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Main Text: 

With current diets and production practices, feeding 7.6 billion people is degrading terrestrial and 

aquatic ecosystems, depleting water resources, and driving climate change (1, 2). It is particularly 

challenging to find solutions that are effective across the large and diverse range of producers that 

characterize the agricultural sector. More than 570 million farms produce in almost all the world’s 

climates and soils (3), each using vastly different agronomic methods; average farm sizes vary 

from 0.5 hectares in Bangladesh to 3000 hectares in Australia (3); average mineral fertilizer use 

ranges from 1kg of nitrogen per hectare in Uganda to 300kg in China (4); and although four crops 

provide half of the world’s food calories (4), more than 2 million distinct varieties are recorded in 

seed vaults (5). Further, products range from minimally to heavily processed and packaged, with 

17 of every 100kg of food produced transported internationally, increasing to 50kg for nuts and 

56kg for oils (4). 

Previous studies have assessed aspects of this heterogeneity by using geospatial data sets (6–8), 

but global assessments using the inputs, outputs, and practices of actual producers have been 

limited by data. The recent rapid expansion of the life cycle assessment (LCA) literature is 

providing this information by surveying producers around the world. LCA then uses models to 

translate producer data into environmental impacts with sufficient accuracy for most decision-

making (9–11). 

To date, efforts to consolidate these data or build new large-scale data sets have covered 

greenhouse gas (GHG) emissions only (8, 12, 13), agriculture only (13–16), small numbers of 

products (8, 14–16), and predominantly Western European producers (12–16) and have not 
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corrected for important methodological differences between LCAs (12–16). Here, we present a 

globally reconciled and methodologically harmonized database on the variation in food’s multiple 

impacts. Our results show the need for far-reaching changes in how food’s environmental impacts 

are managed and communicated. 

Building the multi-indicator global database 

We derived data from a comprehensive meta-analysis, identifying 1530 studies for potential 

inclusion, which were supplemented with additional data received from 139 authors. Studies were 

assessed against 11 criteria designed to standardize methodology, resulting in 570 suitable studies 

with a median reference year of 2010 (17). The data set covers ~38,700 commercially viable farms 

in 119 countries (fig. S2) and 40 products representing ~90% of global protein and calorie 

consumption. It covers five important environmental impact indicators (18): land use; freshwater 

withdrawals weighted by local water scarcity; and GHG, acidifying, and eutrophying emissions. 

For crops, yield represents output for a single harvest. Land use includes multiple cropping (up to 

four harvests per year), fallow (uncultivated periods between crops), and economic allocation to 

crop coproducts such as straw. This makes it a stronger indicator of both farm productivity and 

food security than yield. 

The system we assess begins with inputs (the initial effect of producer choice) and ends at retail 

(the point of consumer choice) (fig. S1). For each study, we recorded the inventory of outputs and 

inputs (including fertilizer quantity and type, irrigation use, soil, and climatic conditions). Where 

data were not reported, for example, on climate, we used study coordinates and spatial data sets to 

fill gaps. We recorded environmental impacts at each stage of the supply chain. For GHG 
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emissions, we further disaggregated the farm stage into 20 emission sources. We then used the 

inventory to recalculate all missing emissions. For nitrate leaching and aquaculture, we developed 

new models for this study (17). 

Studies included provided ~1050 estimates of post-farm processes. To fill gaps in processing, 

packaging, or retail, we used additional meta-analyses of 153 studies providing 550 observations. 

Transport and losses were included from global data sets. Each observation was weighted by the 

share of national production it represents, and each country by its share of global production. We 

then used randomization to capture variance at all stages of the supply chain (17). 

We validated the global representativeness of our sample by comparing average and 90th-

percentile yields to Food and Agriculture Organization (FAO) data (4), which reconcile to within 

±10% for most crops. Using FAO food balance sheets (4), we scaled up our sample data. Total 

arable land and freshwater withdrawals reconcile to FAO estimates. Emissions from deforestation 

and agricultural methane fall within ranges of independent models (17). 

