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Some pitfalls of least-squares polynomial (LSP) smoothing (better known to analytical chemists as
Savitzky—Golay smoothing) are demonstrated and discussed, as well as some remedies. For
instance, smoothing by long LSP sequences leads to transmission zeros, phase reversals, and
overshoots that may be objectionable in some applications. An alternative method, the binomial
smoothing filter, is described and some of its properties are presented. It is shown to be preferable
to LSP smoothing in many cases. It is faster, better behaved in both the data and the frequency
domains for many applications, and simpler to use and to program or to implement in hardware.
Finally, the action of a filter of a given order is easy to predict.

PACS numbers: 84.30.Vn

INTRODUCTION

Least-squares polynomial (LSP) smoothing is a very old
technique described in many manuals on numerical analysis
to reduce high-frequency noise and improve the signal-to-
noise ratio of data.'= It is also often used to obtain smoothed
derivatives.'™ It will be shown in Sec. VIII that smoothing
can also be used to produce high-pass filtering useful for
extracting small signals from large nonlinear backgrounds
and removing low-frequency trends.

In 1964, Savitzky and Golay® published (somewhat er-
roneous) coefficients for LSP smoothings up to 25 points
from the first- to the fifth-degree polynomials and for the
first to the fifth derivative. As mentioned by Madden,’ this
paper has since been widely cited, from which it may be
inferred that the technique has been and is still widely used.
In fact, many manufacturers of data-acquisition instruments
even implement the five-point third-degree LSP smoothing
as part of standard hardware or software packages. Since its
use is so widespread, it seems worthwhile to make its users
aware of some of its dangers and limitations. The present
paper does not dwell on the caveats of smoothing in general
but underlines some of the pitfalls that may result from the
indiscriminate use of this particular LSP technique, and de-
scribes another method which is more efficient computa-
tionally, is not subject to these pitfalls, and has other desir-
able properties.

. GENERAL PROPERTIES OF SMOOTHING
FORMULAS

Let {x {n= ..., —2, —1,0,1,2,...) be a given
data sequence which one wishes to smooth. The computa-
tional algorithm or filter for the smoothing process is as-
sumed to be a linear weighting of the input data sequence.®
This is also called moving average smoothing or convolution
of the data sequence by the filter coefficients. The weighting
factors are the coefficients of the filter. Thus, the smoothed
output data {y,} are given by

NP
Vo= S bexa s (1)
k:—NP
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where b, = filter coefficients symmetrical about the central
coefficient b, such that b , =b,, and 2N, + 1 = total
number of coefficients in the filter, where N, is any positive
integer.

The problem is now to determine the coefficients b,
that provide a smoothing action having desirable properties.
According to Schoenberg,” a sufficient condition for {4, } to
be a smoothing formula is

N,
S =1
k= —N,
and
Np
z 1bk|<w’
k= — N,

while its characteristic function

& (u) = by + 2b,cosu + 2b,cos 2u + ... 2)

satisfies the condition
— 1< (u)<1  (O<u<2n).

Replacing u by 277j/N, wherej =0,1,2, ... , N — l,itis
seen that the characteristic function is nothing else than ¥
times the real part of the digital Fourier transform of the
sequence b, evaluated over N points.’® Schoenberg® also
states that it is desirable for an efficient smoothing formula
to have its characteristic function satisfy the more restrictive
condition

0<¢ (u)<1. (3)

It will be seen below why this condition is particularly signif-
icant in some cases.

1l. FOURIER ANALYSIS

Explained now is why the above smoothing coefficients
are chosen to have even symmetry and to be odd in number
(2N, + 1). It is well known'® that if the smoothing coeffi-
cients b, satisfy these conditions, the Fourier transform of
the coefficients or transfer function of the filter is purely real,
i.e., as pointed out by Kaiser and Reed,® the phase function is
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identically zero for all frequencies and the phase shift
between input and output is zero and independent of fre-
quency. This seems evident since the phase response of a
filter is the arctangent of the imaginary part of its transfer
function divided by its real part. However, it is not men-
tioned in Ref. 8 that if the transfer function is real and nega-
tive in any given frequency range, the resulting phase shift is
7 instead of 0, thus leading to phase reversals at these fre-
quencies.

