eam h> arelikely to continue to be supported, even though they aren't in the

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (179 / 189) [2003-6-11 20:02:43]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cstandard
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=committee

Effective C++, 2E

~official standard. The contents of such headers are not in namespace st d.

. New C++ header names like <i ost r ean® contain the same basic functionality as the corresponding old headers, but
the contents of the headers are in namespace st d. (During standardization, the details of some of the library
components were modified, so there isn't necessarily an exact match between the entitiesin an old C++ header and those
inanew one.)

. Standard C headerslike <st di 0. h> continue to be supported. The contents of such headersare not in st d.

. New C++ headersfor the functionality in the C library have nameslike <cst di 0>. They offer the same contents as the
corresponding old C headers, but the contentsarein st d.

All thisseems alittle weird at first, but it's really not that hard to get used to. The biggest challenge is keeping all the string
headers straight: <st r i ng. h> isthe old C header for char * -based string manipulation functions, <st ri ng> isthe st d-
wrapped C++ header for the new string classes (see below), and <cst ri ng> isthe st d-wrapped version of the old C header.
If you can master that (and | know you can), the rest of the library is easy.

The next thing you need to know about the standard library is that almost everything in it is atemplate. Consider your old friend
iostreams. (If you and iostreams aren't friends, turn to Item 2 to find out why you should cultivate a relationship.) lostreams
help you manipulate streams of characters, but what's a character? Isitachar ? A wchar _t ? A Unicode character? Some
other multi-byte character? There's no obviously right answer, so the library lets you choose. All the stream classes are really
class templates, and you specify the character type when you instantiate a stream class. For example, the standard library
definesthetype of cout tobeost r eam but ost r eamisreally atypedef for basi ¢_ost r eankchar >.

Similar considerations apply to most of the other classes in the standard library. st ri ng isn't aclass, it'saclass template: a
type parameter defines the type of charactersin each st r i ng class. conpl ex isn't aclass, it's aclass template: atype
parameter defines the type of the real and imaginary componentsin each conpl ex class. vect or isn't aclass, it'saclass
template. On and on it goes.

Y ou can't escape the templates in the standard library, but if you're used to working with only streams and strings of char s,
you can mostly ignore them. That's because the library defines typedefs for char instantiations for these components of the
library, thus letting you continue to program in terms of the objectsci n, cout , cerr, etc., and thetypesi st r eam
ostreamstri ng, etc., without having to worry about the fact that ci n'sreal typeisbasi c_i st reanxchar > and
string'sisbasi c_string<char>.

Many components in the standard library are templatized much more than this suggests. Consider again the seemingly
straightforward notion of a string. Sure, it can be parameterized based on the type of charactersit holds, but different character
sets differ in details, e.g., special end-of-file characters, most efficient way of copying arrays of them, etc. Such characteristics
are known in the standard as traits, and they are specified for st r i ng instantiations by an additional template parameter. In
addition, st r i ng objects are likely to perform dynamic memory allocation and deallocation, but there are lots of different
way's to approach that task (see Item 10). Which isbest? Y ou get to choose: the st r i ng template takesan Al | ocat or

parameter, and objects of type Al | ocat or are used to allocate and deallocate the memory used by st r i ng objects.

Here's afull-blown declaration for the basi ¢_st ri ng template and the st r i ng typedef that builds on it; you can find this
(or something equivalent to it) in the header <st r i ng>:

nanespace std {

t enpl at e<cl ass charT,
class traits = char_traits<charT>,
class Allocator = allocator<charT> >
cl ass basic_string;

t ypedef basic_string<char> string;

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (180 / 189) [2003-6-11 20:02:43]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cstandard

Effective C++, 2E

}

Notice how basi c_st ri ng hasdefault valuesforitst rai t s and Al | ocat or parameters. Thisistypical of the standard
library. It offersflexibility to those who need it, but "typical” clients who just want to do the "normal” thing can ignore the
complexity that makes possible the flexibility. In other words, if you just want string objects that act more or less like C strings,
you can use st r i ng objects and remain merrily ignorant of the fact that you're really using objects of type

basi c_string<char, char_traits<char>, all ocator<char>>.