Environmental impacts of the entire food supply-chain 

Today’s food supply chain creates ~13.7 billion metric tons of carbon dioxide equivalents (CO2eq), 

26% of anthropogenic GHG emissions. A further 2.8 billion metric tons of CO2eq (5%) are caused 

by nonfood agriculture and other drivers of deforestation (17). Food production creates ~32% of 

global terrestrial acidification and ~78% of eutrophication. These emissions can fundamentally 

alter the species composition of natural ecosystems, reducing biodiversity and ecological resilience 

(19). The farm stage dominates, representing 61% of food’s GHG emissions (81% including 

deforestation), 79% of acidification, and 95% of eutrophication (table S17). 
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Today’s agricultural system is also incredibly resource intensive, covering ~43% of the world’s 

ice- and desert-free land. Of this land, ~87% is for food and 13% is for biofuels and textile crops 

or is allocated to nonfood uses such as wool and leather. We estimate that two-thirds of freshwater 

withdrawals are for irrigation. However, irrigation returns less water to rivers and groundwater 

than industrial and municipal uses and predominates in water-scarce areas and times of the year, 

driving 90-95% of global scarcity-weighted water use (17). 



6 

100g protein
Beef (beef herd) 724 20 50 42 164

Lamb & Mutton 757 12 20 30 185

Beef (dairy herd) 490 9.1 17 7.3 22

Crustaceans (farmed) 1.0k 5.4 18 0.4 2.0

Cheese 1.9k 5.1 11 4.4 41

Pig Meat 116 4.6 7.6 4.8 11

Fish (farmed) 612 2.5 6.0 0.4 3.7

Poultry Meat 326 2.4 5.7 3.8 7.1

Eggs 100 2.6 4.2 4.0 5.7

Tofu 354 1.0 2.0 1.1 2.2

Groundnuts 100 0.6 1.2 1.8 3.5

Other Pulses 115 0.5 0.8 4.6 7.3

Peas 438 0.3 0.4 1.2 3.4

Nuts 199 -2.2 0.3 2.7 7.9

Grains 23k 1.0 2.7 1.7 4.6

1 liter
Milk 1.8k 1.7 3.2 1.1 8.9

Soymilk 354 0.6 1.0 0.3 0.7

1000 kcal
Cassava 288 0.4 1.4 0.8 1.9

Rice (flooded) 7.8k 0.4 1.2 0.3 0.8

Oatmeal 139 0.3 0.9 1.1 2.9

Potatoes 604 0.2 0.6 0.6 1.2

Wheat & Rye (Bread) 8.8k 0.3 0.6 0.4 1.4

Maize (Meal) 6.2k 0.2 0.4 0.3 0.7

1 liter
Palm Oil 220 3.6 7.3 1.7 2.4

Soybean Oil 497 2.4 6.3 5.3 11

Olive Oil 411 2.9 5.4 7.9 26

Rapeseed Oil 1.8k 2.5 3.8 5.2 11

Sunflower Oil 519 2.5 3.6 8.4 18

1kg
Tomatoes 855 0.4 2.1 0.1 0.8

Brassicas 40 0.2 0.5 0.2 0.6

Onions & Leeks 37 0.3 0.5 0.1 0.4

Root Vegetables 43 0.2 0.4 0.2 0.3

1kg
Berries 183 0.8 1.5 0.3 2.4

Bananas 246 0.6 0.9 0.3 1.9

Apples 125 0.3 0.4 0.3 0.6

Citrus 377 0.1 0.4 0.4 0.9

1kg
Cane Sugar 116 0.9 3.2 1.2 2.0

Beet Sugar 209 1.2 1.8 1.2 1.8

1 unit
Beer (5% ABV) 695 0.14 0.24 0.05 0.22

Wine (12.5% ABV) 154 0.07 0.14 0.07 0.14

1 serving
Dark Chocolate (50g) 162 -0.01 2.3 1.7 3.4

Coffee (15g, 1 cup) 346 0.08 0.4 0.13 0.3
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Fig. 1. Estimated global variation in GHG emissions, land use, terrestrial acidification, 

eutrophication, and scarcity-weighted freshwater withdrawals, within and between 40 major 

foods. n = farm or regional inventories. Land use is area times years occupied (m2∙year). (A) 