For reference in the rest of this paper, we shall make use
of the following standard notation. Let X; be the digital
Fourier transform of the N-point data sequence {x, }. We
write

x<oX, (,k=0,1,2,...,N—1) (4)
where
1 N—1
X = (—) Y x, exp(—i2ajk /N ) (5)
N/ ¥=o
is the frequency behavior of x,
and
N—-1
%= 3 X expliznjk /N) (6
i=o0

is the data (or time) behavior resulting from a given frequen-
cy content X;.

For convenience we shall make use of the normalized
frequency variable v.% Let £, be the sampling frequency, i.e.,
the reciprocal of the interval T between each of the N data
points: f; = 1/T. The exponent in Egs. (5) and (6) may be
rewritten as i27kfT, where the frequency variable fis j/NT.
In terms of the sampling frequency f;, this becomes i27kf /f,.
Now, the so-called Nyquist frequency fj is half the sampling
frequency: f, = f,/2, so that the exponent becomes imkf /f,,
when expressed in terms of f,,. Let v be defined as the nor-
malized frequency f/f,. The exponent then becomes imkv.
This maps the Nyquist interval 0<j<N /2 to the interval
0<v< 1. The number of points per cycle in the data domain is
hence given by 2/v.

In the same fashion, let

by—H(v), (7)

with ¥>2N, + 1, the number of smoothing coefficients.
The smoothing or convolution operation as defined in Eq. (1)
is written

Vi = by*x,

and is commutative and associative.'® b, is also the impulse
response of the filter since if the impulse function 8 (k) is

defined as
k=
8k ) = [1 0

0 otherwise,

b, »6k)=b,.
H (v) is called the transfer function of the filter.

From the convolution theorem,!°

bi*x, =y oY (V) =H (V)X (v), (8)
so that in the frequency domain the convolution operation is
transformed into a complex multiplication.
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lil. LEAST-SQUARES POLYNOMIAL SMOOTHING

A (2N, + 1)-point LSP smoothing of degree 7 is per-
formed by replacing the k th data point x, by the value, at
that point, of the calculated power series of degree n < 2N,

+ 1 best fitting the data points x, _ y toX, | in the least-
squares sense. The procedure is repeated for each k. This
reduces to a single smoothing formula'~ depending only on
n and N, except for the N, points at each end of the data
sequence.

Let us now examine some properties of these LSP
smoothing formulas.

Forn=1and N, = 1,

b, =1{1,1,1}/3
and
HWw)=(1+2cosmv)/3,

where the factor 1/N has been left out for simplicity. Figure
1(a) shows H (v) as a function of v.
Forn=1and N, =2,

b, =1{1,1,1,1,1}/5
and
H(v)=(1+2cosmv +2cos 2mv)/5

[see Fig. 1(b}].
Forn=3and N, =2,

b, =1{-3,12,17,12, —3}/35
and
H(v)= (17 + 24 cos mv — 6 cos 2mv)/35

[Fig. 1(c)].
Forn=3and N, = 3,

b,=1{-2,3,676,3, —2}/21
and
HWv)=(7+ 12 cos mv + 6 cos 2mv — 4 cos 3mv)/21

[Fig. 1(d)].

It may be noticed that in all cases H (1) #0, that there are
transmissions zeros (or more accurately near zeros because
of the sampled nature of digital data; true transmission zeros
occur only if their frequency v, is such that 2/v, is an integer,
which is relatively exceptional) at the frequency where H (v)
crosses the axis, and that there are frequency ranges where
H (v) <0, so that phase reversals will occur in these ranges.
The number of zero crossings is a function of both n and N,,,
andsincen=1, 3, 5,... and N,>(n + 1)/2, it is given by
N, — (n — 1)/2. The percentage of frequencies where H (v) is
negative decreases with » but increases with N,. Figure 2(a)
shows the behavior of H (v) vs v for n = 3 and different values
of N,, while Fig. 2(b) shows the same for n = 5. Finally, it
may also be noticed that some of the coefficients b, are nega-
tive so that overshoots and undershoots will result since the
b, are the impulse response of the smoothing.