Well, usually you can. Sometimes you have to peek under the hood a bit. For example, Item 34 discusses the advantages of
declaring a class without providing its definition, and it remarks that the following is the wrong way to declarethest ri ng

type:

class string; [/ this will conpile, but
/1 you don't want to do it

Setting aside namespace considerations for amoment, the real problem hereisthat st ri ng isn't aclass, it'satypedef. It would
be niceif you could solve the problem this way:

t ypedef basic_string<char> string;
but that won't compile. "What isthisbasi c_st ri ng of which you speak?," your compilers will wonder, though they'll
probably phrase the question rather differently. No, to declare st r i ng, you would first have to declare all the templates on
which it depends. If you could do it, it would look something like this:
t enpl at e<cl ass charT> struct char _traits;
tenpl at e<cl ass T> cl ass all ocator;
t enpl at e<cl ass charT,
class traits = char_traits<charT>,
class Allocator = allocator<charT> >
cl ass basic_string;
t ypedef basic_string<char> string;
However, you can't declare st r i ng. At least you shouldn't. That's because library implementers are allowed to declare
st ri ng (or anything else in the st d namespace) differently from what's specified in -the standard as long as the result offers
standard-conforming behavior. For example, abasi ¢_st r i ng implementation could add a fourth template parameter, but

that parameter's default value would have to yield code that acts as the standard says an unadorned basi ¢_st ri ng must.

End result? Don't try to manually declare st r i ng (or any other part of the standard library). Instead, just include the
appropriate header, e.g. <stri ng>.

With this background on headers and templates under our belts, we're in a position to survey the primary components of the
standard C++ library:

. Thestandard C library. It's ill there, and you can till useit. A few minor things have been tweaked here and there,
but for all intents and purposes, it's the same C library that's been around for years.

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (181 / 189) [2003-6-11 20:02:43]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cstandard

Effective C++, 2E

. lostreams. Compared to "traditional” iostream implementations, it's been templatized, its inheritance hierarchy has been
modified, it's been augmented with the ability to throw exceptions, and it's been updated to support strings (viathe
st ri ngst r eamclasses) and internationalization (vialocales — see below). Still, most everything you've come to
expect from the iostream library continues to exist. In particular, it still supports stream buffers, formatters,
manipulators, and files, plus the objectsci n, cout , cerr,and cl og. That meansyou cantreat st ri ngsand filesas
streams, and you have extensive control over stream behavior, including buffering and formatting.

. Strings. st ri ng objects were designed to eliminate the need to use char * pointersin most applications. They support
the operations you'd expect (e.g., concatenation, constant-time access to individual charactersviaoper at or[], etc.),
they're convertible to char * sfor compatibility with legacy code, and they handle memory management automatically.
Some st r i ng implementations employ reference counting (see Item M29), which can lead to better performance (in

both time and space) than char * -based strings.

. Containers. Stop writing your own basic container classes! The library offers efficient implementations of vectors (they
act like dynamically extensible arrays), lists (doubly-linked), queues, stacks, deques, maps, sets, and bitsets. Alas, there
are no hash tablesin the library (though many vendors offer them as extensions), but compensating somewhat is the fact
that st r i ngsare containers. That's important, because it means anything you can do to a container (see below), you can
asodotoastring.

What's that? Y ou want to know how | know the library implementations are efficient? Easy: the library specifies each
classsinterface, and part of each interface specification is a set of performance guarantees. So, for example, no matter
how vect or isimplemented, it's not enough to offer just access to its elements, it must offer constant-time access. If it
doesn't, it'snot avalid vect or implementation.

