Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.50 Printed on 14 December 2021 at 11:01:05

Project Information:

Assessed By: Jonathon Hill (STRO029949) Building Type: Detached House

Dwelling Details:

NEW DWELLING DESIGN STAGETotal Floor Area: 225.46m²

Site Reference: Beech Hill Stores PLOT 6_Type B

Address: PLOT 6 Beech Hill Stores, Eddeys Lane, Headley Down, BORDON, GU35 8HU

Client Details:

Name: Cimbrone Developments Ltd

Address: 43-45 Wellington Crescent, New Malden, KT3 3NE

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER)

13.97 kg/m²

Pwelling Carbon Dioxide Emission Rate (DER)

8.62 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER)

8.62 kg/m²

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 53.6 kWh/m²
Dwelling Fabric Energy Efficiency (DFEE) 49.0 kWh/m²

2 Fabric U-values

Element **Average** Highest External wall 0.18 (max. 0.30) 0.18 (max. 0.70) OK Floor 0.20 (max. 0.25) 0.20 (max. 0.70) **OK** Roof 0.17 (max. 0.20) 0.18 (max. 0.35) OK **Openings** 1.65 (max. 2.00) 1.70 (max. 3.30) OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0 **OK**

4 Heating efficiency

Main Heating system: Database: (rev 486, product index 018821):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Worcester Model: Greenstar 2000

Model qualifier: GR2300iW 30 C NG

(Combi)

Efficiency 89.0 % SEDBUK2009

Minimum 88.0 % OK

Secondary heating system: Room heaters - wood

Closed room heater Efficiency 65.0 %

Minimum 65.0 % OK

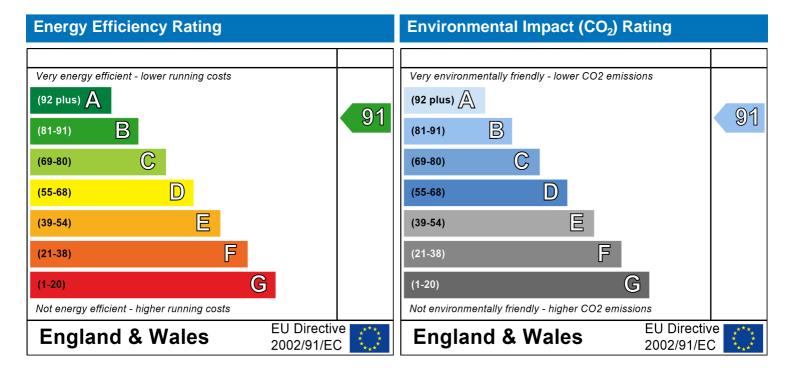
OK

OK

Regulations Compliance Report

Ordinal and in a relation			
Cylinder insulation	Mara Parlan		
Hot water Storage:	No cylinder		
Controls			
Space heating controls	TTZC by plumbing and el	ectrical services	OK
Hot water controls:	No cylinder thermostat		
	No cylinder		
Boiler interlock:	Yes		OK
Low energy lights			
Percentage of fixed lights wit	h low-energy fittings	100.0%	
Minimum		75.0%	OK
Mechanical ventilation			
Not applicable			
Summertime temperature			
Overheating risk (Thames va	lley):	Slight	OK
sed on:			
Overshading:		Average or unknown	
Windows facing: West		9.38m²	
Windows facing: East		13.55m²	
Windows facing: North		0.48m²	
Roof windows facing: West		1.77m²	
Roof windows facing: East		1.77m²	
Roof windows facing: Horizo	ntal	6.08m²	
Ventilation rate:		4.00	
Key features			
Photovoltaic array			
Secondary heating (wood log			
Secondary heating fuel woo	d logs		

Predicted Energy Assessment



PLOT 6 Beech Hill Stores Eddeys Lane Headley Down BORDON GU35 8HU Dwelling type:
Date of assessment:
Produced by:
Total floor area:

Detached House 13 December 2021 Jonathon Hill 225.46 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

	l	User Details:			
Assessor Name:	Jonathon Hill	Stroma Nun	nber:	STRO029949	
Software Name:	Stroma FSAP 2012	Software Ve	ersion:	Version: 1.0.5.50	
		perty Address: PLOT			
Address :	PLOT 6 Beech Hill Stores, Ed	deys Lane, Headley D	own, BORDON, GI	U35 8HU	
1. Overall dwelling dime	ensions:				0)
Ground floor		Area(m²) 108.05 (1a) x	Av. Height(m) 2.6 (2	Volume(m ² 2a) = 280.93	(3a)
First floor		88.9 (1b) x	2.6	2b) = 231.14	(3b)
Second floor		28.51 (1c) x	2.12 (2	2c) = 60.44	(3c)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e)+(1n)	225.46 (4)			
Dwelling volume		(3a)+(3l	o)+(3c)+(3d)+(3e)+(3e)	(n) = 572.51	(5)
2. Ventilation rate:					
	main secondary heating heating	other	total	m³ per hou	ır
Number of chimneys		+ 0 =	0 x 40	= 0	(6a)
Number of open flues	0 + 0	+ 0 =	0 x 20	= 0	(6b)
Number of intermittent fa	ns		3 x 10	= 30	(7a)
Number of passive vents			0 x 10	= 0	(7b)
Number of flueless gas fi	ires		0 x 40	= 0	(7c)
				Air changes per ho	our
Infiltration due to chimne	ys, flues and fans = (6a)+(6b)+(7a)	+(7b)+(7c) =	30 ÷ (5	5) = 0.05	(8)
If a pressurisation test has b	een carried out or is intended, proceed t	to (17), otherwise continue i	from (9) to (16)		<u> </u>
Number of storeys in the	he dwelling (ns)			0	(9)
Additional infiltration			[(9)-1]	x0.1 = 0	(10)
	.25 for steel or timber frame or 0	•	ruction	0	(11)
if both types of wall are pa deducting areas of openia	resent, use the value corresponding to th nas): if equal user 0.35	he greater wall area (after			
= -	floor, enter 0.2 (unsealed) or 0.1	(sealed), else enter 0		0	(12)
If no draught lobby, en	ter 0.05, else enter 0			0	(13)
Percentage of windows	s and doors draught stripped			0	(14)
Window infiltration		0.25 - [0.2 x (14) ÷	100] =	0	(15)
Infiltration rate		(8) + (10) + (11) + ((12) + (13) + (15) =	0	(16)
Air permeability value,	q50, expressed in cubic metres	per hour per square n	netre of envelope ar	rea 5	(17)
If based on air permeabil	lity value, then $(18) = [(17) \div 20] + (8)$,	otherwise (18) = (16)		0.3	(18)
Air permeability value applie	es if a pressurisation test has been done	or a degree air permeability	is being used		
Number of sides sheltere	ed			0	(19)
Shelter factor		$(20) = 1 - [0.075 \times ($	[19)] =	1	(20)
Infiltration rate incorporat	ting shelter factor	(21) = (18) x (20) =		0.3	(21)
Infiltration rate modified f	or monthly wind speed	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Jan Feb	Mar Apr May Jun	Jul Aug Sep	Oct Nov	Dec	
Monthly average wind sp	eed from Table 7				

