Regulations Compliance Report

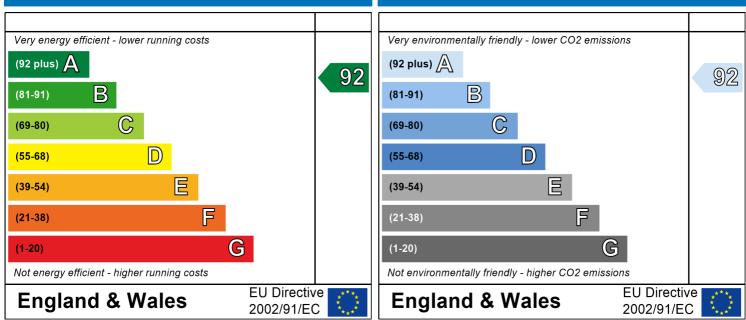
Printed on 14 Dec	ember 2021 at 11:0		oma FSAP 2012 program, Ve	rsion: 1.0.5.50
Project Information	bn:			
Assessed By:	Jonathon Hill (ST	RO029949)	Building Type:	Detached House
Dwelling Details:				
NEW DWELLING			Total Floor Area: 1	
Site Reference :	Beech Hill Stores			PLOT 1_Type A2
Address :	PLOT 2 Beech Hi	Il Stores, Eddeys Lane, Hea	adley Down, BORDON, GU35	8HU
Client Details:				
Name:	Cimbrone Develo	-		
Address :	-	Crescent, New Malden, KT		
•	rs items included v ete report of regula	vithin the SAP calculations tions compliance.	S.	
1a TER and DEF				
	ting system: Mains g	as		
Fuel factor: 1.00 (r	mains gas) oxide Emission Rate	(TFR)	15.19 kg/m²	
-	Dioxide Emission Ra		8.26 kg/m ²	ОК
1b TFEE and DF	EE			
	rgy Efficiency (TFE		52.9 kWh/m ²	
Dwelling Fabric Er	nergy Efficiency (DF	EE)	48.8 kWh/m ²	ОК
2 Fabric U-value	es			OR
Element		Average	Highest	
External	wall	0.18 (max. 0.30)	0.20 (max. 0.70)	ОК
Floor		0.20 (max. 0.25)	0.20 (max. 0.70)	OK
Roof		0.17 (max. 0.20)	0.18 (max. 0.35)	OK
Openings 2a Thermal brid		1.58 (max. 2.00)	1.60 (max. 3.30)	OK
		rom linear thermal transmitt	ances for each junction	
3 Air permeabili				
	bility at 50 pascals		5.00 (design val	ue)
Maximum			10.0	OK
4 Heating efficie	ency			
Main Heatir	ng system:	Database: (rev 486, prod		
		Boiler systems with radia Brand name: Worcester	tors or underfloor heating - ma	ains gas
		Model: Greenstar 2000		
		Model qualifier: GR2300i	W 30 C NG	
		(Combi)		
		Efficiency 89.0 % SEDBU Minimum 88.0 %	JK2009	ОК
				UN
Secondary	heating system:	Room heaters - wood		
		Closed room heater		
		Efficiency 65.0 %		01/
		Minimum 65.0 %		OK

Regulations Compliance Report

Hot water Storage:	No cylinder		
ontrols			
On and heating accepted			
Space heating controls Hot water controls:	TTZC by plumbing and e No cylinder thermostat	lectrical services	Ok
	No cylinder		
Boiler interlock:	Yes		Oł
ow energy lights			
Percentage of fixed lights wit	h low-energy fittings	100.0%	
Minimum		75.0%	OF
echanical ventilation			
Not applicable			
ummertime temperature			
Overheating risk (Thames va	lley):	Slight	O
d on:		-	
Overshading:		Average or unknown	
Windows facing: North		6.89m ²	
Windows facing: South		12.17m ²	
Windows facing: East		0.48m ²	
Roof windows facing: North		0.42m ²	
Roof windows facing: South		1.12m ²	
Ventilation rate:		4.00	
Key f <u>eatures</u>			
Photovoltaic array			
Secondary heating (wood log Secondary heating fuel wood			

Predicted Energy Assessment

PLOT 2 Beech Hill Stores Eddeys Lane Headley Down BORDON GU35 8HU


Dwelling type: Date of assessment: Produced by: Total floor area: Detached House 13 December 2021 Jonathon Hill 161.78 m²