In many C++ programs, dynamically allocated strings and arrays account for most uses of newand del et e, and
new/del et e errors— especialy leaks caused by failure to delete newed memory — are distressingly common. If you
usestring andvect or objects (both of which perform their own memory management) instead of char * sand
pointers to dynamically alocated arrays, many of your news and del et eswill vanish, and so will the difficulties that
frequently accompany their use (e.g., Items 6 and 11).

. Algorithms. Having standard containersis nice, but it's even nicer when there's an easy way to do things with them. The
standard library offers over two dozen easy ways (i.e., predefined functions, officially known as algorithms — they're
really function templates), most of which work with all the containersin the library — as well as with built-in arrays!

Algorithmstreat the contents of a container as a sequence, and each agorithm may be applied to either the sequence
corresponding to al the valuesin a container or to a subsequence. Among the standard algorithms aref or _each
(apply afunction to each element of a sequence), f i nd (find the first location in a sequence holding a given value —
Item M35 shows itsimplementation), count _i f (count the number of elementsin a sequence for which agiven
predicate istrue), equal (determine whether two sequences hold equal-valued elements), sear ch (find the first
position in one sequence where a second sequence occurs as a subsequence), copy (copy one sequence into another),
uni que (remove duplicate values from a sequence), r ot at e (rotate the values in a sequence) and sor t (sort the
values in a sequence). Note that thisisjust a sampling of the algorithms available; the library contains many others.

Just as container operations come with performance guarantees, so do algorithms. For example, the st abl e_sort
algorithm is required to perform no more than O(N log N) comparisons. (If the "Big O" notation in the previous sentence
isforeign to you, don't sweat it. What it really meansisthat, broadly speaking, st abl e_sort must offer performance
at the same level as the most efficient general-purpose serial sorting algorithms.)

. Support for internationalization. Different cultures do thingsin different ways. Like the C library, the C++ library
offers features to facilitate the production of internationalized software, but the C++ approach, though conceptually akin
to that of C, isdifferent. It should not surprise you, for example, to learn that C++'s support for internationalization

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (182 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#6073
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5473

Effective C++, 2E

makes extensive use of templates, and it takes advantage of inheritance and virtual functions, too.

The primary library components supporting internationalization are facets and locales. Facets describe how particular
characteristics of a culture should be handled, including collation rules (i.e., how stringsin the local character set should
be sorted), how dates and times should be expressed, how numeric and monetary values should be presented, how to
map from message identifiers to (natural) language-specific messages, etc. Locales bundle together sets of facets. For
example, alocale for the United States would include facets describing how to sort strings in American English, read and
write dates and times, read and write monetary and numeric values, etc., in away appropriate for people in the USA. A
locale for France, on the other hand, would describe how to perform these tasks in a manner to which the French are
accustomed. C++ allows multiple locales to be active within a single program, so different parts of an application may
employ different conventions.

. Support for numeric processing. The end for FORTRAN may finally be near. The C++ library offers atemplate for
complex number classes (the precision of the real and imaginary parts may bef | oat , doubl e, or | ong doubl e) as
well asfor specia array types specifically designed to facilitate numeric programming. Objects of typeval ar r ay, for
example, are defined to hold elements that are free from aliasing. This allows compilers to be much more aggressive in
their optimizations, especially for vector machines. The library also offers support for two different types of array dlices,
aswell as providing algorithms to compute inner products, partial sums, adjacent differences, and more.

. Diagnostic support. The standard library offers support for three ways to report errors. via C's assertions (see ltem 7),

viaerror numbers, and via exceptions. To help provide some structure to exception types, the library defines the
following hierarchy of exception classes:

Exceptions of typel ogi c_er r or (or its subclasses) represent errorsin the logic of software. In theory, such errors
could have been prevented by more careful programming. Exceptions of typer unt i me_er r or (or its derived classes)
represent errors detectable only at runtime.

Y ou may use these classes asis, you may inherit from them to create your own exception classes, or you may ignore
them. Their use is not mandatory.

Thislist doesn't describe everything in the standard library. Remember, the specification runs over 300 pages. Still, it should
give you the basic lay of the land.