To show to what extent these factors may affect some
data Fig. 3(a) shows a simulated data sequence and the re-
sulting smoothed sequence for a 17-point LSP smoothing
sequence of degree 3, while Fig. 3(b) shows the same for a 25-
point sequence of degree 3. Figure 3(c) shows the same data
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smoothed by a 25-point binomial filter to be described below.
The data sequence simply consists of two sine wave trains
offset from the base line. The normalized frequencies are,
respectively, v = 0.187 (~ 11 points per cycle) for the left-
most train and v = 0.280 (~ 7 points per cycle) for the other

-0.2F

H(y) —

-0.2}

i 1 1

04 [eX3 [eX]

V —

FIG. 2. (a) Transfer function H (v) of the LSP smoothings withn = 3 for ¥,
=2,3,4.5, showing the zero crossings and the regions where H (v) is nega-
tive. (b) Same as (a) for the LSP smoothings with n = 5 for N, = 3,4,5,6.
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one. This is intended to roughly simulate series of equally
spaced peaks similar to what might be encountered, for in-
stance, in molecular vibrational or rotational spectra. It is
clear in Figs. 3(a) and 3(b) that distortions of the data are
introduced by the smoothings even in the absence of noise.
Phase reversals at certain frequencies, as well as undershoots
and overshoots, are readily noticeable. These defects may
not be significant in all applications, but if for instance the
smoothed curves of Fig. 3 had been obtained from noisy

Amplitude

Amplitude

Amplitude

Fi1G. 3. (a) Hypothetical data (---) and the resulting smoothed curve (—) ob-
tained with the 17-point third-degree LSP smoothing formula. Notice how
the group on the right undergoes a 180° phase shift and severe distortions,
while the one on the left, at a slightly lower frequency, is not affected except
for some undershoots and an enhancement of the two outermost peaks. (b}
Same data (---) and the resulting smoothed curve (—) obtained with the 25-
point LSP third-degree smoothing formula. Here, it is the group on the left
that is phase shifted and distorted. Notice that the group on the right is also
distorted. (c) Same data (---) and the resulting smoothed curve (—) obtained
with the 25-point binomial filter. Notice the absence of distortion or phase
shift.
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experimental data, serious errors could occur in the interpre-
tation of such results if the smoothing had been done to en-
able the determination of the positions of the peaks. The
presence of overshoots may or may not be objectionable,
depending on the application, but they could in some cases
be mistaken for smaller peaks.

Of course, if the data have only low-frequency compo-
nents so that none lie above the frequency where the transfer
function becomes negative, there will be no phase reversals.
The undershoots will also be much smaller. These distor-
tions, therefore, stem mainly from the fact that a long
smoothing sequence and a low-degree polynomial are used
with rapidly varying data. This is an extreme example but
serves to illustrate what might happen if LSP smoothing is
used carelessly. Unfortunately, there is no clear-cut easily
used criterion to determine the maximum safe length of an
LSP smoothing sequence for a given degree of the polyno-
mial as a function of the rate of change of the data. On the
other hand, distortions of this type do not occur with the
low-pass binomial filter, as exemplified in Fig. 3(c), so that no
such criterion is needed.

Figure 4 shows that a 25-point LSP smoothing formula
of degree 3 (which is the degree expected to perform the
strongest smoothing action) applied to noisy data does not
remove high-frequency noise (which is usually the primary
aim of smoothing) as well as the 25-point binomial filter,
because H (1)#0.

IV. SOME REMEDIES

To reduce the effect of phase reversals, repeating a short
smoothing sequence 7 times will yield the transfer function
H (v}" and its negative terms will rapidly become negligible
as n increases. Even small values of n will ensure H (v)">0 if
n is even. In this respect, this is better than using a long
smoothing sequence once. However, the price paid for this is
a much higher cutoff frequency, a broader transition region,
and a lower slope in that region. For instance, to achieve the
same cutoff frequency as the 25-point third-degree LSP
smoothing formula, the 5-point third-degree formula must
be applied approximately 170 times. This is naturally an ex-

b}

AMPLITUDE
\/\

- 1 M : 1
0] 50 100 150

FIG. 4. (a) Same data as in Fig. 3 with added noise ( - - - ) and the resulting
smoothed curve (—) obtained with the 25-point third-degree LSP smooth-
ing formula. (b) Same data { - - - ) and the resulting smoothed curve (—) ob-
tained with the 25-point binomial filter.

