

Parsing VI The LR(1) Table Construction

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

Building the Canonical Collection

A A

Start from $s_0 = closure([S' \rightarrow S, EOF])$

Repeatedly construct new states, until all are found

The algorithm

Comp 412 Fall 2003

```
s_{o} \leftarrow closure([S' \rightarrow S, \underline{EOF}])
S \leftarrow \{s_{o}\}
k \leftarrow 1
while (S is still changing)

\forall s_{j} \in S \text{ and } \forall x \in (T \cup NT)
s_{k} \leftarrow goto(s_{j}, x)
record s_{j} \rightarrow s_{k} \text{ on } x
if s_{k} \notin S then

S \leftarrow S \cup s_{k}
k \leftarrow k + 1
```

> Fixed-point computation

- Loop adds to S
- > $S \subseteq 2^{\text{ITEMS}}$, so S is finite

Worklist version is faster

Remember, this is

the left-recursive SheepNoise; EaC

shows the rightrecursive version

Computing Closures

Closure(s) adds all the items implied by items already in s

- Any item $[A \rightarrow \beta \bullet B\delta, \underline{a}]$ implies $[B \rightarrow \bullet \tau, x]$ for each production with B on the *lhs*, and each $x \in FIRST(\delta \underline{a})$
- Since $\beta B\delta$ is valid, any way to derive $\beta B\delta$ is valid, too

The algorithm

Closure(s)
while (s is still changing)

$$\forall$$
 items $[A \rightarrow \beta \cdot B\delta, \underline{a}] \in s$
 \forall productions $B \rightarrow \tau \in P$
 $\forall \underline{b} \in FIRST(\delta\underline{a}) // \delta$ might be a
if $[B \rightarrow \cdot \tau, \underline{b}] \notin s$
then add $[B \rightarrow \cdot \tau, \underline{b}]$ to s

- Classic fixed-point method
- \succ Halts because $s \subset$ Items
- Worklist version is faster
- Closure "fills out" a state

Example From SheepNoise

Initial step builds the item [Goal \rightarrow ·SheepNoise,EOF] and takes its closure()

Closure([Goal→·SheepNoise,EOF])

Item	From
[Goal→•SheepNoise, <u>EOF]</u>	Original item
[SheepNoise→•SheepNoise <u>baa,EOF]</u>	1, δ <u>a</u> is <u>EOF</u>
[SheepNoise→ • <u>baa,EOF]</u>	1, δ <u>a</u> is <u>EOF</u>
[SheepNoise→•SheepNoise <u>baa,baa</u>]	2, δ <u>a</u> is <u>baa</u> <u>EOF</u>
[SheepNoise→ · <u>baa,baa]</u>	2, δ <u>a</u> is <u>baa</u> <u>EOF</u>

 $\left\{ \begin{array}{l} [Goal \rightarrow \cdot SheepNoise, \underline{EOF}], \ [SheepNoise \rightarrow \cdot SheepNoise \ \underline{baa}, \underline{EOF}], \\ [SheepNoise \rightarrow \cdot \ \underline{baa}, \underline{EOF}], \ [SheepNoise \rightarrow \cdot SheepNoise \ \underline{baa}, \underline{baa}], \\ [SheepNoise \rightarrow \cdot \ \underline{baa}, \underline{baa}] \right\}$

Computing Gotos

Goto(s,x) computes the state that the parser would reach if it recognized an x while in state s

- Goto({ $[A \rightarrow \beta \bullet X\delta, \underline{a}]$ }, X) produces $[A \rightarrow \beta X \bullet \delta, \underline{a}]$ (easy part)
- Should also includes closure($[A \rightarrow \beta X \cdot \delta, \underline{a}]$) (fill out the state)

The algorithm

Comp 412 Fall 2003

5

Example from SheepNoise

Starts with S₀

 $\begin{array}{l} \mathcal{S}_{0}: \{ [\textit{Goal} \rightarrow \cdot \textit{SheepNoise}, \underline{\text{EOF}}], [\textit{SheepNoise} \rightarrow \cdot \textit{SheepNoise} \underline{\text{baa}}, \underline{\text{EOF}}], \\ [\textit{SheepNoise} \rightarrow \cdot \underline{\text{baa}}, \underline{\text{EOF}}], [\textit{SheepNoise} \rightarrow \cdot \textit{SheepNoise} \underline{\text{baa}}, \underline{\text{baa}}], \\ [\textit{SheepNoise} \rightarrow \cdot \underline{\text{baa}}, \underline{\text{baa}}] \} \end{array}$

Iteration 1 computes

- S₁ = Goto(S₀ , SheepNoise) =
- { [Goal→ SheepNoise ·, EOF], [SheepNoise→ SheepNoise · baa, EOF], [SheepNoise→ SheepNoise · baa, baa]} Nothing more to