Environmental Impact (CO₂) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

				User D	etails:						
Assessor Name:	Jonathon I	Hill			Strom	a Num	ber:		STRO	029949	
Software Name:	Stroma FS	AP 201	2		Softwa	are Vei	rsion:		Versic	on: 1.0.5.50	
			Р	roperty .	Address	PLOT 1	1_Type A	\2			
Address :	PLOT 2 Bee	ech Hill S	Stores, E	ddeys L	ane, He	adley D	own, BO	RDON,	GU35 8I	HU	
1. Overall dwelling dimer	isions:										
					a(m²)		Av. Hei	ght(m)	1	Volume(m ³)	_
Ground floor				6	7.13	(1a) x	2	.6	(2a) =	174.54	(3a)
First floor				6	7.13	(1b) x	2	.6	(2b) =	174.54	(3b)
Second floor				2	7.52	(1c) x	2.	12	(2c) =	58.34	(3c)
Total floor area TFA = (1a)+(1b)+(1c)+	(1d)+(1e)+(1r	n) <u>1</u>	61.78	(4)					
Dwelling volume						(3a)+(3b))+(3c)+(3d))+(3e)+	.(3n) =	407.42	(5)
2. Ventilation rate:	.									2 1	
	main heating		econdar eating	У	other		total			m ³ per hour	•
Number of chimneys	0	+	0	+	0] = [0	X 4	40 =	0	(6a)
Number of open flues	0	+	0	+	0] = [0	x 2	20 =	0	(6b)
Number of intermittent fan	S					- Γ	3	x ^	10 =	30	(7a)
Number of passive vents						Ē	0	x ′	10 =	0	(7b)
Number of flueless gas fire	es					Г	0	x 4	40 =	0	(7c)
						L					
									Air ch	anges per ho	ur
Infiltration due to chimney							30		÷ (5) =	0.07	(8)
If a pressurisation test has be Number of storeys in the			ed, procee	d to (17), d	otherwise o	continue fr	om (9) to (16)			
Additional infiltration	e uwennig (na	5)						[(9)-	-1]x0.1 =	0	(9) (10)
Structural infiltration: 0.2	25 for steel o	r timber f	rame or	0.35 fo	r masonr	v constr	uction	[(0)	1,0.1 -	0	(10)
if both types of wall are pre						•				0	
deducting areas of opening			a al) a a O	4 (-l) -l						-
If suspended wooden flo		•	ea) or U.	1 (seale	ed), else	enter U				0	(12)
If no draught lobby, ente Percentage of windows			rinnod							0	(13)
Window infiltration		augint St	nppeu		0.25 - [0.2	x (14) - 1	001 =			0	(14)
Infiltration rate							2) + (13) +	- (15) =		0	(15) (16)
Air permeability value, o	150 expresse	ed in cub	ic metre						area	0	(17)
If based on air permeabilit	•			•	•	•		molopo	area	0.32	(18)
Air permeability value applies							is being us	sed		0.02	
Number of sides sheltered	1									0	(19)
Shelter factor					(20) = 1 -	[0.075 x (1	9)] =			1	(20)
Infiltration rate incorporation	ng shelter fac	ctor			(21) = (18)) x (20) =				0.32	(21)
Infiltration rate modified fo	r monthly wir	nd speed									
Jan Feb I	Var Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Tab	le 7									
(22)m= 5.1 5 4	4.9 4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

Wind F	actor (22	2a)m =	(22)m ÷	4											
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]		
Adjuste	ed infiltra	ation rat	e (allowi	ng for sł	nelter an	nd wind s	speed)	= (21a) x	(22a)m						
	0.41	0.4	0.4	0.36	0.35	0.31	0.31	0.3	0.32	0.35	0.36	0.38]		