The part of the library pertaining to containers and algorithms is commonly known as Standard Template Library (the STL —
see Item M35). Thereis actually athird component to the STL — Iterators — that | haven't described. Iterators are pointer-like
objectsthat allow STL algorithms and containers to work together. Y ou need not understand iterators for the high-level
description of the standard library | give here. If you're interested in them, however, you can find examples of their use in Items
39 and M35.

The STL isthe most revolutionary part of the standard library, not because of the containers and algorithms it offers (though
they are undeniably useful), but because of its architecture. Simply put, the architecture is extensible: you can add to the STL.
Of course, the components of the standard library itself are fixed, but if you follow the conventions on which the STL is built,
you can write your own containers, algorithms, and iterators that work as well with the standard STL components as the STL
components work with one another. Y ou can also take advantage of STL-compliant containers, algorithms, and iterators written
by others, just as they can take advantage of yours. What makes the STL revolutionary isthat it's not really software, it's a set of
conventions. The STL components in the standard library are simply manifestations of the good that can come from following
those conventions.

By using the components in the standard library, you can generally dispense with designing your own from-the-ground-up
mechanisms for stream 1/O, strings, containers (including iteration and common manipul ations), internationalization, numeric
data structures, and diagnostics. That leaves you alot more time and energy for the really important part of software

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (183 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5473
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5473

Effective C++, 2E

development: implementing the things that distinguish your wares from those of your competitors.

Back to Item 49: Familiarize yourself with the standard library.
Continue to Afterword

Item 50: Improve your understanding of C++.

Theresalot of stuff in C++. C stuff. Overloading stuff. Object-oriented stuff. Template stuff. Exception stuff. Namespace stuff.
Stuff, stuff, stuff! Sometimesit can be overwhelming. How do you make sense of al that stuff?

It's not that hard once you understand the design goals that forged C++ into what it is. Foremost amongst those goals are the
following:

. Compatibility with C. Lotsand lots of C exists, as do lots and lots of C programmers. C++ takes advantage of and
builds on — er, | mean it "leverages' — that base.

. Efficiency. °Bjarne Stroustrup, the designer and first implementer of C++, knew from the outset that the C programmers
he hoped to win over wouldn't ook twice if they had to pay a performance penalty for switching languages. As aresult,
he made sure C++ was competitive with C when it came to efficiency — like within 5%.

. Compatibility with traditional tools and environments. Fancy development environments run here and there, but
compilers, linkers, and editors run almost everywhere. C++ is designed to work in environments from mice to
mainframes, so it brings along as little baggage as possible. Y ou want to port C++? Y ou port alanguage and take
advantage of existing tools on the target platform. (However, it is often possible to provide a better implementation if,
for example, the linker can be modified to address some of the more demanding aspects of inlining and templates.)

. Applicability toreal problems. C++ wasn't designed to be a nice, pure language, good for teaching students how to
program, it was designed to be a powerful tool for professional programmers solving real problemsin diverse domains.
The real world has some rough edges, so it's no surprise there's the occasional scratch marring the finish of the tools on
which the prosrely.

These goals explain a multitude of language details that might otherwise merely chafe. Why do implicitly-generated copy
constructors and assignment operators behave the way they do, especially for pointers (see Items 11 and 45)? Because that's
how C copiesand assigns st r uct s, and compatibility with C isimportant. Why aren't destructors automatically virtual (see
Item 14), and why must implementation details appear in class definitions (see Item 34)? Because doing otherwise would
impose a performance penalty, and efficiency is important. Why can't C++ detect initialization dependencies between non-local
static objects (see Item 47)? Because C++ supports separate trandation (i.e., the ability to compile source modules separately,
then link several object files together to form an executable), relies on existing linkers, and doesn't mandate the existence of
program databases. As aresult, C++ compilers almost never know everything about an entire program. Finally, why doesn't
C++ free programmers from tiresome duties like memory management (see Items 5-10) and low-level pointer manipul ations?
Because some programmers need those capabilities, and the needs of real programmers are of paramount importance.

