
Parsing VI
The LR(1) Table Construction

Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make
copies of these materials for their personal use.

COMP 412, Fall 2002 2Comp 412 Fall 2003

Building the Canonical Collection

Start from s0 = closure([S’→S,EOF])

Repeatedly construct new states, until all are found

The algorithm

s0 ← closure ([S’→S,EOF])
S ← { s0 }
k ← 1

while (S is still changing)
 ∀ sj ∈ S and ∀ x ∈ (T ∪ NT)
 sk ← goto(sj,x)
 record sj → sk on x
 if sk ∉ S then

 S ← S ∪ sk

 k ← k + 1

� Fixed-point computation

� Loop adds to S
� S ⊆ 2ITEMS, so S is finite

 Worklist version is faster

COMP 412, Fall 2002 3Comp 412 Fall 2003

Computing Closures

Closure(s) adds all the items implied by items already in s

• Any item [A→β•Bδ,a] implies [B→•τ,x] for each production
with B on the lhs, and each x ∈ FIRST(δa)

• Since βBδ is valid, any way to derive βBδ is valid, too

The algorithm

Closure(s)
 while (s is still changing)
 ∀ items [A → β •Bδ,a] ∈ s
 ∀ productions B → τ ∈ P
 ∀ b ∈ FIRST(δa) // δ might be ε
 if [B→ • τ,b] ∉ s
 then add [B→ • τ,b] to s

� Classic fixed-point method

� Halts because s ⊂ ITEMS

� Worklist version is faster

Closure “fills out” a state

COMP 412, Fall 2002 4Comp 412 Fall 2003

Example From SheepNoise
Initial step builds the item [Goal→•SheepNoise,EOF]
and takes its closure()

Closure([Goal→•SheepNoise,EOF])

So, S0 is
{ [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF],
 [SheepNoise→• baa,EOF], [SheepNoise→ • SheepNoise baa,baa],
 [SheepNoise→ • baa,baa] }

Item From
[Goal→•SheepNoise,EOF] Original item
[SheepNoise→•SheepNoise baa,EOF] 1, δa is EOF
[SheepNoise→ • baa,EOF] 1, δa is EOF
[SheepNoise→•SheepNoise baa,baa] 2, δa is baa EOF
[SheepNoise→ • baa,baa] 2, δa is baa EOF

Remember, this is
the left-recursive
SheepNoise; EaC
shows the right-
recursive version.

COMP 412, Fall 2002 5Comp 412 Fall 2003

Computing Gotos

Goto(s,x) computes the state that the parser would reach
if it recognized an x while in state s

• Goto({ [A→β•Xδ,a] }, X) produces [A→βX•δ,a] (easy part)

• Should also includes closure([A→βX•δ,a]) (fill out the state)

The algorithm

Goto(s, X)
 new ←Ø
 ∀ items [A→β•Xδ,a] ∈ s
 new ← new ∪ [A→βX•δ,a]

 return closure(new)

� Not a fixed-point method!

� Straightforward computation

� Uses closure ()

Goto() moves forward

COMP 412, Fall 2002 6Comp 412 Fall 2003

Example from SheepNoise

S0 is { [Goal→ • SheepNoise,EOF], [SheepNoise→ • SheepNoise baa,EOF],
 [SheepNoise→ • baa,EOF], [SheepNoise→ • SheepNoise baa,baa],
 [SheepNoise→ • baa,baa] }

Goto(S0 , baa)
• Loop produces

• Closure adds nothing since • is at end of rhs in each item

In the construction, this produces s2

{ [SheepNoise→baa •, {EOF,baa}]}

Item From
[SheepNoise→baa•, EOF] Item 3 in s0

[SheepNoise→baa•, baa] Item 5 in s0

New, but obvious, notation
for two distinct items

[SheepNoise→baa •, EOF] &
[SheepNoise→baa •, baa]