	ate effec echanica		-	rate for t	he appli	icable ca	se							0	(23a)
				endix N. (2	3b) = (23;	a) x Fmv (e	equation	(N5)) , othe	rwise (23b) = (23a)				0	(23b)
								om Table 4h		, (,				0	(230) (23c)
			-	-	-			/HR) (24a		2b)m + (23b) × [*	1 – (23c)	L) ÷ 100]	-	
, (24a)m=	0	0	0	0	0	0	0	0	0	0	0	0] [(24a)
b) If	balance	d mecha	anical ve	entilation	without	heat rec	covery	(MV) (24t)m = (22	2b)m + (i	23b)		•		
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0]		(24b)
,					•	•		ion from (4c) = (22t		.5 × (23b)	·	_		
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0]		(24c)
,					•	•		tion from l = 0.5 + [(2		0.5]			-		
(24d)m=	0.59	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.57	0.57]		(24d)
Effec	ctive air o	change	rate - er	nter (24a) or (24	b) or (24	c) or (2	4d) in box	x (25)						
(25)m=	0.59	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.57	0.57			(25)
3. He	at losses	and he	eat loss p	paramet	er:										
ELEN	IENT	Gros area		Openin rr	-	Net Ar A ,r		U-val W/m2		A X U (W/I	K)	k-value kJ/m²⊷		A X kJ/l	
ELEN Doors				•	-		m²	W/m2			K)				
	Type 1			•	-	A ,r	m²	W/m2	2K	(W/	K)				K
Doors Doors	Type 1	area		•	-	A ,r 2.19	m² ×	W/m2	2K	(W/ 3.285	K)				(26)
Doors Doors Windov	Type 1 Type 2	area		•	-	A ,r 2.19 1.56	m² ×	W/m2	2K = = = = = = = = = = = = = = = = = = =	(W/ 3.285 2.34	K)				K (26) (26)
Doors Doors Windov Windov	Type 1 Type 2 ws Type	area 1 2		•	-	A ,r 2.19 1.56 6.89	m ² ×	W/m2 1.5 1.5 1/[1/(1.6)+	2K = = = = • 0.04] =	(W/ 3.285 2.34 10.36	K)				K (26) (26) (27)
Doors Doors Windov Windov Windov	Type 1 Type 2 ws Type ws Type	area 1 2 3		•	-	A ,r 2.19 1.56 6.89 12.17	m ² × ×	W/m2 1.5 1.5 1/[1/(1.6)+ 1/[1/(1.6)+	2K = = = = • 0.04] = • 0.04] =	(W/) 3.285 2.34 10.36 18.3	K)				K (26) (26) (27) (27)
Doors Doors Windov Windov Windov Rooflig	Type 1 Type 2 ws Type ws Type ws Type	area 1 2 3 2		•	-	A ,r 2.19 1.56 6.89 12.17 0.48	n ² x x 7 x x x x x	W/m2 1.5 1/[1/(1.6)+ 1/[1/(1.6)+ 1/[1/(1.6)+	$\frac{2}{2} = \frac{2}{2}$ $\frac{2}$	(W// 3.285 2.34 10.36 18.3 0.72	K)				K (26) (26) (27) (27) (27)
Doors Doors Windov Windov Windov Rooflig Rooflig	Type 1 Type 2 ws Type ws Type ws Type hts Type	area 1 2 3 2		•	-	A ,r 2.19 1.56 6.89 12.17 0.48 0.42	n ² × × × × × × × × × × × × × × × × × × ×	W/m2 1.5 1/[1/(1.6)+ 1/[1/(1.6)+ 1/[1/(1.6)+ 1/[1/(1.6)+ 1/[1/(1.6)+	$\frac{2}{2} = \frac{2}{2}$ $\frac{2}$	(W// 3.285 2.34 10.36 18.3 0.72 0.672					K (26) (27) (27) (27) (27) (27b)
Doors Doors Window Window Window Rooflig Rooflig Floor	Type 1 Type 2 ws Type ws Type ws Type hts Type	area 1 2 3 2	(m²)	•	<u></u>	A ,r 2.19 1.56 6.89 12.17 0.48 0.42 1.12	n ² x x 7 x x x x x x x x x x x x x x	W/m2 1.5 1.5 1/[1/(1.6)+ 1/[1/[1/[1.6]+ 1/[1/[1/[1.6]+ 1/[1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1/[1.6]+ 1/[1/[1/[1.6]+ 1/[1/[1.6]+	$\frac{2}{2} = \frac{2}{2}$	(W// 3.285 2.34 10.36 18.3 0.72 0.672 1.792					K (26) (27) (27) (27) (27) (27b) (27b)