4.4

4.3

3.8

3.8

3.7

4.3

4

4.5

4.7

4.9

5.1

(22)m=

5

Wind Facto	or (22a)m =	(22)m ÷	4										
(22a)m= 1.2	```	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjusted in	nfiltration rat	te (allowi	na for sh	nelter an	d wind s	speed) =	(21a) x	(22a)m	-	-	-		
0.3		0.37	0.33	0.33	0.29	0.29	0.28	0.3	0.33	0.34	0.36		
	effective air	_	rate for t	he appli	cable ca	se	•			!	!	·	(00-)
	inical ventila air heat pump		endix N. (2	(3b) = (23a	a) × Fmv (e	eguation (N	N5)) . othe	rwise (23b) = (23a)			0	(23a) (23b)
	d with heat reco	0		, ,	,	. `	,, .	,	, (,			0	(23c)
a) If bala	nced mech	anical ve	entilation	with hea	at recov	ery (MVI	HR) (24a	a)m = (22	2b)m + (23b) × [1 – (23c)		(200)
(24a)m= 0		0	0	0	0	0	0	0	0	0	0]	(24a)
b) If bala	inced mech	anical ve	ntilation	without	heat red	covery (N	лV) (24b	m = (22)	2b)m + (23b)		•	
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If who	le house ex	tract ver	tilation o	or positiv	e input	ventilatio	on from o	outside	-	-	-		
if (22	2b)m < 0.5 >	× (23b), t	hen (24)	c) = (23b	o); other	wise (24	c) = (22l	o) m + 0.	5 × (23k) 	1	1	
(24c)m = 0		0	0	0	0	0	0	0	0	0	0		(24c)
	ıral ventilati 2b)m = 1, th								0.51				
(24d)m= 0.5		0.57	0.56	0.55	0.54	0.54	0.5 1 [(2	0.55	0.55	0.56	0.56]	(24d)
` ′	air change	rate - er	ter (24a) or (24b) or (24	L c) or (24	d) in bo	x (25)	ļ	ļ	ļ	l	
(25)m= 0.5		0.57	0.56	0.55	0.54	0.54	0.54	0.55	0.55	0.56	0.56		(25)
2 Hoat lo	sses and he	not loce r	aramete	or:			ı						
o. Heat lo	3303 and m	cai ioss i	Jaiailloi										
ELEMEN	IT Gros	SS	Openin	gs	Net Ar		U-val		A X U	K)	k-value		A X k
	IT Gros area			gs	A ,r	m²	W/m2	2K	(W/	K)	k-value kJ/m²-l		kJ/K
Doors Type	IT Gros area e 1	SS	Openin	gs	A ,r	m² x	W/m2		(W/ 3.285	K)			kJ/K (26)
Doors Type	IT Gros area e 1 e 2	SS	Openin	gs	A ,r 2.19	m² x x	W/m2	2K = [3.285 2.625	K)			kJ/K (26) (26)
Doors Type Doors Type Windows T	IT Gros area e 1 e 2 ype 1	SS	Openin	gs	A ,r 2.19 1.75 9.38	m² x x x1.	W/m2 1.5 1.5	2K = [= [+ 0.04] = [(W/ 3.285 2.625 14.93	K)			kJ/K (26) (26) (27)
Doors Type	IT Gros area e 1 e 2 Type 1 Type 2	SS	Openin	gs	A ,r 2.19 1.75 9.38 13.55	x x x x x x x x x x x x x x x x x x x	W/m2 1.5 1.5 /[1/(1.7)+	$ \begin{array}{ccc} 2K \\ & = [\\ & = [\\ & 0.04] = [\\ & 0.04] = [\\ \end{array} $	(W/ 3.285 2.625 14.93 21.57	K)			kJ/K (26) (26) (27) (27)
Doors Type Doors Type Windows T Windows T Windows T	Gros area e 1 e 2 ype 1 ype 2 ype 3	SS	Openin	gs	A ,r 2.19 1.75 9.38 13.58	x x x x x x x x x x x x x x x x x x x	W/m2 1.5 1.5 /[1/(1.7)+ /[1/(1.7)+	EK = [= [0.04] = [0.04] = [(W/ 3.285 2.625 14.93 21.57 0.76	K)			kJ/K (26) (26) (27) (27)
Doors Type Doors Type Windows T Windows T	IT Gros area e 1 e 2 Type 1 Type 2 Type 3	SS	Openin	gs	A ,r 2.19 1.75 9.38 13.55	x1. x1. x1. x1.	W/m2 1.5 1.5 /[1/(1.7)+ /[1/(1.7)+	$ \begin{array}{ccc} & = & \\ & = & \\ & = & \\ & 0.04 &$	(W/ 3.285 2.625 14.93 21.57	K)			kJ/K (26) (26) (27) (27)
Doors Type Doors Type Windows T Windows T Windows T Rooflights	IT Gros area e 1 e 2 Type 1 Type 2 Type 3 Type 1	SS	Openin	gs	A ,r 2.19 1.75 9.38 13.55 0.48	x1. x1. x1. x1. x1.	W/m2 1.5 1.5 /[1/(1.7)+ /[1/(1.7)+ /[1/(1.6) +	$ \begin{array}{ccc} 2K & = & \\ & = & \\ & 0.04 & = \\ $	(W/ 3.285 2.625 14.93 21.57 0.76 2.832	K)			kJ/K (26) (26) (27) (27) (27) (27b)
Doors Type Doors Type Windows T Windows T Windows T Rooflights	IT Gros area e 1 e 2 Type 1 Type 2 Type 3 Type 1	SS	Openin	gs	A ,r 2.19 1.75 9.38 13.55 0.48 1.77	x x x x x x x x x x x x x x x x x x x	W/m2 1.5 1.5 /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.6) + /[1/(1.6) +	$ \begin{array}{ccc} 2K & = & \\ & = & \\ & 0.04 & = \\ $	(W/ 3.285 2.625 14.93 21.57 0.76 2.832 2.832	k)			(26) (26) (27) (27) (27) (27b) (27b)
Doors Type Doors Type Windows T Windows T Windows T Rooflights Rooflights	IT Gros area e 1 e 2 Type 1 Type 2 Type 3 Type 1	ss (m²)	Openin	gs ²	A ,r 2.19 1.75 9.38 13.55 0.48 1.77 1.77 6.08	x1. x1. x1. x1. x1. x1. x1.	W/m2 1.5 1.5 /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.6) + /[1/(1.6) + /[1/(1.6) +	EK = [-0.04] = [-0.0	(W/ 3.285 2.625 14.93 21.57 0.76 2.832 2.832 9.728	k)			kJ/K (26) (26) (27) (27) (27b) (27b)
Doors Type Doors Type Windows T Windows T Rooflights Rooflights Floor	e 1 e 2 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3	ss (m²)	Openin	gs ²	A ,r 2.19 1.75 9.38 13.55 0.48 1.77 1.77 6.08	x1.	W/m2 1.5 1.5 /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.6) + /[1/(1.6) + /[1/(1.6) +	EK = [(W/ 3.285 2.625 14.93 21.57 0.76 2.832 2.832 9.728 21.61	k)			kJ/K (26) (26) (27) (27) (27b) (27b) (27b) (28)
Doors Type Doors Type Windows T Windows T Rooflights Rooflights Rooflights Floor Walls	Fig. 1 Gross area area area area area area area ar	18 39	Openin m	gs ₁₂	A ,r 2.19 1.75 9.38 13.55 0.48 1.77 1.77 6.08 108.0	x1.	W/m2 1.5 1.5 /[1/(1.7)+ /[1/(1.7)+ /[1/(1.6) + /[1/(1.6) + /[1/(1.6) + 0.2 0.18	EK = [(W/ 3.285 2.625 14.93 21.57 0.76 2.832 2.832 9.728 21.61 36.33	K)			kJ/K (26) (26) (27) (27) (27b) (27b) (27b) (27b) (28)
Doors Type Doors Type Windows T Windows T Windows T Rooflights Rooflights Floor Walls Roof Type	Fig. 1 Gross area area area area area area area ar	.18 39 58	27.33 0	gs ₁₂	A ,r 2.19 1.75 9.38 13.55 0.48 1.77 1.77 6.08 108.0 201.8	x1.	W/m2 1.5 1.5 /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.6) + /[1/(1.6) + /[1/(1.6) + /[1/(1.6) + /[1/(1.6) + /[1/(1.6) + /[1/(1.6) + /[1/(1.6) +	EK = [(W/ 3.285 2.625 14.93 21.57 0.76 2.832 2.832 9.728 21.61 36.33 9.66	k)			kJ/K (26) (26) (27) (27) (27b) (27b) (27b) (28) (29)
Doors Type Doors Type Windows T Windows T Rooflights Rooflights Floor Walls Roof Type Roof Type Roof Type	Fig. 1 Gross area area area area area area area ar	18 39 19	27.3: 0 9.62	gs ₁₂	A ,r 2.19 1.75 9.38 13.55 0.48 1.77 1.77 6.08 108.0 201.8 60.36	x1.	W/m2 1.5 1.5 /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.6) + /[1/(1.6) + /[1/(1.6) + 0.18 0.18	EK = [(W/ 3.285 2.625 14.93 21.57 0.76 2.832 2.832 9.728 21.61 36.33 9.66 3.95	K)			kJ/K (26) (26) (27) (27) (27b) (27b) (27b) (28) (29) (30)
Doors Type Doors Type Windows T Windows T Windows T Rooflights Rooflights Floor Walls Roof Type Roof Type Roof Type Total area * for windows*	Fig. 1 Gross area area area area area area area ar	18 39 58 19 5, m ² dows, use 6	27.3:	gs p ² sindow U-ve	A ,r 2.19 1.75 9.38 13.55 0.48 1.77 1.77 6.08 108.0 201.8 60.39 21.96 447.3 alue calcul	x1.	W/m2 1.5 1.5 /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.6) + /[1/(1.6) + /[1/(1.6) + 0.18 0.18 0.18	EK = [(W/ 3.285 2.625 14.93 21.57 0.76 2.832 9.728 21.61 36.33 9.66 3.95 3.27		kJ/m²-l		kJ/K (26) (26) (27) (27) (27b) (27b) (27b) (28) (29) (30) (30)
Doors Type Doors Type Windows T Windows T Windows T Rooflights Rooflights Rooflights Floor Walls Roof Type Roof Type Roof Type Total area * for windows ** include the	e 1 e 2 Type 1 Type 2 Type 3 Type 3 Type 3 Type 3 Type 3 1 60.3 e1 60.3 e2 31.5 e1 18.4 of elements e and roof wind areas on both	18 39 58 19 5, m ² lows, use e	27.33 0 9.62 0 effective winternal wall	gs p ² sindow U-ve	A ,r 2.19 1.75 9.38 13.55 0.48 1.77 1.77 6.08 108.0 201.8 60.39 21.96 447.3 alue calcul	x1.	W/m2 1.5 1.5 /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.6) + /[1/(1.6) + /[1/(1.6) + 0.18 0.18 0.18 o.18	EK	(W/ 3.285 2.625 14.93 21.57 0.76 2.832 9.728 21.61 36.33 9.66 3.95 3.27		kJ/m²-l	X	kJ/K (26) (26) (27) (27) (27b) (27b) (27b) (28) (29) (30) (30) (31)
Doors Type Doors Type Windows T Windows T Windows T Rooflights Rooflights Floor Walls Roof Type Roof Type Roof Type Total area * for windows ** include the Fabric heaf	e 1 e 2 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 3 1 60.3 2 31.8 2 31.8 3 18.7 of elements and roof wind areas on both t loss, W/K	18 39 58 19 5, m ² dows, use e o sides of ir = S (A x	27.33 0 9.62 0 effective winternal wall	gs p ² sindow U-ve	A ,r 2.19 1.75 9.38 13.55 0.48 1.77 1.77 6.08 108.0 201.8 60.39 21.96 447.3 alue calcul	x1.	W/m2 1.5 1.5 /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.6) + /[1/(1.6) + /[1/(1.6) + 0.18 0.18 0.18	$ \begin{array}{cccc} 2K & & & & & & \\ & & & & & & \\ & & & & &$	(W/ 3.285 2.625 14.93 21.57 0.76 2.832 9.728 21.61 36.33 9.66 3.95 3.27	as given in	kJ/m²·l	132.4	kJ/K (26) (26) (27) (27) (27b) (27b) (27b) (28) (29) (30) (30) (31)
Doors Type Doors Type Windows T Windows T Windows T Rooflights Rooflights Rooflights Floor Walls Roof Type Roof Type Roof Type Total area * for windows ** include the Fabric hear Heat capac	e 1 e 2 Type 1 Type 2 Type 3 Type 3 Type 3 Type 3 Type 3 1 60.3 e1 60.3 e2 31.5 e1 18.4 of elements e and roof wind areas on both	118 39 58 19 50, m ² 10 sides of ir = S (A x (A x k)	27.30 0 9.62 0 effective winternal wall	gs p ² 5 grindow U-va dis and pan	A ,r 2.19 1.75 9.38 13.55 0.48 1.77 1.77 6.08 108.0 201.8 60.39 21.96 18.19 447.3 alue calculatitions	x1.	W/m2 1.5 1.5 /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.6) + /[1/(1.6) + /[1/(1.6) + 0.18 0.18 0.18 o.18	$ \begin{array}{cccc} 2K & & & & & & \\ & & & & & & \\ & & & & &$	(W/ 3.285 2.625 14.93 21.57 0.76 2.832 9.728 21.61 36.33 9.66 3.95 3.27	as given in (2) + (32a).	kJ/m²·l	X	kJ/K (26) (27) (27) (27) (27b) (27b) (27b) (28) (29) (30) (30) (31)