1037 Rev. Sci. Instrum., Vol. 54, No. 8, August 1983

treme case and more advantageous tradeoffs between the
number of points in the sequence to be repeated and the
number of repetitions needed to obtain a given smoothing
action are possible. However, it is not readily apparent
which combination will yield the best results and this may be
considered a major drawback of LSP smoothing. Whereas
two applications of a (2¥, + 1)-point binomial smoothing
are exactly equivalent to one application of the longer se-
quence having [2(2N,) + 1] points, this is not the case for
LSP smoothing. Shorter sequences yield transfer functions
that have much higher cutoff frequencies and a large number
of applications is needed in order to obtain the same one as a
longer sequence. Thus, shorter LSP sequences are, as it were,
less “efficient,” as demonstrated in Fig. 5. This figure shows
that, whereas, the efficiency of the binomial filter is indepen-
dent of N, that of LSP smoothing increases very rapidly
with N,.

The term “efficiency” used here must not be confused
with the one used in the framework of optimum smoothing
(see, for instance, Papoulis''), where it designates how well a
filter maximizes the signal-to-noise ratio for the parameters
to be measured. There are indeed other smoothing filters,
some of which are described in Refs. 8, 9, and 11, that may be
preferable to either LSP or binomial smoothing in certain
applications. There are also cases not studied here where the
LSP technique might prove superior to the binomial filter.
One such case is that in which the data closely approximate a
polynomial. Also, one drawback of the binomial filter is that
it has only one parameter, so that the cutoff rate may not be
adjusted independently of the cutoff frequency. LSP
smoothing is more flexible in this respect since two param-
eters are available: the degree n of the polynomials and the
length N of the smoothing sequence.

V. THE BINOMIAL SMOOTHING FILTER

In the general case, a smoothing formula should have
the following properties:

(1) Zero phase shift at all frequencies unless the transfer
function is negligible at frequencies where there is some
phase shift. One good way to ensure this is to have H (v)>0 at
all frequencies in addition to b _, = b,.

(2) The sequence of smoothing coefficients &, should be
such that the smoothing introduces no undesirable side ef-
fects such as multiple peaks when only one is present in the
original data, or overshoots and undershoots in the response
to an impulse or to a step function. One good way to ensure
this is to have by > b, > . .. >pr > 0.

(3) Nowhere should the transfer function become > 1,
especially if repeated uses of the formula on the same data

FiG. 5. Relative efficiency of LSP
smoothings (O) for different values of
° N, compared with that of the bi-
nomial filter (@). n, is the number of
OS5k . 4 o o applications of N,-point third-de-

. gree LSP smoothings needed in or-
. der to obtain the same cutoff fre-
quency as with the 25-point
Np third-degree smoothing formula.

Binomial smoothing 1037

Downloaded 06 May 2009 to 132.246.170.171. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp



have to be performed, since some frequency components
would thereby be unduly enhanced.

Note that these are general criteria that are sufficient
but not necessary in all possible cases. There may indeed be
particular experimental cases where they may not apply to
the smoothing algorithm which optimizes the measurement
error of the desired parameters.®'! Still, they are applicable
in a wide range of situations and, therefore, useful.

One class of filters that has the above properties plus
others to be described below is the binomial filter, so called
because a (2N, + 1)-point smoothing sequence is defined by
the binomial coefficients

2N, N
= 47 (k=0,1,...,
by (N,, + k) / (k=0, N,) )

andb_, =b,.

For example, for N, = 1, we obtain b _ 5, = {1, 2, 1}/4,
for N, =2,b_, 1012 =1{1,4,6,4,1}/16, etc. The coeffi-
cients are found using Eq. (9) or by every other row of the
Pascal triangle. The transfer function for n repeated applica-
tions of the N, = 1 binomial filter has been shown'>~'* to be

H(v)=cos™ mv/2  (0<v<l). (10)

Thus, the transfer function is always positive and there are
no phase reversals. Figure 6 compares the response to a fre-

o
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FIG. 6. Comparison of the response to a frequency sweep of (a) the thifd—
order 17-point LSP smoothing and (b) the binomial filter with # = 8. Notice
the transmission zeros and phase reversals in (a) and the smooth decrease in

(b).
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quency sweep for the 17-point third-degree LSP smoothing
with that of the binomial filter with n = 8.