Doors Doors Window Window Rooflig Rooflig Floor Walls	Type 1 Type 2 ws Type ws Type ws Type hts Type hts Type	area 1 2 3 2 1 2 2	(m²)	. m	<u></u>	A ,r 2.19 1.56 6.89 12.17 0.48 0.42 1.12 67.13	n ² x x 7 x 3 x 8 x	W/m2 1.5 1.5 1/[1/(1.6)+ 1/[1/[1/[1.6]+ 1/[1/[1.6]+	2K = = = = = = = 0.04] = = = 0.04] = = = 0.04] = =	(W// 3.285 2.34 10.36 18.3 0.72 0.672 1.792 13.426					K (26) (27) (27) (27) (27) (27b) (27b) (27b) (27b)
Doors Doors Windov Windov Windov Rooflig	Type 1 Type 2 ws Type ws Type hts Type hts Type fype1 Type2	area 1 2 3 2 1 2 2 1 2 2	(m²) 77 74	23.2	<u></u>	A ,r 2.19 1.56 6.89 12.17 0.48 0.42 1.12 67.13 151.4	n ² x x 7 x 3 x 4 x	W/m2 1.5 1.5 $1/[1/(1.6)+$ $1/[1/(1.6)+$ $1/[1/(1.6) +$ $1/[1/(1.6) +$ $1/[1/(1.6) +$ 0.2 0.18 0.2	2K = = = = = = = 0.04] = = = 0.04] = = = = =	(W// 3.285 2.34 10.36 18.3 0.72 0.672 1.792 13.426 27.27					K (26) (27) (27) (27) (27b) (27b) (27b) (27b) (27b) (28) (29)
Doors Doors Window Window Rooflig Rooflig Floor Walls	Type 1 Type 2 ws Type ws Type ws Type hts Type hts Type fype1 Type1	area 1 2 3 2 1 2 2 1 2 2 174.	77 74 99	23.2	9	A ,r 2.19 1.56 6.89 12.17 0.48 0.42 1.12 67.13 151.4	n ² x x 7 x 3 x 4 x 3	W/m2 1.5 1.5 1/[1/(1.6)+ 1/[1/[1.6]+ 1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1.6]+ 1/[1/[1.6]+ 1/[1.6]+	$\frac{2}{2} \\ = \\ = \\ = \\ = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = \\ = $	(W// 3.285 2.34 10.36 18.3 0.72 0.672 1.792 13.426 27.27 3.95					K (26) (27) (27) (27) (27b) (27b) (27b) (27b) (27b) (29) (29)
Doors Doors Window Window Window Rooflig Rooflig Floor Walls Roof Roof T Roof T	Type 1 Type 2 ws Type ws Type ws Type hts Type hts Type fype1 Type1	area 1 2 3 2 1 2 3 2 1 2 3 2 1 2 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	77 74 99 5	23.2 0 0	9	A ,r 2.19 1.56 6.89 12.17 0.48 0.42 1.12 67.13 151.4 19.74	n ² x x 7 x 3 x 4 x 1 x	W/m2 1.5 1.5 1/[1/(1.6)+ 1/[1/[1.6]+ 1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1.6]+ 1/[1/[1.6]+ 1/[1.6]+	$\frac{2}{2} K = 1$ $= 1$ $= 1$ $= 1$ $= 0.041 = 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$	(W// 3.285 2.34 10.36 18.3 0.72 0.672 1.792 13.426 27.27 3.95 5.92					K (26) (27) (27) (27) (27b) (27b) (27b) (27b) (28) (29) (29) (30)
Doors Doors Window Window Window Rooflig Rooflig Floor Walls D Walls D Roof D Roof T Roof T Total a *for wind	Type 1 Type 2 ws Type ws Type ws Type hts Type hts Type fype1 Type2 Type2 rea of el	area 1 2 3 2 1 2 3 2 1 2 1 2 1 2 3 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	77 74 99 5 , m ² ows, use e	rr 23.2 0 0 1.54	9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A ,r 2.19 1.56 6.89 12.17 0.48 0.42 