Protein-rich products. Grains are also shown here given they contribute 41% of global protein 

intake, despite lower protein content. (B) Milks. (C) Starch-rich products. (D) Oils. (E) 

Vegetables. (F) Fruits. (G) Sugars. (H) Alcoholic beverages (1 unit = 10ml alcohol). (I) 

Stimulants. 

Highly variable and skewed environmental impacts 

We now group products by their primary dietary role and express impacts per unit of primary 

nutritional benefit (Fig. 1 and fig. S3). Immediately apparent in our results is the high variation in 

impact among both products and producers. Ninetieth-percentile GHG emissions of beef are 105kg 

of CO2eq per 100g of protein, and land use (area multiplied by years occupied) is 370 m2∙year. 

These values are 12 and 50 times greater than 10th-percentile dairy beef impacts (which we report 

separately given that its production is tied to milk demand). Tenth-percentile GHG emissions and 

land use of dairy beef are then 36 and 6 times greater than those of peas. High variation within and 

between protein-rich products is also manifest in acidification, eutrophication, and water use. 

Within the major crops wheat, maize, and rice, 90th-percentile impacts are more than three times 

greater than 10th-percentile impacts on all five indicators. Within major growing areas for these 

crops (the Australian wheat belt, the U.S. corn belt, and the Yangtze river basin), land use becomes 

less variable, but we observe the same high levels of variation in all other indicators. This 
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variability, even among producers in similar geographic regions, implies substantial potential to 

reduce environmental impacts and enhance productivity in the food system. 

For many products, impacts are skewed by producers with particularly high impacts. This creates 

opportunities for targeted mitigation, making an immense problem more manageable. For 

example, for beef originating from beef herds, the highest-impact 25% of producers represent 56% 

of the beef herd’s GHG emissions and 61% of the land use (an estimated 1.3 billion metric tons of 

CO2eq and 950 million hectares of land, primarily pasture). Across all products, 25% of producers 

contribute on average 53% of each product’s environmental impact (fig. S3). For scarcity-

weighted freshwater withdrawals, the skew is particularly pronounced: Producing just 5% of the 

world’s food calories creates ~40% of the environmental burden. We will now explore how to 

access these mitigation opportunities through heterogenous producers. 

Mitigation through producers 

Enable producers to monitor multiple impacts 

The first step in mitigation is estimating producer impacts. Prior research (e.g., 7, 8, 14) has 

suggested that readily measurable proxies predict farm-stage impacts, avoiding the need for 

detailed assessment. From our larger data set, which includes more practices and geographies than 

prior studies, we assess the predictive power of common proxies, including crop yield, nitrogen 

use efficiency, milk yield per cow, liveweight gain, pasture area, and feed conversion ratios. 

Although most proxies significantly covary with impact, they make poor predictors when used 

alone, explaining little of the variation among farms (R2 = 0-27% in 47 of 48 proxy-impact 

combinations assessed) (fig. S4). 
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Prior research has also suggested using one impact indicator to predict others (20). We find weakly 

positive and sometimes negative relationships between indicators. For similar products globally, 

correlations between indicators are low (R2 = 0-30% in 26 of 32 impact-impact combinations 

assessed) (fig. S4). Pork, poultry meat, and milk show higher correlations between acidification 

and eutrophication (R2 ≤ 54%), explained by the dominant role of manure in these impacts, but 

this does not generalize to other products or indicators. The same conclusion holds for farms in 

similar geographies or systems (fig. S5). 