We now show that the binomial smoothing formula
with 2N, + 1 coefficients yields a maximally flat transfer
function with a zero of order 2 of H(v) — 1 at v=0and a
zeroof order 2N, — 1 of H (v)at v = 1. This filter is, further-
more, the maximally flat filter of order N ', with the lowest
cutoff frequency and the greatest slope in the transition re-
gion (see Fig. 7). Finally, its coefficients b, are all positive
and decrease monotonically with k.

According to Hermann,'® the maximally flat filter of
order n is given by

n—kfk4+m—1
Py =(1—x mz_o( " e, (11)
where
x=(l —cosmv)/2 (0g<v<]). (12)

There are exactly n possible values of k, for which P, , (x) has
azero of order k at x = 1 and P, , (x) — 1 has a zero of order
n —k + 1 atx =0. The value of & yielding the maximally
flat filter of order » having the lowest cutoff frequency and
steepest slope in the transition region is k¥ = n (Fig. 7).

In this case

P, =(1—x" (13)
Substituting the value of x from Eq. (12), the transfer func-
tion H (v) is obtained:

H)=[1~-{1 —cosmv)/2]" (14)

(15)
This is exactly the transfer function of a three-point binomial
smoothing applied » times.'>"'* H (v) — 1 has a zero of order
2 at v = 0 and H (v) has a zero of order 2x at v = 1, which
means that

H)=H'()=H"(1)= ... =H®>-"(1)=0.

It remains to be shown that this is identical to a
(2N, + 1)-coefficient binomial smoothing sequence. To do
this, we show that the three-point binomial smoothing of any

= cos™(mv/2) (O<v<l).

Po ok (V)

F1G. 7. Transfer functions of the ten possible maximally flat filters of order
n=10.
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binomial smoothing sequence of order » = N, is again a bi-
nomial smoothing but of order n + 1. That is, from Eq. (9):

1,2, 1}*(3":) - (i’::f) m=0,1,..., k). (16)

Indeed, a little algebra shows that

( 2n ) 2(2n) ( 2n )_(2n+2)
m——l+ m+m+l_m+l'
Thus, a given lowest-cutoff maximally flat filter of order n
may be obtained in two ways: one application of the binomial
filter of order n, i.e., 2n + 1 coefficients b, given by Eq. (9)
with n = N, or better, n applications of the three-point bi-
nomial smoothing formula. The results are identical except
for end effects. One way of handling end effects is to keep the
end points fixed, i.e., y, = x, and yy = x. With the three-
point binomial smoothing formula, this may be done direct-
ly. In the case of any linear averaging filter, there are two
widely used ways of handling end effects: one is to use N,
special formulas to calculate the N, first and last points of
the smoothed data sequence to avoid losing them?; another is
to keep the end points fixed by extending the data sequence
by N, points at both ends so that

(17)

Xy _; =X —x; —x) =2x, — X,
and

Xyyi =2y —Xy_, {i=12,...,N,),

provided that the original data sequence contains
N>N, +1 points. This will ensure that y, =x, and
YN = Xy

Binomial smoothings of any order »; can be applied
successively in any order with easily predictable properties
such as half-transmission frequency and maximum slope.
The resulting transfer function will always be a binomial
filter of order n = Zn, with the transfer function of Eq. (15):

cos®” mv/2.

The required order 7 for a given half-transmission frequency
v,,, is easily calculated and is given by

n = 1/log,[{cos mv,,,/2)"%] (0<v,,,<0.5), (18)
while the half-transmission frequency for a given » is

V1,2 = (2/marccos 0.5"%", (19)
The frequency of maximum slope is given by

vo = (2/m)arctan(2n — 1)~ '/2 (20)
and the slope at that frequency is

H'(vo) = — mn2n)~ "1 — 1/2n)" 2, 21)

The importance of choosing the right cutoff frequency for
efficient smoothing of a signal having a given frequency con-
tent has been pointed out by Kaiser and Reed.? Finally, as n
(or N,, which is equivalent in the case of the binomial filter)
increases, both b, and H (v) tend extremely rapidly toward a
Gaussian shape. This is a consequence of the central limit
theorem for protracted self-convolution.'® Rapid conver-
gence is a desirable property because the Gaussian function
is very well behaved: it is always positive and decreases very
rapidly and monotonically toward zero. This tendency is
much weaker in the case of repeated LSP smoothings and
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occurs only for very large numbers n of repetitions (many
hundreds). There is obviously no such tendency as a function
of N,.