Stroma FSAP 2012 Version: 1.0.5.50 (SAP 9.92) - http://www.stroma.com

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

	- 1 - 6 1	(- '	de Cere										
can be used inste Thermal bridge				icina An	nandiy l							00.70	7(26)
if details of therma					-	`						22.76	(36)
Total fabric he	0 0	a. 0 7.00 1.1.1	omn (00) =	- 0.00 x (0	'/			(33) +	(36) =			155.23	(37)
Ventilation hea	at loss ca	alculated	l monthly	y				(38)m	= 0.33 × (25)m x (5))		
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(38)m= 108.51	107.96	107.43	104.92	104.45	102.26	102.26	101.86	103.1	104.45	105.4	106.39		(38)
Heat transfer of	coefficier	nt, W/K			-	-	-	(39)m	= (37) + (37)	38)m	-		
(39)m= 263.73	263.19	262.65	260.14	259.67	257.49	257.49	257.08	258.33	259.67	260.62	261.62		
Heat loss para	meter (H	HLP), W/	′m²K						Average = = (39)m ÷		12 /12=	260.14	(39)
(40)m= 1.17	1.17	1.16	1.15	1.15	1.14	1.14	1.14	1.15	1.15	1.16	1.16		
No contract day		-41- /T-1-1	la 4a\						Average =	Sum(40) ₁	12 /12=	1.15	(40)
Number of day		`		Movi	lun	li il	۸۰۰۵	Con	Oct	Nov	Doo	1	
(41)m= 31	Feb 28	Mar 31	Apr 30	May 31	Jun 30	Jul 31	Aug 31	Sep 30	Oct 31	Nov 30	Dec 31		(41)
(41)1112 31	20	J 1	30	J1] 31	J	(,
4 Motor boot	ing once	rav roqui	romont:								kWh/ye	oor:	
4. Water heat	ing ener	igy requi	rement.								KVVII/y	ear.	
Assumed occu	9, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (TFA -13.		.04		(42)
if TFA £ 13.9 Annual average	•	ater usac	ge in litre	s per da	ay Vd,av	erage =	(25 x N)	+ 36		100	6.28	1	(43)
Reduce the annua	al average	hot water	usage by	5% if the a	lwelling is	designed t			se target o		0.20	J	(10)
not more that 125				ater use, i	not and co	·		<u> </u>		ı	ı	1	
Jan Hot water usage i	Feb	Mar day for ea	Apr	May	Jun	Jul Table 10 x	Aug	Sep	Oct	Nov	Dec		
							· ·	104.16	100.44	110.66	116.01	1	
(44)m= 116.91	112.66	108.41	104.16	99.9	95.65	95.65	99.9		108.41 Total = Su	112.66 m(44)	116.91	1275.38	(44)
Energy content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x E	OTm / 3600			(,		1273.30	(`.',
(45)m= 173.37	151.63	156.47	136.42	130.9	112.95	104.67	120.11	121.54	141.65	154.62	167.9]	
							!		Total = Su	m(45) ₁₁₂ =	=	1672.23	(45)
If instantaneous w	ater heatii	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46) to (61)			1	1	
(46)m= 26.01 Water storage	22.75 loss:	23.47	20.46	19.63	16.94	15.7	18.02	18.23	21.25	23.19	25.19]	(46)
Storage volum		includin	ig any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0]	(47)
If community h	eating a	nd no ta	nk in dw	elling, e	nter 110	litres in	(47)					J	
Otherwise if no	stored	hot wate	er (this in	ıcludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
Water storage				!	(1.14/1	. /-1						1	
a) If manufact				or is kno	wn (kvvr	n/day):					0] 1	(48)
Temperature f							(40) (40)				0] 1	(49)
Energy lost fro b) If manufact		-	-		or is not		(48) x (49)) =			0		(50)
Hot water stor			-								0]	(51)
If community h	_		on 4.3									- 1	
Volume factor Temperature f			2h							-	0		(52)
remperature i	actor 110	III I ADI C	20							<u> </u>	0	J	(53)