Monitoring multiple impacts and avoiding proxies supports far better decisions and helps prevent 

harmful, unintended consequences. However, two recent studies suggest that data on practices and 

geography, required to quantify impacts, must come directly from producers (11, 21); that 

quantifying impacts with the use of satellite or census data misses much of the variation among 

farms. 

Set and incentivize mitigation targets 

When land use or emissions are low, we find trade-offs between indicators for many crops (fig. 

S5). This reflects diminishing marginal yield with increasing inputs as crops tend toward their 

maximum yields (22). For example, for already low-emission Northern European barley farms, 

halving land use can increase GHG emissions per kilogram of grain by 2.5 times and acidification 

by 3.7 times. To explore trade-offs further, we pair observations from the same study, location, 

and year that assess a practice change (fig. S6). Of the nine changes assessed, only two (changing 

from monoculture to diversified cropping and improving degraded pasture) deliver statistically 

significant reductions in both land use and GHG emissions. 
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Geography influences these trade-offs. For example, in the Australian wheat belt, where farmers 

practice low-rainfall, low-input farming, we find that both output per hectare and GHG emissions 

are in the bottom 15% globally. The environmental and social importance of different impacts also 

varies locally, given land scarcity, endemic biodiversity, and water quality, among other factors. 

Setting regional and sector-specific targets will help producers navigate trade-offs and make 

choices that align with local and global priorities. 

Meet targets by choosing from multiple practice changes 

To meet these targets, policy might encourage widespread adoption of certain practices. However, 

the environmental outcomes of many practices, such as conservation agriculture (23), organic 

farming (fig. S6), and even integrated systems of best practice (24), are highly variable. Using our 

data set, we can generalize these findings. To do this, we disaggregate each environmental 

indicator into its sources or drivers. We consider practice change as a package of measures that 

targets one or more of these sources. If producers have different impact sources, the effects of 

practice change will be variable. 

We find that sources of impact vary considerably among farms producing the same product (Fig. 

2 and figs. S7-S9). Priority areas for reducing impact for one farm may be immaterial for another. 

For example, measures to reduce direct nitrous oxide emissions from synthetic and organic 

fertilizer, such as biochar application, are included in many mitigation estimates (25). However, 

for a third of global crop calorie production, these emissions represent less than 5% of farm-stage 

GHGs. It may be the case that low-impact farms have similar impact drivers. We again find 
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variable sources of impact, even for low-impact farms (Fig. 2, C and D). Reducing impacts means 

focusing on different areas for different producers and, by implication, adopting different practices. 

Fig. 2. Contributions of emission sources to total farm-stage GHG emissions. (A, and B). Gray 

bars show 10th- and 90th-percentile contributions. Shaded bars represent the distribution. For 

example, the 90th-percentile contribution of organic fertilizer N2O to farm-stage emissions is 16%, 

but for most wheat producers the contribution is near 0%. Density is estimated using a Gaussian 

kernel with bandwidth selection performed with biased cross-validation. (C, and D) Contributions 

of emission sources for example producers with below median GHG emissions. 
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To explore this further, we use sensitivity analysis (26) to decompose the variance in each 

product’s impact into its sources. Numerous sources contribute to variance (fig. S10). Most 

notably, for all crop calorie production globally, differences in fallow duration and multiple 

cropping drive 40% of the variance in land use. This is important as most strategies to increase 

productivity are focused on increasing single crop yields (27). But for many producers, increasing 

cropping intensity through the use of early-maturing varieties, intercropping, catch crops, and 

enhanced irrigation can provide more economically viable and trade-off–free ways to boost 

productivity and reduce impacts (27). 