VIi. COMPUTATION

The (2N, + 1)-point binomial filter is most effectively
computed by using N, repeated three-point binomial filters.
Each three-point binomial smoothing {y, { of an N-point
data sequence {x, } can be performed in only 2(N — 1) addi-
tions and divisions by 2 if it is done in two passes of the
{1, 1}/2 smoothing as follows:

Zy=(x,+x)/2,...,
Ze = +x0l/2, ..
2y =&Xy_1 +X5)/2,

y2=(21+z2)/2""’
Ve =z + 22, ...,

In_1=@n_2+2Zv_ V2,
and finally y, = x, and y, = x,. This keeps the endpoints
fixed and avoids cumulative end effects. The total number of
operations for the equivalent of a (2N, + 1)-point filter is
thus 2(N — 1)N, additions plus 2(¥N — 1)N, divisions by 2,
which are merely shifts in binary arithmetic and are per-
formed very rapidly. This algorithm may be performed in
place without additional memory except for x, and x, and
lends itself extremely well to very efficient machine-lan-
guage programming or hardware implementation. This is
much faster than using longer binomial sequences directly or
LSP smoothings, where (2N, + 1)V integer multiplications,
2N,N additions, and N integer divisions are needed. A
further advantage of this algorithm is that the coefficients of
an n-point sequence do not have to be calculated or kept in
memory, which is necessarily the case with LSP smoothing.
The speed difference involved is far from being academic.
Depending on the word length and the architecture of the
processor used, execution times differing by a factor of 100
are easily reached for sequences of the same length.

When only relatively weak smoothing is needed, com-
putation time is usually irrelevant except in real-time appli-
cations. In some cases, however, such as in the extraction of
small signals from large backgrounds to be described below,
strong smoothing is often needed, sometimes repeatedly.
One such situation occurs when curve fitting of filtered sig-
nals is performed, since the fitting function (and often its
derivatives) must be repeatedly evaluated with different pa-
rameters. In order for a meaningful comparison with the
filtered data to be achieved, the function must be filtered
with the same filter. So must its derivatives if they are used in
the optimization procedure.'® The computation time thus
sometimes becomes important, even with large mainframe
computers, so that the computational efficiency of the algo-
rithm is not negligible in such cases.

All the filters described in the present work may also be
performed using digital Fourier transform techniques.'*'®
This may be computationally more efficient using Fast
Fourier Transform (FFT) algorithms if the smoothing se-
quence is extremely long. It, however, requires the data se-
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quence to have a number of points that is usually a power of
2. A special technique to maintain the endpoints fixed using
FFT methods has been described by Marchand and Veil-
lette. '

VII. FURTHER PROPERTIES OF THE BINOMIAL
FILTER

There are an infinity of possible N-point formulas that
do not have a maximally flat frequency response but have the
properties H (0) = 1, H (1) = 0, H (v)<1 and have no zeros,
real or complex in the Nyquist interval. However

THEOREM: Among all the possible N-point smoothing
formulas, the one with the sharpest cutoff having no zeros
(real or complex) in the Nyquist interval 0<v<1 and such
that H (0) = 1 and H (1) = 0, is the binomial smoothing for-
mula.

Proof Let N = 2N, + 1 andlet n = N,. The theorem is
true for n = 1 since it can easily be shown that the three-
point binomial smoothing formula is the only three-point
smoothing formula yielding H (0) = 1 and H (1) = 0.

In the general case,

H(v) = by + 2b, cos mv + 2b, cos 2mv
R 2pr cos N, mv.