COMP 412, Fall 2002 7Comp 412 Fall 2003

Example from SheepNoise
Starts with S0
S0 : { [Goal→ • SheepNoise, EOF], [SheepNoise→ • SheepNoise baa, EOF],

 [SheepNoise→• baa, EOF], [SheepNoise→ • SheepNoise baa, baa],
 [SheepNoise→ • baa, baa] }

Iteration 2 computes
 S3 = Goto(S1 , baa) = { [SheepNoise→ SheepNoise baa •, EOF],

 [SheepNoise→ SheepNoise baa •, baa] }

Iteration 1 computes
S1 = Goto(S0 , SheepNoise) =

{ [Goal→ SheepNoise •, EOF], [SheepNoise→ SheepNoise • baa, EOF],
 [SheepNoise→ SheepNoise • baa, baa] }

S2 = Goto(S0 , baa) = { [SheepNoise→ baa •, EOF],
 [SheepNoise→ baa •, baa] }

Nothing more to
compute, since • is at
the end of every item
in S3 .

COMP 412, Fall 2002 8Comp 412 Fall 2003

Example (grammar & sets)

Simplified, right recursive expression grammar

Goal → Expr
Expr → Term – Expr
Expr → Term
Term → Factor * Term
Term → Factor
Factor → ident

Symbol FIRST
Goal { ident }
Expr { ident }
Term { ident }

Factor { ident }
– { – }
* { * }

ident { ident }

COMP 412, Fall 2002 9Comp 412 Fall 2003

Example (building the collection)

Initialization Step

s0 ← closure({ [Goal → •Expr , EOF] })
{ [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , EOF],
 [Term → • Factor * Term , –], [Term → • Factor , EOF],
 [Term → • Factor , –], [Factor → • ident , EOF],
 [Factor → • ident , –], [Factor → • ident , *] }

S ← {s0 }

COMP 412, Fall 2002 10Comp 412 Fall 2003

Example (building the collection)
Iteration 1

s1 ← goto(s0 , Expr)

s2 ← goto(s0 , Term)

s3 ← goto(s0 , Factor)

s4 ← goto(s0 , ident)

Iteration 2
s5 ← goto(s2 , –)

s6 ← goto(s3 , *)

Iteration 3
s7 ← goto(s5 , Expr)

s8 ← goto(s6 , Term)

COMP 412, Fall 2002 11Comp 412 Fall 2003

Example (Summary)

S0 : { [Goal → • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , EOF],
 [Term → • Factor , EOF], [Factor → • ident , EOF],
 [Term → • Factor * Term , –],[Term → • Factor , –],
 [Factor → • ident , –], [Factor→ • ident, *] }

S1 : { [Goal → Expr •, EOF] }

S2 : { [Expr → Term • – Expr , EOF], [Expr → Term •, EOF] }

S3 : { [Term → Factor • * Term , EOF], [Term → Factor •, EOF],
 [Term → Factor • * Term , –], [Term → Factor •, –] }

S4 : { [Factor → ident •, EOF], [Factor → ident •, –], [Factor → ident •, *] }

S5 : { [Expr → Term – • Expr , EOF], [Expr → • Term – Expr , EOF],
 [Expr → • Term , EOF], [Term → • Factor * Term , EOF],
 [Term → • Factor , EOF], [Factor → • ident , EOF],
 [Term → • Factor * Term , –],[Term → • Factor , –],
 [Factor → • ident , –], [Factor → • ident , *] }

COMP 412, Fall 2002 12Comp 412 Fall 2003

Example (Summary)
S6 : { [Term → Factor * • Term , EOF], [Term → Factor * • Term , –],

� [Term → • Factor * Term , EOF], [Term → • Factor * Term , –],
 [Term → • Factor , EOF], [Term → • Factor , –],
 [Factor → • ident , EOF], [Factor → • ident , –], [Factor → • ident , *] }