This barely hints at how the design goals behind C++ shape the behavior of the language. To cover everything would take an
entire book, so it's convenient that Stroustrup wrote one. That book is °The Design and Evolution of C++ (Addison-Wesley,
1994), sometimes known as simply "D&E." Read it, and you'll see what features were added to C++, in what order, and why.
You'll aso learn about features that were rejected, and why. You'll even get the inside story on how thedynam c_cast
feature (see Items 39 and M 2) was considered, rejected, reconsidered, then accepted — and why. If you're having trouble

making sense of C++, D& E should dispel much of your confusion.
The Design and Evolution of C++ offers awealth of insightsinto how C++ came to be what it is, but it's nothing like a formal

specification for the language. For that you must turn to the °international standard for C++, an impressive exercise in formalese
running some 700 pages. There you can read such riveting prose as this:

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (184 / 189) [2003-6-11 20:02:43]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=bjarne
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=desec
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR#77216
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cstandard

Effective C++, 2E

A virtual function call uses the default arguments in the declaration of the virtual function determined by the
static type of the pointer or reference denoting the object. An overriding function in a derived class does not
acquire default arguments from the function it overrides.

This paragraph is the basis for Item 38 ("Never redefine an inherited default parameter value"), but | hope my treatment of the
topic is somewhat more accessible than the text above.

The standard is hardly bedtime reading, but it's your best recourse — your standard recourse — if you and someone else (a
compiler vendor, say, or adeveloper of some other tool that processes source code) disagree on what isand isn't C++. The
whole purpose of a standard isto provide definitive information that settles arguments like that.

The standard's official title isamouthful, but if you need to know it, you need to know it. Hereit is. International Standard for
Information Systems—Programming Language C++. It's published by Working Group 21 of the °International Organization for
Standardization (1SO). (If you insist on being picky about it, it's really published by — I am not making this up — ISO/IEC
JTCL/SC22/WG21.) Y ou can order a copy of the official standard from your national standards body (in the United States,
that's ANSI, the ~AAmerican National Standards Institute), but copies of |ate drafts of the standard — which are quite similar
(though not identical) to the final document — are freely available on the World Wide Web. A good placeto ook for acopy is
at °the Cygnus Solutions Draft Standard C++ Page, but given the pace of change in cyberspace, don't be surprised if thislink is
broken by the time you try it. If it is, your favorite Web search engine will doubtless turn up a URL that works.

As| said, The Design and Evolution of C++ isfine for insights into the language's design, and the standard is great for nailing
down language details, but it would be nice if there were a comfortable middle ground between D& E's view from 10,000 meters
and the standard's micron-level examination. Textbooks are supposed to fill this niche, but they generally drift toward the
standard's perspective, whereby what the language is receives alot more attention than why it's that way.

Enter the ARM. The ARM is another book, °The Annotated C++ Reference Manual, by Margaret Ellis and *Bjarne Stroustrup
(Addison-Wesley, 1990). Upon its publication, it became the authority on C++, and the international standard started with the
ARM (aong with the existing C standard) asits basis. In the intervening years, the language specified by the standard has in
some way's parted company with that described by the ARM, so the ARM is no longer the authority it once was. It's still a
useful reference, however, because most of what it saysis still true, and it's not uncommon for vendors to adhere to the ARM
specification in areas of C++ where the standard has only recently settled down.

What makes the ARM really useful, however, isn't the RM part (the Reference Manual), it'sthe A part: the annotations. The
ARM provides extensive commentary on why many features of C++ behave the way they do. Some of thisinformationisin
D&E, but much of it isn't, and you do want to know it. For instance, here's something that drives most people crazy when they
first encounter it:

cl ass Base {

publi c:
virtual void f(int x);
1
cl ass Derived: public Base {
publi c:
virtual void f(double *pd);
1
Derived *pd = new Derived;
pd->f (10); /'l error!