Geography plays a major role in this variation and affects the economic and environmental 

desirability of different practices (28). However, at the heart of agriculture is changing site 

conditions to enhance productivity (such as liming, terracing, or installing drainage), meaning that 

statements on the importance of geography have limitations. Nevertheless, some impact sources 

stand out. We find that freshwater aquaculture ponds create 0-450g of methane per kg of liveweight 

(for context, enteric fermentation in dairy cows creates ~30-400g per kg of liveweight). Of this 

variation, a third is explained by temperature (17), which accelerates methanogenesis and net 

primary production. Improving aeration and limiting addition of surplus feed to ponds can abate 

these emissions, particularly important in warm countries. Further, for every kilogram of nitrogen 

applied to crops, between 60-400g is lost in reactive forms. Of this wide range, ~40% is explained 

by site conditions, including soil pH, temperature, and drainage (17). Prior research has also found 

that the potential of soil to store carbon varies significantly with soil properties, slope, and prior 

practice (29). 
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Providing producers with multiple ways to reduce their environmental impacts recognizes the 

variability in sources and drivers of impact but requires a step change in thinking: that practices 

such as conservation agriculture or organic farming are not environmental solutions in themselves 

but options that producers choose from to achieve environmental targets. 

However, some practice changes can be pursued across all producers. Methane from flooded rice, 

enteric methane from ruminants, and concentrate feed for pigs and poultry are sizeable globally, 

representing 30% of food’s GHG emissions; are material for all producers, contributing at least 

17% of farm-stage emissions (Fig. 2B and fig. S7); and can be mitigated with relatively trade-off–

free approaches such as shorter and shallower rice flooding (30), improving degraded pasture (fig. 

S6), and improving lifetime animal productivity (8). Further, emissions from deforestation and 

cultivated organic soils drive on average 42% of the variance in each product’s agricultural GHG 

emissions (fig. S10) and dominate the highest-impact producers’ emissions (fig. S11), further 

justifying ongoing efforts to curb forest loss and limit cultivation on peatlands. 

Communicate impacts up the supply-chain 

Processors, distributors, and retailers can substantially reduce their own impacts. For any product, 

90th-percentile post-farm emissions are 2-140 times larger than 10th-percentile emissions, 

indicating large mitigation potential (fig. S12). For example, returnable stainless-steel kegs create 

just 20g of CO2eq per liter of beer, but recycled glass bottles create 300-750g of CO2eq, and bottles 

sent to landfills create 450-2500g of CO2eq. 

Processing, more durable packaging, and greater usage of coproducts can also reduce food waste. 

For example, wastage of processed fruit and vegetables is ~14% lower than that of fresh fruit and 
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vegetables, and wastage of processed fish and seafood is ~8% lower (24). Providing processors 

and retailers with information about the impacts of their providers could encourage them to reduce 

waste where it matters most. For products such as beef, distribution and retail losses contribute 12-

15% of emissions (fig. S13), whereas the sum of emissions from packaging, transport, and retail 

contributes just 1-9%. Here, reducing losses is a clear priority. 

As a third strategy, procurement could source from low-impact farms. Although this strategy is 

important, and possible only with information about the impacts of providers, it has clear 

limitations. To be effective, it relies on high-impact production not simply being purchased 

elsewhere in the market. The case of the Roundtable on Sustainable Palm Oil (RSPO) shows that 

this is hard to achieve: despite one-fifth of 2017 palm oil production being certified, there remains 

virtually no demand in China, India, and Indonesia (31). Alternatively, this strategy would be 

effective if higher prices for sustainable production incentivized low-impact producers to increase 

output or high-impact producers to change practices. The case of organic food shows how passing 

premiums to consumers limits total market size and widespread practice change. 

However, processors and retailers routinely demand that products meet taste, quality, and food 

safety standards. These markets are concentrated, with just 10 retailers representing 52% of U.S. 

grocery sales and 15% of global sales (32). This sometimes means that standards achieve market 

transformation (33), where virtually all producers adhere to gain market access. A fourth strategy 

for producers is setting environmental standards. These are particularly important: Although many 

environmental issues can be monitored and mitigated in a flexible way, issues such as harmful 

pesticide usage and deforestation require strict controls, and issues such as on-farm biodiversity 

are hard to quantify (28). Procurement, farming organizations, and international policy-makers 
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must come together to implement a safety net for global agriculture—comprehensive standards to 

manage the worst and hardest-to-quantify environmental issues, extending the successes of 

existing schemes and enabling a flexible mitigation approach to operate effectively. 
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Producer mitigation limits and the role of consumers 

Though producers are a vital part of the solution, their ability to reduce environmental impacts is 

limited. These limits can mean that a product has higher impacts than another nutritionally 

equivalent product, however it is produced. 