S7: { [Expr → Term – Expr •, EOF] }

S8 : { [Term → Factor * Term •, EOF], [Term → Factor * Term •, –] }

COMP 412, Fall 2002 13Comp 412 Fall 2003

Example (Summary)

The Goto Relationship (from the construction)

State Expr Term Factor - * Ident

0 1 2 3 4

1

2 5

3 6

4

5 7 2 3 4

6 8 3 4

7

8

COMP 412, Fall 2002 14Comp 412 Fall 2003

Filling in the ACTION and GOTO Tables

The algorithm

Many items generate no table entry
— Closure() instantiates FIRST(X) directly for [A→β•Xδ,a]

for each set sx ∈ S
 for each item i ∈ sx
 if i is [A→β •ad,b] and goto(sx,a) = sk , a ∈ T
 then ACTION[x,a] ← “shift k”
 else if i is [S’→S •,EOF]
 then ACTION[x ,a] ← “accept”
 else if i is [A→β •,a]
 then ACTION[x,a] ← “reduce A→β”

 for each n ∈ NT
 if goto(sx ,n) = sk
 then GOTO[x,n] ← k

x is the state number

COMP 412, Fall 2002 15Comp 412 Fall 2003

Example (Filling in the tables)

The algorithm produces the following table

ACTION GOTO

Ident - * EOF Expr Term Factor
0 s 4 1 2 3
1 acc
2 s 5 r 3
3 r 5 s 6 r 5
4 r 6 r 6 r 6
5 s 4 7 2 3
6 s 4 8 3
7 r 2
8 r 4 r 4

Plugs into the skeleton LR(1) parser COMP 412, Fall 2002 16Comp 412 Fall 2003

What can go wrong?
What if set s contains [A→β•aγ,b] and [B→β•,a] ?
• First item generates “shift”, second generates “reduce”
• Both define ACTION[s,a] — cannot do both actions
• This is a fundamental ambiguity, called a shift/reduce error
• Modify the grammar to eliminate it (if-then-else)

• Shifting will often resolve it correctly

What is set s contains [A→γ•, a] and [B→γ•, a] ?
• Each generates “reduce”, but with a different production
• Both define ACTION[s,a] — cannot do both reductions
• This fundamental ambiguity is called a reduce/reduce error
• Modify the grammar to eliminate it (PL/I’s overloading of (...))

In either case, the grammar is not LR(1)

EaC includes a
worked example

COMP 412, Fall 2002 17Comp 412 Fall 2003

Shrinking the Tables

Three options:
• Combine terminals such as number & identifier, + & -, * & /

— Directly removes a column, may remove a row
— For expression grammar, 198 (vs. 384) table entries

• Combine rows or columns
— Implement identical rows once & remap states
— Requires extra indirection on each lookup
— Use separate mapping for ACTION & for GOTO

• Use another construction algorithm
— Both LALR(1) and SLR(1) produce smaller tables
— Implementations are readily available

COMP 412, Fall 2002 18Comp 412 Fall 2003

LR(k) versus LL(k) (Top-down Recursive Descent)

Finding Reductions
LR(k) ⇒ Each reduction in the parse is detectable with

1 the complete left context,
2 the reducible phrase, itself, and
3 the k terminal symbols to its right

3 LL(k) ⇒ Parser must select the reduction based on
1 The complete left context
2 The next k terminals

2 Thus, LR(k) examines more context

“… in practice, programming languages do not actually seem to
fall in the gap between LL(1) languages and deterministic
languages” J.J. Horning, “LR Grammars and Analysers”, in
Compiler Construction, An Advanced Course, Springer-Verlag, 1976

COMP 412, Fall 2002 19Comp 412 Fall 2003

Summary

Advantages
Fast
Good locality
Simplicity
Good error
detection

Fast
Deterministic langs.
Automatable
Left associativity

Disadvantages
Hand-coded
High maintenance
Right associativity

Large working sets
Poor error messages
Large table sizes

Top-down
recursive
descent

LR(1)