S₂ = Goto(S₀, <u>baa</u>) = { [SheepNoise→ <u>baa</u> ·, <u>EOF</u>], [SheepNoise→ <u>baa</u> ·, <u>baa</u>] }

Iteration 2 computes

 $S_{3} = Goto(S_{1}, \underline{baa}) = \{ [SheepNoise \rightarrow SheepNoise \underline{baa} \land \underline{EOF}], \\ [SheepNoise \rightarrow SheepNoise \underline{baa} \land \underline{baa}] \}$

 $\begin{array}{l} S_0 \text{ is } \{ \text{ [Goal} \rightarrow \cdot \text{ SheepNoise}, \underline{\text{EOF}} \}, \text{ [SheepNoise} \rightarrow \cdot \text{ SheepNoise} \underline{\text{baa}}, \underline{\text{EOF}} \}, \\ \text{ [SheepNoise} \rightarrow \cdot \underline{\text{baa}}, \underline{\text{EOF}} \}, \text{ [SheepNoise} \rightarrow \cdot \text{ SheepNoise} \underline{\text{baa}}, \underline{\text{baa}} \}, \\ \text{ [SheepNoise} \rightarrow \cdot \underline{\text{baa}}, \underline{\text{baa}} \} \end{array}$

Goto(S_0 , <u>baa</u>)

Loop produces

Item	From
[SheepNoise→ <u>baa</u> •, <u>EOF]</u>	Item 3 in so
[SheepNoise→ <u>baa</u> •, <u>baa]</u>	Item 5 in <i>s</i> o

• Closure adds nothing since \cdot is at end of *rhs* in each item

In the construction, this produces s_2

{ [SheepNoise→baa •, {EOF,baa}]}

New, but obvious, notation for two distinct items [SheepNoise->baa •, EOF] & [SheepNoise->baa •, baa]

Comp 412 Fall 2003

Example

(grammar & sets)

Simplified, right recursive expression grammar

Goal → Expr	
Expr ightarrow Term - Expr	
Expr ightarrow Term	
Term → Factor * Term	
Term → Factor	
Factor → <u>ident</u>	

Symbol	FIRST
Goal	{
Expr	{
Term	{
Factor	{ <u>ident</u> }
-	{ - }
*	{*}
<u>ident</u>	{

compute, since • is at

the end of every item

in S_3 .

Example

(building the collection

Initialization Step

 $s_0 \leftarrow closure(\{[Goal \rightarrow \cdot Expr, EOF]\})$ { [Goal \rightarrow · Expr , EOF], [Expr \rightarrow · Term - Expr , EOF], $[Expr \rightarrow \cdot Term, EOF], [Term \rightarrow \cdot Factor * Term, EOF],$ [Term \rightarrow · Factor * Term , -], [Term \rightarrow · Factor , EOF], [Term \rightarrow · Factor , -], [Factor \rightarrow · ident , EOF], [Factor \rightarrow · ident , -], [Factor \rightarrow · ident , *] }

 $S \leftarrow \{s_o\}$

Comp 412 Fall 2003

Example

(Summar

- $S_0: \{ [Goal \rightarrow \cdot Expr, EOF], [Expr \rightarrow \cdot Term Expr, EOF], \}$ $[Expr \rightarrow \cdot Term, EOF]$, $[Term \rightarrow \cdot Factor * Term, EOF]$. [Term $\rightarrow \cdot$ Factor, EOF], [Factor $\rightarrow \cdot$ ident, EOF], [Term $\rightarrow \cdot$ Factor * Term , -],[Term $\rightarrow \cdot$ Factor , -], [Factor \rightarrow · ident, -], [Factor \rightarrow · ident, *] }
- $S_1: \{ [Goal \rightarrow Expr \cdot, EOF] \}$
- $S_2: \{ [Expr \rightarrow Term \cdot Expr, EOF], [Expr \rightarrow Term \cdot, EOF] \}$
- $S_3: \{ [Term \rightarrow Factor \cdot * Term, EOF], [Term \rightarrow Factor \cdot, EOF], \}$ [Term \rightarrow Factor \cdot * Term , -], [Term \rightarrow Factor \cdot , -]}
- S_4 : { [Factor \rightarrow ident \cdot , EOF], [Factor \rightarrow ident \cdot , -], [Factor \rightarrow ident \cdot , *] }
- S_5 : { [Expr \rightarrow Term \cdot Expr , EOF], [Expr $\rightarrow \cdot$ Term Expr , EOF], $[Expr \rightarrow \cdot Term, EOF], [Term \rightarrow \cdot Factor * Term, EOF],$ [Term $\rightarrow \cdot$ Factor, EOF], [Factor $\rightarrow \cdot \underline{ident}$, EOF], [Term $\rightarrow \cdot$ Factor * Term , -],[Term $\rightarrow \cdot$ Factor , -], [Factor \rightarrow · ident , -], [Factor \rightarrow · ident , *] }