In particular, the impacts of animal products can markedly exceed those of vegetable substitutes 

(Fig. 1). To such a degree that meat, aquaculture, eggs, and dairy use ~83% of the world’s farmland 

and contribute 56-58% of food’s different emissions, despite providing only 37% of our protein 

and 18% of our calories. Can animal products be produced with sufficiently low impacts to redress 

this vast imbalance? Or will reducing animal product consumption deliver greater environmental 

benefits? 

We find that the impacts of the lowest-impact animal products exceed average impacts of 

substitute vegetable proteins across GHG emissions, eutrophication, acidification (excluding nuts), 

and frequently land use (Fig. 1 and data S2). These stark differences are not apparent in any product 

groups except protein-rich products and milk. 

Although tree crops can temporarily sequester carbon and reduce nutrient leaching, the impact of 

nuts is dominated by low-yielding cashews and water-, fertilizer-, and pesticide-intensive almonds. 

Production of nuts doubled between 2000 and 2015 (4), and more work is required to improve 

their resource use efficiency. Although aquaculture can have low land requirements, in part by 

converting by-products into edible protein, the lowest-impact aquaculture systems still exceed 

emissions of vegetable proteins. This challenges recommendations to expand aquaculture (1) 

without major innovation in production practices first. Further, though ruminants convert ~2.7 
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billion metric tons of grass dry matter, of which 65% grows on land unsuitable for crops (34), into 

human-edible protein each year, the environmental impacts of this conversion are immense under 

any production method practiced today. 

Fig. 3. Mean and 10th percentile GHG emissions of protein-rich products across three major 

production stages. Red lines represent average vegetable protein emissions, and blue lines 

represent 10th-percentile emissions. The gray line represents average emissions excluding nuts, 

which can temporarily sequester carbon if grown on cropland or pasture. To calculate 10th-

percentile emissions by stage, we averaged across farms that have total emissions between the 5th 

and 15th percentiles, controlling for burden shifting between stages. 
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Using GHG emissions (Fig. 3), we identified five primarily biophysical reasons for these results. 

These reasons suggest that the differences between animal and vegetable proteins will hold into 

the future unless major technological changes disproportionately target animal products. First, 

emissions from feed production typically exceed emissions of vegetable protein farming. This is 

because feed-to-edible protein conversion ratios are greater than 2 for most animals (13, 34); 

because high usage of low-impact by-products is typically offset by low digestibility and growth; 

and because additional transport is required to take feed to livestock. Second, we find that 

deforestation for agriculture is dominated (67%) by feed, particularly soy, maize, and pasture, 

resulting in losses of above- and below-ground carbon. Improved pasture management can 

temporarily sequester carbon (25), but it reduces life-cycle ruminant emissions by a maximum of 

22%, with greater sequestration requiring more land. Third, animals create additional emissions 

from enteric fermentation, manure, and aquaculture ponds. For these emissions alone, 10th-

percentile values are 0.4-15kg of CO2eq per 100g of protein. Fourth, emissions from processing, 

particularly emissions from slaughterhouse effluent, add a further 0.3-1.1kg of CO2eq, which is 

greater than processing emissions for most other products. Last, wastage is high for fresh animal 

products, which are prone to spoilage. 