Energy lost fro		-	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter (50) or	. , .	•									0		(55)
Water storage	loss cal	culated f	for each	month			((56)m = ((55) × (41)	m 				
(56)m= 0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinder contain	s dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – ([H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circuit	loss (ar	nual) fro	m Table	3							0		(58)
Primary circuit	loss cal	culated t	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(modified by	/ factor fi	rom Tab	le H5 if t	here is s	solar wat	ter heatii	ng and a	cylinde	r thermo	stat)	1	•	
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m= 23.61	21.3	23.53	22.69	23.4	22.57	23.26	23.35	22.62	23.45	22.79	23.59		(61)
Total heat req	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	: 0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 196.99	172.94	180	159.11	154.3	135.52	127.93	143.45	144.16	165.1	177.4	191.49		(62)
Solar DHW input	calculated	using App	endix G oı	Appendix	H (negati	ve quantity	/) (enter '0	if no sola	r contributi	on to wate	er heating)	•	
(add additiona	I lines if	FGHRS	and/or \	vwhrs	applies	, see Ap	pendix (3)					
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from w	ater hea	ter				•		•				•	
(64)m= 196.99	172.94	180	159.11	154.3	135.52	127.93	143.45	144.16	165.1	177.4	191.49		
						•	Outp	out from wa	ater heate	r (annual) ₁	12	1948.39	(64)
Heat gains fro	m water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	า] + 0.8 >	c [(46)m	+ (57)m	+ (59)m	1	_
(65)m= 63.55	55.74	57.91	51.03	49.37	43.2	40.62	45.77	46.07	52.96	57.11	61.72	_	(65)
										-			
include (57)	m in cal	culation of	of (65)m	onlv if c	vlinder i	s in the o	dwellina	or hot w			ı munitv h	ı ıeating	
include (57)					ylinder i	s in the o	dwelling	or hot w			munity h	neating	
5. Internal ga	ains (see	Table 5	and 5a		ylinder i	s in the o	dwelling	or hot w			munity h	eating	
5. Internal ga	ains (see	Table 5	and 5a):					ater is fr	om com	,	eating	
5. Internal games Metabolic gair Jan	ains (see	Table 5	and 5a		ylinder is Jun 182.1	Jul	dwelling Aug 182.1	or hot w		om com	Dec	eating	(66)
5. Internal games Metabolic gain Jan (66)m= 182.1	rs (Table Feb 182.1	2 Table 5 2 5), Wat Mar 182.1	ts Apr 182.1	May	Jun 182.1	Jul 182.1	Aug 182.1	Sep 182.1	ater is fr	om com	Dec	eating	(66)
5. Internal games Metabolic gain Jan (66)m= 182.1 Lighting gains	resident (see Feb 182.1 (calcula	E Table 5 5), Wat Mar 182.1 ted in Ap	ts Apr 182.1	May 182.1 L, equati	Jun 182.1 ion L9 o	Jul 182.1 r L9a), a	Aug 182.1 Iso see	Sep 182.1 Table 5	Oct	Nov	Dec 182.1	eating	
5. Internal gains Metabolic gain Jan (66)m= 182.1 Lighting gains (67)m= 90.46	real sections (Sections (Table Feb 182.1 (calcula 80.35	* Table 5 * 5), Wat Mar 182.1 ted in Ap	ts Apr 182.1 ppendix 49.47	May 182.1 L, equati	Jun 182.1 ion L9 o	Jul 182.1 r L9a), a 33.73	Aug 182.1 Iso see	Sep 182.1 Table 5 58.85	Oct 182.1	om com	Dec	leating	(66) (67)
5. Internal games Metabolic gain Jan (66)m= 182.1 Lighting gains (67)m= 90.46 Appliances games	res (Table Feb 182.1 (calcula 80.35 ins (calc	Mar 182.1 ted in Ap 65.34 ulated in	ts Apr 182.1 ppendix 49.47	May 182.1 L, equati 36.98 dix L, eq	Jun 182.1 ion L9 o 31.22 uation L	Jul 182.1 r L9a), a 33.73 13 or L1	Aug 182.1 Iso see 43.85 3a), also	Sep 182.1 Table 5 58.85 see Ta	Oct 182.1 74.72 ble 5	Nov 182.1	Dec 182.1	eating	(67)
5. Internal games Metabolic gair Jan (66)m= 182.1 Lighting gains (67)m= 90.46 Appliances games (68)m= 589.02	res (Table Feb 182.1 (calcula 80.35 ins (calcula 595.13	E Table 5 E 5), Wat Mar 182.1 ted in Ap 65.34 ulated in 579.73	s and 5a ts Apr 182.1 ppendix 49.47 Appendix 546.94	May 182.1 L, equati 36.98 dix L, eq	Jun 182.1 ion L9 o 31.22 uation L 466.64	Jul 182.1 r L9a), a 33.73 13 or L1 440.66	Aug 182.1 Iso see 43.85 3a), also	Sep 182.1 Table 5 58.85 See Ta 449.95	Oct 182.1 74.72 ble 5 482.74	Nov	Dec 182.1	leating	
5. Internal games Metabolic gain Jan (66)m= 182.1 Lighting gains (67)m= 90.46 Appliances games (68)m= 589.02 Cooking gains	res (Table Feb 182.1 (calcula 80.35 ins (calcula 595.13	Mar 182.1 ted in Ap 65.34 ulated in 579.73	Apr 182.1 ppendix 49.47 Appendix 546.94 ppendix	May 182.1 L, equati 36.98 dix L, equ 505.55 L, equat	Jun 182.1 ion L9 of 31.22 uation L 466.64 ion L15	Jul 182.1 r L9a), a 33.73 13 or L1 440.66 or L15a)	Aug 182.1 Iso see 43.85 3a), also 434.54), also se	Sep 182.1 Table 5 58.85 see Ta 449.95 ee Table	Oct 182.1 74.72 ble 5 482.74 5	Nov 182.1 87.21	Dec 182.1 92.97 563.03	leating	(67) (68)
Metabolic gair Jan (66)m= 182.1 Lighting gains (67)m= 90.46 Appliances ga (68)m= 589.02 Cooking gains (69)m= 56.25	res (Table Feb 182.1 (calcula 80.35 ins (calcula 595.13 (calcula 56.25	Mar 182.1 ted in Ap 65.34 ulated in 579.73 tted in Ap 56.25	ts	May 182.1 L, equati 36.98 dix L, eq	Jun 182.1 ion L9 o 31.22 uation L 466.64	Jul 182.1 r L9a), a 33.73 13 or L1 440.66	Aug 182.1 Iso see 43.85 3a), also	Sep 182.1 Table 5 58.85 See Ta 449.95	Oct 182.1 74.72 ble 5 482.74	Nov 182.1	Dec 182.1	eating	(67)
5. Internal games Metabolic gair Jan (66)m= 182.1 Lighting gains (67)m= 90.46 Appliances games (68)m= 589.02 Cooking gains (69)m= 56.25 Pumps and fa	res (Table Feb 182.1 (calcula 80.35 ins (calcula 595.13 c (calcula 56.25 ins gains	Table 5 5), Wat Mar 182.1 ted in Ap 65.34 ulated in 579.73 tted in Ap 56.25 (Table 5	Apr 182.1 ppendix 49.47 Appendix 546.94 ppendix 56.25	May 182.1 L, equati 36.98 dix L, eq 505.55 L, equat	Jun 182.1 ion L9 of 31.22 uation L 466.64 tion L15 56.25	Jul 182.1 r L9a), a 33.73 13 or L1 440.66 or L15a) 56.25	Aug 182.1 Iso see 43.85 3a), also 434.54), also se 56.25	Sep 182.1 Table 5 58.85 see Ta 449.95 ee Table 56.25	Oct 182.1 74.72 ble 5 482.74 5 56.25	Nov 182.1 87.21 524.13	Dec 182.1 92.97 563.03	leating	(67) (68) (69)
5. Internal games Metabolic gain Jan (66)m= 182.1 Lighting gains (67)m= 90.46 Appliances games (68)m= 589.02 Cooking gains (69)m= 56.25 Pumps and fames (70)m= 10	res (Table Feb 182.1 (calcula 80.35 ins (calcula 595.13 (calcula 56.25 ins gains 10	E Table 5 E 5), Wat Mar 182.1 ted in Ap 65.34 ulated in 579.73 tted in Ap 56.25 (Table 5	s and 5a ts Apr 182.1 ppendix 49.47 Appendix 546.94 ppendix 56.25 5a)	May 182.1 L, equati 36.98 dix L, equ 505.55 L, equat 56.25	Jun 182.1 ion L9 of 31.22 uation L 466.64 tion L15 56.25	Jul 182.1 r L9a), a 33.73 13 or L1 440.66 or L15a)	Aug 182.1 Iso see 43.85 3a), also 434.54), also se	Sep 182.1 Table 5 58.85 see Ta 449.95 ee Table	Oct 182.1 74.72 ble 5 482.74 5	Nov 182.1 87.21	Dec 182.1 92.97 563.03	eating	(67) (68)