(building the collection

Iteration 1

$$s_{1} \leftarrow goto(s_{0}, Expr)$$

$$s_{2} \leftarrow goto(s_{0}, Term)$$

$$s_{3} \leftarrow goto(s_{0}, Factor)$$

$$s_{4} \leftarrow goto(s_{0}, ident)$$
Iteration 2
$$s_{5} \leftarrow goto(s_{2}, -)$$

$$s_{6} \leftarrow goto(s_{3}, *)$$

)

Iteration 3

 $s_7 \leftarrow qoto(s_5, Expr)$ $s_{g} \leftarrow qoto(s_{f}, Term)$

Comp 412 Fall 2003

Example

10

- S_6 : { [Term \rightarrow Factor * Term , EOF], [Term \rightarrow Factor * Term , -], [Term \rightarrow · Factor * Term , EOF], [Term \rightarrow · Factor * Term , -], [Term \rightarrow · Factor, EOF], [Term \rightarrow · Factor, -], [Factor \rightarrow · ident , EOF], [Factor \rightarrow · ident , -], [Factor \rightarrow · ident , *]}
- S_7 : { [*Expr* \rightarrow *Term Expr* \cdot , EOF] }
- S_8 : { [Term \rightarrow Factor * Term \cdot , EOF], [Term \rightarrow Factor * Term \cdot , -] }

9

Example

(Summar

State	Expr	Term	Factor	-	*	<u>Ident</u>
0	1	2	3			4
1						
2				5		
3					6	
4						
5	7	2	3			4
6		8	3			4
7						
8						

Comp 412 Fall 2003

13

Example

(Filling in the tables)

The algorithm produces the following table

	ACTION				Gото		
	<u>Ident</u>	-	*	EOF	Expr	Term	Factor
0	s 4				1	2	3
1				acc			
2		s 5		r 3			
3		r 5	s 6	r 5			
4		r 6	r6	r 6			
5	s 4				7	2	3
6	s 4					8	3
7				r 2			
8		r 4		r 4			

Filling in the ACTION and GOTO Tables

x is the state number

The algorithm

Many items generate no table entry

- Closure() instantiates FIRST(X) directly for $[A \rightarrow \beta \cdot X \delta, a]$

Comp 412 Fall 2003

Comp 412 Fall 2003

14

What can go wrong?

What if set s contains $[A \rightarrow \beta \cdot a\gamma, b]$ and $[B \rightarrow \beta \cdot , a]$?

- First item generates "shift", second generates "reduce"
- Both define ACTION[s,a] cannot do both actions ٠
- This is a fundamental ambiguity, called a *shift/reduce error* •
- Modify the grammar to eliminate it
- Shifting will often resolve it correctly

What is set s contains $[A \rightarrow \gamma, a]$ and $[B \rightarrow \gamma, a]$?

EaC includes a worked example

- Each generates "reduce", but with a different production
- Both define ACTION[s,a] cannot do both reductions
- ٠
- Modify the grammar to eliminate it (PL/I's overloading of (...))

In either case, the grammar is not LR(1)

16

- - (if-then-else)

- This fundamental ambiguity is called a reduce/reduce error

Shrinking the Tables

Three options:

- Combine terminals such as <u>number</u> & <u>identifier</u>, <u>+</u> & <u>-</u>, <u>*</u> & <u>/</u>
 - Directly removes a column, may remove a row
 - For expression grammar, 198 (vs. 384) table entries
- Combine rows or columns
 - Implement identical rows once & remap states
 - Requires extra indirection on each lookup
 - Use separate mapping for ACTION & for GOTO
- Use another construction algorithm
 - Both LALR(1) and SLR(1) produce smaller tables
 - Implementations are readily available

Comp 412 Fall 2003

17

LR(k) versus LL(k)

Finding Reductions

 $LR(k) \Rightarrow$ Each reduction in the parse is detectable with

(Top-down Recursive Descent

- 1 the complete left context,
- 2 the reducible phrase, itself, and
- 3 the k terminal symbols to its right
- 3 $LL(k) \Rightarrow$ Parser must select the reduction based on
 - 1 The complete left context
 - 2 The next k terminals
- 2 Thus, LR(k) examines more context
- "... in practice, programming languages do not actually seem to fall in the gap between LL(1) languages and deterministic languages" J.J. Horning, "LR Grammars and Analysers", in Compiler Construction, An Advanced Course, Springer-Verlag, 1976

Comp 412 Fall 2003

18

Summary

	Advantages	Disadvantages		
Top-down recursive descent	Fast Good locality Simplicity Good error detection	Hand-coded High maintenance Right associativity		
LR(1)	Fast Deterministic langs. Automatable Left associativity	Large working sets Poor error messages Large table sizes		