Mitigation through consumers 

Today, and probably into the future, dietary change can deliver environmental benefits on a scale 

not achievable by producers. Moving from current diets to a diet that excludes animal products 

(table S13) (35) has transformative potential, reducing food’s land use by 3.1 (2.8-3.3) billion 

hectares (a 76% reduction), including a 19% reduction in arable land; food’s GHG emissions by 

6.6 (5.5-7.4) billion metric tons of CO2eq (a 49% reduction); acidification by 50% (45-54%); 



19 

eutrophication by 49% (37-56%); and scarcity-weighted freshwater withdrawals by 19% (−5 to 

32%) for a 2010 reference year. The ranges are based on producing new vegetable proteins with 

impacts between the 10th- and 90th-percentile impacts of existing production. In addition to the 

reduction in food’s annual GHG emissions, the land no longer required for food production could 

remove ~8.1 billion metric tons of CO2eq from the atmosphere each year over 100 years as natural 

vegetation reestablishes and soil carbon re-accumulates, based on simulations conducted in the 

IMAGE integrated assessment model. For the United States, where per capita meat consumption 

is three times the global average, dietary change has the potential for a far greater effect on food’s 

different emissions, reducing them by 61-73%. See supplementary text (17) for diet compositions 

and sensitivity analyses and fig. S14 for alternative scenarios. 

Consumers can play another important role by avoiding high-impact producers. We consider a 

second scenario where consumption of each animal product is halved by replacing production with 

above-median GHG emissions with vegetable equivalents. This achieves 71% of the previous 

scenario’s GHG reduction (a reduction of ~10.4 billion metric tons of CO2eq per year, including 

atmospheric CO2 removal by regrowing vegetation) and 67, 64, and 55% of the land use, 

acidification, and eutrophication reductions. Further, lowering consumption of more discretionary 

products (oils, sugar, alcohol, and stimulants) by 20% by avoiding production with the highest 

land use reduces the land use of these products by 39% on average. For emissions, the reductions 

are 31 to 46%, and for scarcity-weighted freshwater withdrawals, 87%. 

Communicating average product impacts to consumers enables dietary change and should be 

pursued. Though dietary change is realistic for any individual, widespread behavioral change will 

be hard to achieve in the narrow timeframe remaining to limit global warming and prevent further, 
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irreversible biodiversity loss. Communicating producer impacts allows access to the second 

scenario, which multiplies the effects of smaller consumer changes. 

An integrated mitigation framework 

Fig. 4. Graphical representation of the mitigation framework. 

In Fig. 4 we illustrate a potential framework implied by our findings, prior research, and emerging 

policy (9). First, producers would monitor their impacts using digital tools (36). Data would be 

validated against known ranges for each value (e.g., maximum yields given inputs) and validated 

or certified independently. In the United States these tools have already been integrated with 

existing farm software (31); in Africa and South Asia they are being trialed with 2G mobile phones 

(37); and in China they have been operated by extension services with extremely successful results 

(24). 
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Second, policy-makers would set targets on environmental indicators and incentivize them by 

providing producers with credit or tax breaks or by reallocating agricultural subsidies that now 

exceed half a trillion dollars a year worldwide (38). Third, the assessment tools would provide 

multiple mitigation and productivity enhancement options to producers. Ideally these tools would 

become platforms that consolidate the vast amounts of research conducted by scientists around the 

world, while also sharing producer best practices. In particular, practice sharing offers a very 

effective way to engage producers (24). Maximum flexibility also ensures least-cost mitigation 

(39) and supports producer-led innovation (24).

Finally, impacts would be communicated up the supply chain and through to consumers. For 

commodity crops that are hard to trace (31), this may not be feasible and mitigation efforts may 

have to focus on producers. For animal products, stringent traceability is already required in many 

countries (40), suggesting that communicating impacts is most feasible where it matters the most. 

Communication could occur through a combination of environmental labels, taxes or subsidies 

designed to reflect environmental costs in product prices (35), and broader education on the true 

cost of food. 

We have consolidated information on the practices and impacts of a wide range of producers. From 

this research, we have provided a unified exposition of the environmental science for making major 

changes to the food system. We hope this stimulates progress in this crucially important area. 
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