The problemisthat Der i ved: : f hidesBase: : f , even though they take different parameter types, so compilers demand that

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (185 / 189) [2003-6-11 20:02:43]

http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=iso
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=ansi
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=cygdsc
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=anncrm
http://www.awl.com/cseng/cgi-bin/cdquery.pl?name=bjarne

Effective C++, 2E

thecall tof takeadoubl e*, which theliteral 10 most certainly is not.

Thisisinconvenient, but the ARM provides an explanation for this behavior. Suppose that when you called f , you really did
want to call theversionin Der i ved, but you accidentally used the wrong parameter type. Further suppose that Der i ved is
way down in an inheritance hierarchy and that you were unaware that Der i ved indirectly inherits from some base class
BaseC ass, and that BaseC ass declaresavirtual functionf that takesani nt . In that case, you would have inadvertently
caled Based ass: : f, afunction you didn't even know existed! Thiskind of error could occur frequently where large class

hierarchies are used, so Stroustrup decided to nip it in the bud by having derived class members hide base class members on a
per-name basis.

Note, by the way, that if the writer of Der i ved wantsto allow clientsto accessBase: : f , thisis easily accomplished viaa
simple usi ng declaration:

cl ass Derived: public Base {
publi c:
usi ng Base: :f; /1l inport Base::f into
/1l Derived' s scope
virtual void f(double *pd);

b
Derived *pd = new Derived;
pd->f (10); /1l fine, calls Base::f

For compilers not yet supporting usi ng declarations, an aternative isto employ an inline function:

class Derived: public Base {

publi c:
virtual void f(int x) { Base::f(x); }
virtual void f(double *pd);

b
Derived *pd = new Derived;
pd->f (10); /1l fine, calls Derived::f(int),

/1 which calls Base::f(int)

Between D& E and the ARM, you'll gain insights into the design and implementation of C++ that make it possible to appreciate
the sound, no-nonsense architecture behind a sometimes baroque-looking facade. Fortify those insights with the detailed
information in the standard, and you've got a foundation for software development that leads to truly effective C++.

Back to Item 50: Improve your understanding of C++.

Afterword

If, having digested 50 ways to improve your programs and designs, you still find yourself hungry for C++ guidelines, you may
be interested in my second book on the subject, More Effective C++: 35 New Ways to Improve Your Programs and Design.
Like Effective C++, More Effective C++ covers material that's essential for effective C++ software development, but Effective
C++ focuses more on fundamentals, while More Effective C++ aso spends time on newer language features and on advanced
programming techniques.

Y ou can find detailed information on More Effective C++ — including four complete Items, the book's list of recommended
reading, and more — at the °Mor e Effective C++ web site. In case you can't wait, the contents of More Effective C++ are

file:/l/E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (186 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/INDEX.HTM

Effective C++, 2E

summarized below.

Dedication
Acknowledgments
Introduction
Basics
[tem 1: Distinguish between pointers and references
[tem 2: Prefer C++-style casts
[tem 3: Never treat arrays polymorphically
[tem 4: Avoid gratuitous default constructors
Operators
[tem 5: Be wary of user-defined conversion functions
Item 6: Distinguish between prefix and postfix forms of increment and decrement operators
ltem 7: Never overload &&, | | , or,
ltem 8 Understand the different meanings of newand del et e
Exceptions
[tem 9: Use destructors to prevent resource leaks
Item 10: Prevent resource leaks in constructors
Item 11: Prevent exceptions from leaving destructors
Item 12: Understand how throwing an exception differs from passing a parameter or calling a virtual function
Item 13: Catch exceptions by reference
Item 14: Use exception specifications judiciously
Item 15: Understand the costs of exception handling
Efficiency
Item 16: Remember the 80-20 rule
Item 17: Consider using lazy evaluation
Item 18: Amortize the cost of expected computations
Item 19: Understand the origin of temporary objects
Item 20: Facilitate the return value optimization
Item 21. Overload to avoid implicit type conversions
Item 22: Consider using op= instead of stand-alone op