1.12 67.13 151.4 19.74 36.99 40.61 340.7	n ² x x 7 x 3 x 4 x 8	W/m2 1.5 1.5 1/[1/(1.6)+ 1/[1/[1.6]+ 1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1.6]+ 1/[1/[1.6]+ 1/[1.6]+	$\frac{2}{2} K = 1$ $= 1$ $= 0.041 = 1$ $= 0.041 = 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$	(W// 3.285 2.34 10.36 18.3 0.72 0.672 1.792 13.426 27.27 3.95 5.92 7.31		kJ/m²-	K		K (26) (27) (27) (27) (27b) (27b) (27b) (27b) (29) (29) (30) (30)
Doors Doors Window Window Window Rooflig Rooflig Floor Walls D Roof D Roof D Roof T Total a * for window	Type 1 Type 2 ws Type ws Type ws Type hts Type hts Type fype1 Type2 Type1 Type2 rea of el dows and i	area 1 2 3 2 1 2 3 2 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	(m ²) 77 74 99 5 , m ² ows, use e sides of ir	23.2 ^r 0 1.54	9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A ,r 2.19 1.56 6.89 12.17 0.48 0.42 1.12 67.13 151.4 19.74 36.99 40.61 340.7	n ² x x 7 x 3 x 4 x 8	W/m2 1.5 1.5 1/[1/(1.6)+ 1/[1/[1.6]+ 1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1/[1.6]+ 1/[1.6]+ 1/[1/[1.6]+ 1/[1.6	$\frac{2}{2} K = 1$ $= 1$ $= 1$ $= 0.04] = 1$ $= 1$	(W// 3.285 2.34 10.36 18.3 0.72 0.672 1.792 13.426 27.27 3.95 5.92 7.31		kJ/m²-	K		K (26) (27) (27) (27) (27b) (27b) (27b) (27b) (29) (29) (30) (30)
Doors Doors Window Window Rooflig Rooflig Rooflig Floor Walls Roof 1 Roof 1 Roof 1 Total a * for winu ** includ Fabric Heat ca	Type 1 Type 2 ws Type ws Type ws Type hts Type hts Type fype1 Type2 rea of el dows and i e the areas heat loss apacity C	area 1 2 3 e 1 e 2 174. 19.7 36.9 42.1 ements roof winders s on both s, W/K = Cm = S(77 74 99 5 , m ² ows, use e sides of ir = S (A x (A x k)	m 23.2 0 1.54	9 Indow U-va Is and par	A ,r 2.19 1.56 6.89 12.17 0.48 0.42 1.12 67.13 151.4 19.74 36.99 40.61 340.7 alue calcul titions	n ² x x 7 x 3 x 4 x 4 x 4 x 1 x 8 x 1 x 1 x	W/m^{2} 1.5 1.5 $1/[1/(1.6)+$ $1/[1/(1.6)+$ $1/[1/(1.6)+$ $1/[1/(1.6) +$ $1/[1/(1.6) +$ 0.2 0.18 0.2 0.18 0.2 0.18 0.2 0.18 0.18 0.2	$\frac{2}{2} K = 1$ $= 1$ $= 0.041 = 1$ $= 0.041 = 1$ $= 0.041 = 1$ $= 1$	(W// 3.285 2.34 10.36 18.3 0.72 0.672 1.792 13.426 27.27 3.95 5.92 7.31 <i>ie)+0.04] e</i>	 	kJ/m²+	K	kJ/I	K (26) (27) (27) (27) (27b) (27b) (27b) (27b) (29) (29) (30) (31)
Doors T Doors Window Window Window Rooflig Rooflig Floor Walls T Roof T Roof T Roof T Total a * for wind ** includ Fabric Heat ca Therma	Type 1 Type 2 ws Type ws Type ws Type ws Type hts Type hts Type fype1 Type2 Type2 rea of el dows and r e the areas heat loss apacity C al mass	area 1 2 3 a 1 a 2 174. 