Metabolic gair Jan (66)m= 182.1 Lighting gains (67)m= 90.46 Appliances ga (68)m= 589.02 Cooking gains (69)m= 56.25 Pumps and fa (70)m= 10 Losses e.g. ev	res (Table Feb 182.1 (calcular 80.35 ins (calcular 595.13 c (calcular 56.25 ns gains 10 vaporation	ted in Apulated in 579.73 tted in Apulated in 579.73 tted in Apulated in 579.73 tted in Apulated in Ap	ts Apr 182.1 ppendix 49.47 Appendix 546.94 ppendix 56.25 5a) 10 tive valu	May 182.1 L, equati 36.98 dix L, equati 505.55 L, equati 56.25	Jun 182.1 ion L9 of 31.22 uation L 466.64 ion L15 56.25	Jul 182.1 r L9a), a 33.73 13 or L1 440.66 or L15a) 56.25	Aug 182.1 Iso see 43.85 3a), also 434.54), also se 56.25	Sep 182.1 Table 5 58.85 See Ta 449.95 See Table 56.25	Oct 182.1 74.72 ble 5 482.74 5 56.25	Nov 182.1 87.21 524.13	Dec 182.1 92.97 563.03	leating	(67) (68) (69) (70)
5. Internal games Metabolic gain Jan (66)m= 182.1 Lighting gains (67)m= 90.46 Appliances games (68)m= 589.02 Cooking gains (69)m= 56.25 Pumps and faction (70)m= 10	res (Table Feb 182.1 (calcula 80.35 ins (calcula 595.13 (calcula 56.25 ins gains 10	E Table 5 E 5), Wat Mar 182.1 ted in Ap 65.34 ulated in 579.73 tted in Ap 56.25 (Table 5	s and 5a ts Apr 182.1 ppendix 49.47 Appendix 546.94 ppendix 56.25 5a)	May 182.1 L, equati 36.98 dix L, equ 505.55 L, equat 56.25	Jun 182.1 ion L9 of 31.22 uation L 466.64 tion L15 56.25	Jul 182.1 r L9a), a 33.73 13 or L1 440.66 or L15a) 56.25	Aug 182.1 Iso see 43.85 3a), also 434.54), also se 56.25	Sep 182.1 Table 5 58.85 see Ta 449.95 ee Table 56.25	Oct 182.1 74.72 ble 5 482.74 5 56.25	Nov 182.1 87.21 524.13	Dec 182.1 92.97 563.03	eating	(67) (68) (69)
Metabolic gair Jan (66)m= 182.1 Lighting gains (67)m= 90.46 Appliances ga (68)m= 589.02 Cooking gains (69)m= 56.25 Pumps and fa (70)m= 10 Losses e.g. ev (71)m= -121.4 Water heating	res (Table Feb 182.1 (calcula 80.35 ins (calcula 595.13 (calcula 56.25 ins gains 10 raporatio -121.4 gains (T	E Table 5 2 5), Wat Mar 182.1 ted in Ap 65.34 ulated in 579.73 ted in A 56.25 (Table 5 10 on (negation) -121.4	s and 5a ts Apr 182.1 opendix 49.47 n Append 546.94 oppendix 56.25 5a) 10 tive valu	May 182.1 L, equati 36.98 dix L, equati 505.55 L, equati 56.25 10 es) (Tab	Jun 182.1 ion L9 o 31.22 uation L 466.64 tion L15 56.25	Jul 182.1 r L9a), a 33.73 13 or L1 440.66 or L15a) 56.25	Aug 182.1 Iso see 43.85 3a), also 434.54), also se 56.25	Sep 182.1 Table 5 58.85 See Ta 449.95 ee Table 56.25	Oct 182.1 74.72 ble 5 482.74 5 56.25	Nov 182.1 87.21 524.13 56.25	Dec 182.1 92.97 563.03 56.25 10 -121.4	leating	(67) (68) (69) (70) (71)
Metabolic gair Jan (66)m= 182.1 Lighting gains (67)m= 90.46 Appliances ga (68)m= 589.02 Cooking gains (69)m= 56.25 Pumps and fa (70)m= 10 Losses e.g. ev (71)m= -121.4	res (Table Feb 182.1 (calcula 80.35 ins (calcula 595.13 c (calcula 56.25 ins gains 10 raporatio -121.4	E Table 5 E 5), Wat Mar 182.1 ted in Ap 65.34 ulated in 579.73 tted in Ap 56.25 (Table 5 10 on (negat	ts Apr 182.1 ppendix 49.47 Appendix 546.94 ppendix 56.25 5a) 10 tive valu	May 182.1 L, equati 36.98 dix L, equati 505.55 L, equati 56.25	Jun 182.1 ion L9 of 31.22 uation L 466.64 ion L15 56.25	Jul 182.1 r L9a), a 33.73 13 or L1 440.66 or L15a) 56.25	Aug 182.1 Iso see 43.85 3a), also 434.54), also se 56.25	Sep 182.1 Table 5 58.85 See Ta 449.95 See Table 56.25	Oct 182.1 74.72 ble 5 482.74 5 56.25	Nov 182.1 87.21 524.13	Dec 182.1 92.97 563.03	leating	(67) (68) (69) (70)
Metabolic gair Jan (66)m= 182.1 Lighting gains (67)m= 90.46 Appliances ga (68)m= 589.02 Cooking gains (69)m= 56.25 Pumps and fa (70)m= 10 Losses e.g. ev (71)m= -121.4 Water heating	res (Table Feb 182.1 (calculate 80.35 ins (calculate 595.13 (calculate 56.25 res gains 10 reporation -121.4 gains (Table 82.95	E Table 5 E 5), Wat Mar 182.1 ted in Ap 65.34 ulated in 579.73 tted in Ap 56.25 (Table 5 10 on (negation) -121.4 Table 5) 77.84	s and 5a ts Apr 182.1 opendix 49.47 n Append 546.94 oppendix 56.25 5a) 10 tive valu	May 182.1 L, equati 36.98 dix L, equati 505.55 L, equati 56.25 10 es) (Tab	Jun 182.1 ion L9 of 31.22 uation L 466.64 ion L15 56.25 10 ole 5) -121.4	Jul 182.1 r L9a), a 33.73 13 or L1 440.66 or L15a) 56.25	Aug 182.1 Iso see 43.85 3a), also 434.54), also se 56.25 10	Sep 182.1 Table 5 58.85 See Ta 449.95 ee Table 56.25	Oct 182.1 74.72 ble 5 482.74 5 56.25 10 -121.4	Nov 182.1 87.21 524.13 56.25 10	Dec 182.1 92.97 563.03 56.25 10 -121.4	leating	(67) (68) (69) (70) (71) (72)
Metabolic gair Jan (66)m= 182.1 Lighting gains (67)m= 90.46 Appliances ga (68)m= 589.02 Cooking gains (69)m= 56.25 Pumps and fa (70)m= 10 Losses e.g. ev (71)m= -121.4 Water heating (72)m= 85.42	res (Table Feb 182.1 (calculate 80.35 ins (calculate 595.13 (calculate 56.25 res gains 10 reporation -121.4 gains (Table 82.95	E Table 5 E 5), Wat Mar 182.1 ted in Ap 65.34 ulated in 579.73 tted in Ap 56.25 (Table 5 10 on (negation) -121.4 Table 5) 77.84	s and 5a ts Apr 182.1 opendix 49.47 n Append 546.94 oppendix 56.25 5a) 10 tive valu	May 182.1 L, equati 36.98 dix L, equati 505.55 L, equati 56.25 10 es) (Tab	Jun 182.1 ion L9 of 31.22 uation L 466.64 ion L15 56.25 10 ole 5) -121.4	Jul 182.1 r L9a), a 33.73 13 or L1 440.66 or L15a) 56.25	Aug 182.1 Iso see 43.85 3a), also 434.54), also se 56.25 10	Sep 182.1 Table 5 58.85 See Ta 449.95 ee Table 56.25 10 -121.4	Oct 182.1 74.72 ble 5 482.74 5 56.25 10 -121.4	Nov 182.1 87.21 524.13 56.25 10	Dec 182.1 92.97 563.03 56.25 10 -121.4	leating	(67) (68) (69) (70) (71)
Metabolic gair Jan (66)m= 182.1 Lighting gains (67)m= 90.46 Appliances ga (68)m= 589.02 Cooking gains (69)m= 56.25 Pumps and fa (70)m= 10 Losses e.g. ev (71)m= -121.4 Water heating (72)m= 85.42 Total internal	res (Table Feb 182.1 (calcula 80.35 ins (calcula 595.13 fecalcula 56.25 ins gains 10 raporatio -121.4 gains (Table 82.95 gains = 885.38 s:	E Table 5 E 5), Wat Mar 182.1 ted in Ap 65.34 ulated in 579.73 tted in Ap 56.25 (Table 5 10 on (negation) 77.84 E 849.85	Apr 182.1 ppendix 49.47 Appendix 546.94 ppendix 56.25 5a) 10 tive valu -121.4 70.88	May 182.1 L, equati 36.98 dix L, eq 505.55 L, equat 56.25 10 es) (Tab -121.4	Jun 182.1 ion L9 of 31.22 uation L 466.64 tion L15 56.25 10 lle 5) -121.4 60 (66) 684.81	Jul 182.1 r L9a), a 33.73 13 or L1 440.66 or L15a) 56.25 10 -121.4 54.59 m + (67)m 655.93	Aug 182.1 Iso see 43.85 3a), also 434.54), also se 56.25 10 -121.4 61.52 1 + (68)m - 666.86	Sep 182.1 Table 5 58.85 See Ta 449.95 ee Table 56.25 10 -121.4 63.98 + (69)m + (699.73	Oct 182.1 74.72 ble 5 482.74 5 56.25 10 -121.4 71.18 (70)m + (7 755.59	Nov 182.1 87.21 524.13 56.25 10 -121.4 79.31 1)m + (72) 817.6	Dec 182.1 92.97 563.03 56.25 10 -121.4 82.96 m 865.91	leating	(67) (68) (69) (70) (71) (72)

