#!/usr/bin/env python
# coding=utf-8
#
# Copyright (C) 2009 Michel Chatelain.
#               2007 Tavmjong Bah, tavmjong@free.fr
#               2006 Georg Wiora, xorx@quarkbox.de
#               2006 Johan Engelen, johan@shouraizou.nl
#               2005 Aaron Spike, aaron@ekips.org
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
#
# Changes:
#  * This program is derived by Michel Chatelain from funcplot.py.
#    His changes are in the Public Domain.
#  * Michel Chatelain, 17-18 janvier 2009, a partir de funcplot.py
#  * 20 janvier 2009 : adaptation a la version 0.46 a partir de la nouvelle version de funcplot.py
#

import math
import random
from math import pi
from inkex.utils import math_eval

import inkex


def drawfunction(
    t_start,
    t_end,
    xleft,
    xright,
    ybottom,
    ytop,
    samples,
    width,
    height,
    left,
    bottom,
    fx="cos(3*t)",
    fy="sin(5*t)",
    times2pi=False,
    isoscale=True,
    drawaxis=True,
):
    if times2pi:
        t_start *= 2 * pi
        t_end *= 2 * pi

    # coords and scales based on the source rect
    scalex = width / (xright - xleft)
    xoff = left
    coordx = lambda x: (x - xleft) * scalex + xoff  # convert x-value to coordinate
    scaley = height / (ytop - ybottom)
    yoff = bottom
    coordy = lambda y: (ybottom - y) * scaley + yoff  # convert y-value to coordinate

    # Check for isotropic scaling and use smaller of the two scales, correct ranges
    if isoscale:
        if scaley < scalex:
            # compute zero location
            xzero = coordx(0)
            # set scale
            scalex = scaley
            # correct x-offset
            xleft = (left - xzero) / scalex
            xright = (left + width - xzero) / scalex
        else:
            # compute zero location
            yzero = coordy(0)
            # set scale
            scaley = scalex
            # correct x-offset
            ybottom = (yzero - bottom) / scaley
            ytop = (bottom + height - yzero) / scaley

    # functions specified by the user
    f1 = math_eval(fx, "t")
    f2 = math_eval(fy, "t")

    # step is increment of t
    step = (t_end - t_start) / (samples - 1)
    third = step / 3.0
    ds = step * 0.001  # Step used in calculating derivatives

    a = []  # path array
    # add axis
    if drawaxis:
        # check for visibility of x-axis
        if ybottom <= 0 <= ytop:
            # xaxis
            a.append(["M", [left, coordy(0)]])
            a.append(["l", [width, 0]])
        # check for visibility of y-axis
        if xleft <= 0 <= xright:
            # xaxis
            a.append(["M", [coordx(0), bottom]])
            a.append(["l", [0, -height]])

    # initialize functions and derivatives for 0;
    # they are carried over from one iteration to the next, to avoid extra function calculations.
    # print("RET: {}".format(f1(1)))
    x0 = f1(t_start)
    y0 = f2(t_start)

    # numerical derivatives, using 0.001*step as the small differential
    t1 = t_start + ds  # Second point AFTER first point (Good for first point)
    x1 = f1(t1)
    y1 = f2(t1)
    dx0 = (x1 - x0) / ds
    dy0 = (y1 - y0) / ds

    # Start curve
    a.append(["M", [coordx(x0), coordy(y0)]])  # initial moveto
    for i in range(int(samples - 1)):
        t1 = (i + 1) * step + t_start
        t2 = t1 - ds  # Second point BEFORE first point (Good for last point)
        x1 = f1(t1)
        x2 = f1(t2)
        y1 = f2(t1)
        y2 = f2(t2)

        # numerical derivatives
        dx1 = (x1 - x2) / ds
        dy1 = (y1 - y2) / ds

        # create curve
        a.append(
            [
                "C",
                [
                    coordx(x0 + (dx0 * third)),
                    coordy(y0 + (dy0 * third)),
                    coordx(x1 - (dx1 * third)),
                    coordy(y1 - (dy1 * third)),
                    coordx(x1),
                    coordy(y1),
                ],
            ]
        )
        t0 = t1  # Next segment's start is this segments end
        x0 = x1
        y0 = y1
        dx0 = dx1  # Assume the functions are smooth everywhere, so carry over the derivatives too
        dy0 = dy1
    return a


class ParamCurves(inkex.EffectExtension):
    def add_arguments(self, pars):
        pars.add_argument("--t_start", type=float, default=0.0, help="Start t-value")
        pars.add_argument("--t_end", type=float, default=1.0, help="End t-value")
        pars.add_argument(
            "--times2pi",
            type=inkex.Boolean,
            default=True,
            help="Multiply t-range by 2*pi",
        )
        pars.add_argument("--xleft", type=float, default=-1.0, help="x-value of left")
        pars.add_argument("--xright", type=float, default=1.0, help="x-value of right")
        pars.add_argument(
            "--ybottom", type=float, default=-1.0, help="y-value of bottom"
        )
        pars.add_argument("--ytop", type=float, default=1.0, help="y-value of top")
        pars.add_argument("-s", "--samples", type=int, default=30, help="Samples")
        pars.add_argument("--fofx", default="cos(3*t)", help="fx(t) for plotting")
        pars.add_argument("--fofy", default="sin(5*t)", help="fy(t) for plotting")
        pars.add_argument(
            "--remove", type=inkex.Boolean, default=True, help="Remove rectangle"
        )
        pars.add_argument(
            "--isoscale", type=inkex.Boolean, default=False, help="Isotropic scaling"
        )
        pars.add_argument("--drawaxis", type=inkex.Boolean, default=False)
        pars.add_argument("--tab", default="sampling")

    def effect(self):
        for node in self.svg.selection:
            if isinstance(node, inkex.Rectangle):
                # create new path with basic dimensions of selected rectangle
                newpath = inkex.PathElement()
                x = float(node.get("x"))
                y = float(node.get("y"))
                width = float(node.get("width"))
                height = float(node.get("height"))

                # copy attributes of rect
                newpath.style = node.style
                newpath.transform = node.transform

                # top and bottom were exchanged
                newpath.path = drawfunction(
                    self.options.t_start,
                    self.options.t_end,
                    self.options.xleft,
                    self.options.xright,
                    self.options.ybottom,
                    self.options.ytop,
                    self.options.samples,
                    width,
                    height,
                    x,
                    y + height,
                    self.options.fofx,
                    self.options.fofy,
                    self.options.times2pi,
                    self.options.isoscale,
                    self.options.drawaxis,
                )
                newpath.set("title", self.options.fofx + " " + self.options.fofy)

                # newpath.set('desc', '!func;' + self.options.fofx + ';' + self.options.fofy + ';'
                #                                      + `self.options.t_start` + ';'
                #                                      + `self.options.t_end` + ';'
                #                                      + `self.options.samples`)

                # add path into SVG structure
                node.getparent().append(newpath)
                # option whether to remove the rectangle or not.
                if self.options.remove:
                    node.getparent().remove(node)


if __name__ == "__main__":
    ParamCurves().run()