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/EC/E_FR.HTM (187 / 189) [2003-6-11 20:02:43]

file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#ded
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#pxi
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#p1
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#10979
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#11029
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#77216
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#84818
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5218
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5701
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5970
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5262
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#77702
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#33985
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#71622
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#5292
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#38223
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#39749
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#76790
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#38224
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#6011
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#40989
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#66196
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#40995
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41011
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41124
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41177
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#45310
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41187
file:///E|/Resources/C++/effective%20c++/Effective_C+++_CD/Effective_C+++_CD/MEC/M_FR.HTM#41251

	本地磁盘
	Content
	Dedication
	Acknowlegements
	Shifting from C to C++
	Item 1:Prefer const and inline to #define
	Item 2: Prefer <iostream> to <stdio.h>.
	Item 3: Prefer new and delete to malloc and free.
	Item 4: Prefer C++-style comments.

	Memory Management
	Item 5: Use the same form in corresponding uses of new and delete.
	Item 6: Use delete on pointer members in destructors.
	Item 7: Be prepared for out-of-memory conditions.
	Item 8: Adhere to convention when writing operator new and operator delete.
	Item 9: Avoid hiding the "normal" form of new.
	Item 10: Write operator delete if you write operator new.

	Constructors, Destructors, and Assignment Operators
	Item 11: Declare a copy constructor and an assignment operator for classes with dynamically

allocated memory.
	Item 12: Prefer initialization to assignment in constructors.
	Item 13: List members in an initialization list in the order in which they are declared.
	Item 14: Make sure base classes have virtual destructors.
	Item 15: Have operator= return a reference to *this.
	Item 16: Assign to all data members in operator=.
	Item 17: Check for assignment to self in operator=.

	Classes and Functions: Design and Declaration
	Item 18: Strive for class interfaces that are complete and minimal.
	Item 19: Differentiate among member functions, non-member functions, and friend functions.
	Item 20: Avoid data members in the public interface.
	Item 21: Use const whenever possible.
	Item 22: Prefer pass-by-reference to pass-by-value.
	Item 23: Don't try to return a reference when you must return an object.
	Item 24: Choose carefully between function overloading and parameter defaulting.
	Item 25: Avoid overloading on a pointer and a numerical type.
	Item 26: Guard against potential ambiguity.
	Item 27: Explicitly disallow use of implicitly generated member functions you don't want.
	Item 28: Partition the global namespace.

	Classes and Functions: Implementation
	Item 29: Avoid returning "handles" to internal data.
	Item 30: Avoid member functions that return non-const pointers or references to members less

accessible than themselves.
	Item 31: Never return a reference to a local object or to a dereferenced pointer initialized by new

within the function.
	Item 32: Postpone variable definitions as long as possible.
	Item 33: Use inlining judiciously.
	Item 34: Minimize compilation dependencies between files.

	Inheritance and Object-Oriented Design
	Item 35: Make sure public inheritance models "isa."
	Item 36: Differentiate between inheritance of interface and inheritance of implementation.
	Item 37: Never redefine an inherited nonvirtual function.
	Item 38: Never redefine an inherited default parameter value.
	Item 39: Avoid casts down the inheritance hierarchy.
	Item 40: Model "has-a" or "is-implemented-in-terms-of" through layering.
	Item 41: Differentiate between inheritance and templates.
	Item 42: Use private inheritance judiciously.
	Item 43: Use multiple inheritance judiciously.
	Item 44: Say what you mean; understand what you're saying.

	Miscellany
	Item 45: Know what functions C++ silently writes and calls.
	Item 46: Prefer compile-time and link-time errors to runtime errors.
	Item 47: Ensure that non-local static objects are initialized before they're used.
	Item 48: Pay attention to compiler warnings.
	Item 49: Familiarize yourself with the standard library.
	Item 50: Improve your understanding of C++.

	Afterword