Stroma FSAP 2012 Version: 1.0.5.50 (SAP 9.92) - http://www.stroma.com

Orientation:	Access Factor Table 6d		Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
North 0.9x	0.77	X	0.48	x	10.63	x	0.63	x	0.7	=	1.56	(74)
North 0.9x	0.77	X	0.48	x	20.32	x	0.63	х	0.7] =	2.98	(74)
North 0.9x	0.77	X	0.48	x	34.53	x	0.63	x	0.7] =	5.07	(74)
North 0.9x	0.77	X	0.48	x	55.46	x	0.63	x	0.7	=	8.14	(74)
North 0.9x	0.77	X	0.48	x	74.72	x	0.63	х	0.7] =	10.96	(74)
North 0.9x	0.77	X	0.48	x	79.99	X	0.63	x	0.7	=	11.73	(74)
North 0.9x	0.77	X	0.48	x	74.68	x	0.63	x	0.7	=	10.95	(74)
North 0.9x	0.77	X	0.48	x	59.25	x	0.63	x	0.7	=	8.69	(74)
North 0.9x	0.77	X	0.48	x	41.52	X	0.63	x	0.7	=	6.09	(74)
North 0.9x	0.77	X	0.48	x	24.19	x	0.63	x	0.7	=	3.55	(74)
North 0.9x	0.77	X	0.48	x	13.12	x	0.63	x	0.7	=	1.92	(74)
North 0.9x	0.77	X	0.48	x	8.86	x	0.63	x	0.7	=	1.3	(74)
East 0.9x	0.77	X	13.55	x	19.64	X	0.63	x	0.7	=	81.33	(76)
East 0.9x	0.77	X	13.55	x	38.42	x	0.63	x	0.7	=	159.1	(76)
East 0.9x	0.77	X	13.55	x	63.27	x	0.63	x	0.7	=	262.02	(76)
East 0.9x	0.77	X	13.55	x	92.28	X	0.63	x	0.7	=	382.14	(76)
East 0.9x	0.77	X	13.55	x	113.09	x	0.63	x	0.7	=	468.32	(76)
East 0.9x	0.77	X	13.55	x	115.77	x	0.63	x	0.7	=	479.41	(76)
East 0.9x	0.77	X	13.55	x	110.22	X	0.63	x	0.7	=	456.42	(76)
East 0.9x	0.77	X	13.55	x	94.68	x	0.63	x	0.7	=	392.06	(76)
East 0.9x	0.77	X	13.55	x	73.59	x	0.63	x	0.7	=	304.74	(76)
East 0.9x	0.77	X	13.55	x	45.59	X	0.63	X	0.7	=	188.79	(76)
East 0.9x	0.77	X	13.55	x	24.49	X	0.63	X	0.7	=	101.41	(76)
East 0.9x	0.77	X	13.55	x	16.15	X	0.63	X	0.7	=	66.88	(76)
West 0.9x	0.77	X	9.38	x	19.64	X	0.63	X	0.7	=	56.3	(80)
West 0.9x	0.77	X	9.38	x	38.42	X	0.63	X	0.7	=	110.14	(80)
West 0.9x	0.77	X	9.38	x	63.27	X	0.63	X	0.7	=	181.38	(80)
West 0.9x	0.77	X	9.38	x	92.28	X	0.63	X	0.7	=	264.53	(80)
West 0.9x	0.77	X	9.38	X	113.09	X	0.63	X	0.7	=	324.2	(80)
West 0.9x	0.77	X	9.38	x	115.77	x	0.63	X	0.7	=	331.87	(80)
West 0.9x	0.77	X	9.38	x	110.22	x	0.63	x	0.7	=	315.96	(80)
West 0.9x	0.77	X	9.38	X	94.68	X	0.63	X	0.7	=	271.4	(80)
West 0.9x	0.77	X	9.38	x	73.59	X	0.63	X	0.7	=	210.95	(80)
West 0.9x	0.77	X	9.38	x	45.59	X	0.63	X	0.7	=	130.69	(80)
West 0.9x	0.77	X	9.38	x	24.49	X	0.63	X	0.7	=	70.2	(80)
West 0.9x		X	9.38	x	16.15	X	0.63	x	0.7	=	46.3	(80)
Rooflights 0.9x	1	X	1.77	x	26.66	X	0.63	x	0.7	=	18.73	(82)
Rooflights 0.9x		X	1.77	x	26.66	X	0.63	x	0.7] =	18.73	(82)
Rooflights 0.9x	1	X	6.08	X	26	X	0.63	X	0.7	=	62.74	(82)