Using the multiple angle formulas, a power series of order
n =N, in cos v is obtained. Using the substitution of Eq.
(12), x = (1/2){1 — cos 7v), the v = 0 to 1 interval is mapped
in the x = 1 to 0 interval. We, therefore, have a power series
P, (x) of order n in x. To satisfy the conditions H (0) = 1 and
H (1) =0, P,(x) must have at least one real zero at x = 1 and
P,(x) — 1 must have at least one real zero at x = 0. In the
case of the binomial filter, P, ,(x) = (1 — x)" from Eq. (13),
the slope at x = 0is — n, and P, , (x) has a zero of order » at
x = 1. We now show that if any P,(x) has a zero of order
k <natx = 1andits remaining (» — k } zeros are outside the
Nyquist interval, the slope at x = 0 will have a magnitude
smaller than n, ie., P,(x) will decrease more slowly than
P, . (x)sothat P, may be said to have a sharper cutoff than
P, Let

Pn+1(x) :pn(x)(zr _x)/zr!

where p,(x) has p,(0)=1and p,(1} =0, and z, is a real zero
outside the Nyquist interval 0<x<1.
Differentiating, one obtains

Pl X)) = [px)e, — x) — p,(x)]/z,,
and atx =0,

P 1(0)=p,(0) — p,(0Vz, = p,(0) — 1/Z,.
Since if z, is positive, it is by hypothesis greater than 1, then
P; . (0)>p;(0) — 1. If two complex conjugate roots z, and

z, with real parts outside the Nyquist interval are added in-
stead, one obtains

P, 2(x)=p,x)z, — x)z; — x)}/2,2,.
Differentiating,
P o x) = {pn(x)z, — x)(z; — x)

—p. Xz, — x) + (2, — x)1} /2,2,
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and
P, 5(0)=p,(0) = (z, + 2,)/2,2,.

Since the last term is always <2 (z, + z, and z,2, are real
because z, and z, are complex conjugate),

Pl 2>p0) 2.

Finally, since P,(x) = p,(x), then P{(0)= — 1, and P;(0)
> — 2 unless P,(x)=P,,(x) from Eq. (13), for which
P;,(0) = — 2. Increasing the order of P, (x) by adding real

or complex conjugate roots in this way, P/, (0) is always larg-
erthan P, ,(0)= —n. [ ]

It must be remembered that when cos 7v = 1 — 2x (Eq.
12) is substituted back into Eq. (11), the derivative of H (v) at
v = O becomes 0, so that the sharpest cutoff mentioned in the
theorem does not occur at zero frequency but at that given by
Eq. (20) as illustrated in Fig. 6(b).

VIIi. APPLICATIONS

The binomial filter may be applied wherever easily pre-
dictable smoothing is required. The application of smooth-
ing to improve signal-to-noise ratio has been discussed by
Kaiser and Reed® and Enke and Nieman.'” It is useful in
making data easier to interpret provided that proper per-
spective relative to measurement errors is maintained.

Some scientists also use differentiating smoothing in an
attempt to compensate for the fact that differentiation re-
duces the signal-to-noise ratio. This can easily be performed
with the binomial filter by convolving either the filter coeffi-
cients or the data by the sequence {1, 0, — 1}/2. This may
be repeated any number of times to obtain the second-,
third-, and higher-order derivatives, after which the data are
low-pass filtered in the usual manner.

A high-pass filter useful for removing slowly varying
backgrounds or trends is easily obtained using the transfer
function

Hwv)=1—cos® 7v/2.

This may be performed by subtracting the data, low-pass
filtered by the binomial filter of order n, from the original
data.'>"'*!61%-19 This technique has proven very powerful
and has been used extensively in this laboratory for over ten
years by Marmet and co-workers and Marchand and co-
workers to extract very small narrow structures from much
larger nonlinear backgrounds as described in Refs. 12-14,
16, 18-19, and references given therein. This may indeed be
one of most useful applications of the binomial filter. It could
not be performed using LSP smoothing because severe dis-
tortion of the small narrow structures to be enhanced would
be caused by overshoots and phase reversals, since the tech-
nique often needs strong smoothing. It is indeed necessary in
this application that the smoothing sequence be longer than
the width of the features to be extracted, which is exactly the
situation in which LSP smoothing has been shown in Sec. 111
to introduce such distortions.
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