Daatii ahta		- 1		1		1 1		, ,		_		_
Rooflights 0.9x	1	X	1.77	X	54.34	X 1	0.63	X	0.7	=	38.18	(82)
Rooflights 0.9x	1	X	1.77	X	54.34	X	0.63	X	0.7	=	38.18	(82)
Rooflights 0.9x	1	X	6.08	X	54	X	0.63	X	0.7	=	130.31	(82)
Rooflights 0.9x	1	_ X	1.77	X	94.81	X	0.63	X	0.7	=	66.61	(82)
Rooflights 0.9x	1	X	1.77	X	94.81	X	0.63	_ X	0.7	_ =	66.61	(82)
Rooflights 0.9x	1	X	6.08	X	96	X	0.63	_ x	0.7	=	231.66	(82)
Rooflights 0.9x	1	X	1.77	X	146.47	X	0.63	X	0.7	=	102.9	(82)
Rooflights _{0.9x}	1	X	1.77	X	146.47	X	0.63	X	0.7	=	102.9	(82)
Rooflights _{0.9x}	1	X	6.08	X	150	X	0.63	X	0.7	=	361.97	(82)
Rooflights 0.9x	1	x	1.77	X	186.68	X	0.63	X	0.7	=	131.15	(82)
Rooflights _{0.9x}	1	X	1.77	X	186.68	X	0.63	X	0.7	=	131.15	(82)
Rooflights _{0.9x}	1	X	6.08	X	192	X	0.63	X	0.7	=	463.33	(82)
Rooflights _{0.9x}	1	x	1.77	X	194.26	X	0.63	x	0.7	=	136.47	(82)
Rooflights 0.9x	1	X	1.77	X	194.26	X	0.63	x	0.7	=	136.47	(82)
Rooflights 0.9x	1	x	6.08	X	200	X	0.63	x	0.7	=	482.63	(82)
Rooflights _{0.9x}	1	x	1.77	x	183.65	x	0.63	x	0.7	=	129.02	(82)
Rooflights 0.9x	1	x	1.77	x	183.65	X	0.63	x	0.7	=	129.02	(82)
Rooflights _{0.9x}	1	x	6.08	x	189	x	0.63	x	0.7	=	456.09	(82)
Rooflights _{0.9x}	1	x	1.77	x	152.96	X	0.63	x	0.7	=	107.46	(82)
Rooflights _{0.9x}	1	x	1.77	x	152.96	X	0.63	x	0.7	=	107.46	(82)
Rooflights _{0.9x}	1	x	6.08	x	157	X	0.63	x	0.7	=	378.86	(82)
Rooflights _{0.9x}	1	×	1.77	x	112.95	x	0.63	×	0.7	=	79.35	(82)
Rooflights _{0.9x}	1	x	1.77	x	112.95	x	0.63	x	0.7	=	79.35	(82)
Rooflights _{0.9x}	1	x	6.08	x	115	x	0.63	x	0.7	=	277.51	(82)
Rooflights 0.9x	1	T x	1.77	x	65.89	х	0.63	X	0.7	=	46.29	(82)
Rooflights 0.9x	1	×	1.77	x	65.89	х	0.63	x	0.7	=	46.29	(82)
Rooflights 0.9x	1	×	6.08	x	66	x	0.63	×	0.7	=	159.27	(82)
Rooflights _{0.9x}	1	×	1.77	x	33.64	x	0.63	i x	0.7	_ =	23.63	(82)
Rooflights _{0.9x}	1	×	1.77	x	33.64	X	0.63	×	0.7	=	23.63	(82)
Rooflights 0.9x	1	i x	6.08	х	33	X	0.63	i x	0.7	=	79.63	(82)
Rooflights 0.9x	1	x	1.77	X	21.67	X	0.63	X	0.7		15.23	(82)
Rooflights _{0.9x}	1	 x	1.77) x	21.67	X	0.63	_ x	0.7	= =	15.23	(82)
Rooflights 0.9x	1	_	6.08	l X	21] x	0.63	X	0.7	╡ _	50.68	(82)
_	•	_	0.00	J			0.00	_	<u> </u>		00.00	` ′
Solar gains in w	atts. calcu	lated	for each mon	th		(83)m	ı = Sum(74)m	.(82)m				
7——			1222.57 1529.	-	78.59 1497.45	· ·		574.87	7 300.44	195.61		(83)
Total gains – int	ernal and	solar	(84)m = (73) r	n + (33)m , watts	!						
(84)m= 1131.24	1364.26 166	3.19	2016.8 2264.9	3 2	263.4 2153.38	1932	2.79 1657.71	1330.4	6 1118.04	1061.52		(84)
7. Mean intern	al tempera	ture (heating seas	on)								
Temperature d					area from Tal	ole 9.	Th1 (°C)				21	(85)
Utilisation facto	•	•		_		,	(-)					 ` ′
Jan		Mar	Apr Ma	Ť	Jun Jul	Aı	ug Sep	Oct	Nov	Dec		
23	- 1	- 1	, , ,	<u> </u>	1 5 5	1	<u> </u>		1 1		I	

(86)m=	0.98	0.96	0.93	0.86	0.75	0.6	0.47	0.53	0.75	0.91	0.97	0.98		(86)
Mean	interna	l temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	in Table	e 9c)					
(87)m=	18.4	18.7	19.22	19.88	20.42	20.77	20.91	20.88	20.57	19.82	18.99	18.35		(87)
Temp	erature	during h	eating p	eriods ir	n rest of	dwelling	from Ta	able 9, Ti	h2 (°C)					
(88)m=	19.94	19.95	19.95	19.96	19.96	19.97	19.97	19.97	19.96	19.96	19.96	19.95		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	0.97	0.96	0.92	0.84	0.7	0.53	0.38	0.44	0.69	0.89	0.96	0.98		(89)
Mean	interna	l temper	ature in	the rest	of dwelli	ng T2 (fo	ollow ste	eps 3 to 7	7 in Tabl	e 9c)		-		
(90)m=	16.46	16.88	17.64	18.58	19.32	19.76	19.91	19.88	19.53	18.52	17.32	16.39		(90)
									f	LA = Livin	ig area ÷ (4	4) =	0.09	(91)
Mean	interna	l temper	ature (fo	r the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	.A) × T2			!		_
(92)m=	16.64	17.05	17.78	18.7	19.42	19.85	20	19.97	19.63	18.64	17.47	16.57		(92)
Apply	adjustn	nent to t	he mear	interna	temper	ature fro	m Table	4e, whe	ere appro	priate				
(93)m=	16.49	16.9	17.63	18.55	19.27	19.7	19.85	19.82	19.48	18.49	17.32	16.42		(93)
			uirement											
				mperatui using Ta		ed at ste	ep 11 of	Table 9	b, so tha	t Ti,m=(76)m an	d re-calc	culate	
tile di	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa			ains, hm	<u> </u>	ıay	0 0.11		7.09			1.01			
(94)m=	0.96	0.93	0.88	0.8	0.67	0.51	0.37	0.42	0.66	0.86	0.94	0.96		(94)
Usefu	ıl gains,	hmGm ,	, W = (94	4)m x (8	4)m									
(95)m=	1080.63	1271.28	1471.44	1605.77	1517.14	1159.93	792.54	815.61	1089.03	1138.7	1047.17	1020.18		(95)
Month	nly avera	age exte	i	perature	from Ta	able 8							İ	
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
			ı		1	1	-`` /-	T	– (96)m	ī	0000 07	0405.04	[(07)
(97)m=	3213.8	3158.2	2923.2	<u> </u>	1965.35	<u> </u>	836.95	880.19	1389.12)m – (95		2663.97	3195.84		(97)
•			1080.11	650.52	333.47	0	0.02	0	0 0	676.79	1164.09	1618.69		
(00)	1001100	.200.0		000.02		, ,			l per year				8378.75	(98)
Snac	o hoatin	a require	amont in	kWh/m²	2/vear					(**************************************	,(-	- / 10,012	37.16	」 (99)
•		•), (P)				37.10	
			its – Ina	ividuai n	eating sy	ystems i	ncluaing	micro-C	JHP)					
•	e heatir	_	nt from s	econdar	v/supple	mentary	system						0.1	(201)
	-			nain syst		,	-	(202) = 1 -	- (201) =				0.9	(202)
				main sys	` '				02) × [1 –	(203)] =			0.9	(204)
			•	ing syste				, , ,	, -	` '-			92.9	(206)
	•	-		• .		g system	n %							(208)
LIIICI							ı	١.			l		65	
Space	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space			1080.11	alculate 650.52	333.47	0	0	0	0	676.79	1164 09	1618.69		
(211\~			<u> </u>	00 ÷ (20						1	1	10.00		(211)
(211)11		<u> </u>	1046.39	<u>`</u>	323.06	0	0	0	0	655.66	1127.75	1568.16		(411)
	L		L	L	L	L	L		l (kWh/yea				8117.2	(211)
									•	,	10,1012		J <u>-</u>	」 ` ′

= {[(98)m x (201)] } x 100 ÷ (208) 215)m= 244.17 195.08 166.17 100	08 51.3	0	0	0	0	104.12	179.09	249.03		
			!	Tota	l I (kWh/yea	ar) =Sum(2	215) _{15,1012}	<u></u>	1289.04	(21
Vater heating								'		
Output from water heater (calculate		135.52	127.93	143.45	144.16	165.1	177.4	191.49		
Efficiency of water heater	11 134.3	133.32	127.93	143.43	144.10	105.1	177.4	191.49	88	(21
217)m= 89.67 89.65 89.6 89.	19 89.25	88	88	88	88	89.49	89.62	89.68		(21
Fuel for water heating, kWh/month			<u> </u>	ļ	ļ	<u>!</u>	<u> </u>	<u> </u>		
$219)m = (64)m \times 100 \div (217)m$ 219)m = 219.69	.8 172.89	154	145.37	163.02	163.82	184.49	197.95	213.54		
219)m= 219.69 192.91 200.9 177	.6 172.69	154	145.37		I = Sum(2		197.95	213.54	2186.39	(21
Annual totals					(Wh/year	•	kWh/yea	
Space heating fuel used, main syst	em 1						•		8117.2	
Space heating fuel used, secondary	,								1289.04	
Nater heating fuel used								İ	2186.39	Ŧ
Electricity for pumps, fans and elec	ric keep-ho	ot						'		
central heating pump:								120		(23
boiler with a fan-assisted flue								45		(23
Fotal electricity for the above, kWh/	vear			sum	of (230a).	(230g) =			165	(23
Electricity for lighting	,							[639.02	` (23
Electricity generated by PVs								<u> </u>	-1727.24	\` (23
Fotal delivered energy for all uses (211\ (221	\	ı (222)	(227h)	_			[[10669.41	(33
	, ,) + (231)	+ (232)	(2370)	_				10009.41	
10a. Fuel costs - individual heating	systems.									
		Fu kV	ı el Vh/year			Fuel P (Table			Fuel Cost £/year	
Space heating - main system 1		(21	1) x			3.4	.8	x 0.01 =	282.48	(24
Space heating - main system 2		(21	3) x			0		x 0.01 =	0	(24
Space heating - secondary		(21	5) x			4.2	3	x 0.01 =	54.53	(24
Water heating cost (other fuel)		(21	9)			3.4	.8	x 0.01 =	76.09	(24
Pumps, fans and electric keep-hot		(23	1)			13.	19	x 0.01 =	21.76	 (24
if off-peak tariff, list each of (230a)	to (230g) s	eparately	• . • • •	licable a	nd apply			ا ding to T × 0.01 =		
Energy for lighting	40)	(23)	-,			13.	19	. v.vi =	84.29	(25
Additional atomatics above - (Table	1 / 1							l	120	(25
Additional standing charges (Table	12)									
Additional standing charges (Table	12)	one	e of (233) to	o (235) x)		13.	19	x 0.01 =	-227.82	(25

Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF) [(2	55) x (256)] ÷ [(4) + 45.0] =		0.64 (257)
SAP rating (Section 12)			91.09 (258)
12a. CO2 emissions – Individual heating s	systems including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	1753.31 (261)
Space heating (secondary)	(215) x	0.019 =	24.49 (263)
Water heating	(219) x	0.216 =	472.26 (264)
Space and water heating	(261) + (262) + (263) + (264	4) =	2250.07 (265)
Electricity for pumps, fans and electric keep	o-hot (231) x	0.519 =	85.64 (267)
Electricity for lighting	(232) x	0.519 =	331.65 (268)
Energy saving/generation technologies Item 1		0.519 =	-896.44 (269)
Total CO2, kg/year		sum of (265)(271) =	1770.92 (272)
CO2 emissions per m ²		(272) ÷ (4) =	7.85 (273)
El rating (section 14)			91 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22	9902.98 (261)
Space heating (secondary)	(215) x	1.04 =	1340.6 (263)
Energy for water heating	(219) x	1.22	2667.4 (264)
Space and water heating	(261) + (262) + (263) + (264)	4) =	13910.98 (265)
Electricity for pumps, fans and electric keep	o-hot (231) x	3.07	506.55 (267)
Electricity for lighting	(232) x	0 =	1961.79 (268)
Energy saving/generation technologies Item 1		3.07	-5302.63 (269)
'Total Primary Energy		sum of (265)(271) =	11076.69 (272)

 $(272) \div (4) =$

Primary energy kWh/m²/year

49.13

(273)