19.7 36.9 42.1 ements roof windown s on both s, W/K = Cm = S(parameters	(m ²) 77 74 5 5 , m ² 5 ows, use e sides of ir = S (A x (A x k)) ter (TMF	$\begin{array}{c} 23.2^{\circ} \\ \hline 0 \\ \hline 0 \\ \hline 1.54 \\ \hline \\ \text{effective with ternal walk } \\ \text{U} \\ \end{array}$	9 Indow U-va Is and par	A ,r 2.19 1.56 6.89 12.17 0.48 0.42 1.12 67.13 151.4 19.74 36.99 40.61 340.7 alue calcul titions	n ² x x 7 x 7 x 3 x 3 x 3 x 3 x 3 x 3 x 4 x 9 x 1 x 8 x 1 x 1 x 1 x	W/m^{2} 1.5 1.5 $1/[1/(1.6)+$ $1/[1/(1.6)+$ $1/[1/(1.6)+$ $1/[1/(1.6) +$ $1/[1/(1.6) +$ 0.2 0.18 0.2 0.18 0.2 0.18 0.2 0.18 0.18 0.2	$\frac{2}{2} K = 1$ $= 1$ $= 1$ $= 1$ $= 0.04] = 1$ $= 1$	(W// 3.285 2.34 10.36 18.3 0.72 0.672 1.792 13.426 27.27 3.95 5.92 7.31 <i>ue</i>)+0.04] <i>e</i>		kJ/m²-	K	kJ/l	K (26) (27) (27) (27b) (27b) (27b) (27b) (27b) (29) (29) (30) (30) (31) (33)

can be i	used inste	ad of a de	tailed calc	ulation.										
Therm	al bridg	əs : S (L	x Y) cal	culated u	using Ap	pendix l	<						19.36	(36)
if details	of therma	al bridging	are not kn	own (36) =	= 0.05 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			114.56	(37)
Ventila	ation hea	at loss ca	alculated	monthl	y				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	78.67	78.23	77.79	75.74	75.36	73.58	73.58	73.25	74.27	75.36	76.14	76.95		(38)
Heat t	ransfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	193.23	192.78	192.35	190.3	189.92	188.14	188.14	187.81	188.82	189.92	190.69	191.5		
Heat lo	oss para	meter (H	HLP), W/	/m²K						Average = = (39)m ÷	Sum(39)₁. · (4)	12 /12=	190.3	(39)
(40)m=	1.19	1.19	1.19	1.18	1.17	1.16	1.16	1.16	1.17	1.17	1.18	1.18		
										Average =	Sum(40)1.	₁₂ /12=	1.18	(40)
Numb	er of day	/s in moi	nth (Tab	le 1a)										
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ater hea	ting enei	rgy requ	irement:								kWh/ye	ear:	
if TF				[1 - exp	(-0.0003	849 x (TF	-A -13.9)2)] + 0.0	0013 x (⁻	TFA -13.		95		(42)
Annua	l averag	e hot wa						(25 x N)				4.3		(43)
		-				lwelling is hot and co	-	to achieve	a water us	se target o	f			
notmor		- · ·		uay (ali w			·			I	-	1	1	
Latwat	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	_	
			·			ctor from T			ī.	i	1		I	
(44)m=	114.73	110.55	106.38	102.21	98.04	93.87	93.87	98.04	102.21	106.38	110.55	114.73		-
Energy	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x D)Tm / 3600			m(44) ₁₁₂ = ables 1b, 1		1251.55	(44)
(45)m=	170.13	148.8	153.55	133.87	128.45	110.84	102.71	117.86	119.27	139	151.73	164.77		
										Total = Su	m(45) ₁₁₂ =	=	1640.97	(45)
lf instan	taneous v	ater heatii	ng at point	of use (no	hot water	r storage),	enter 0 in	boxes (46,) to (61)			-		
(46)m=	25.52	22.32	23.03	20.08	19.27	16.63	15.41	17.68	17.89	20.85	22.76	24.71		(46)
	storage		المرابع المرابع				- 1]			I	
-							-	within sa	ame ves	sei		0		(47)
	•	•			•	nter 110		• •	ora) onto	or (0' in (47)			
	storage		not wate		iciudes i	nstantai	leous co	mbi boil	ers) ente		47)			
	•		eclared I	oss facto	or is kno	wn (kWł	n/dav):					0		(48)
		actor fro					, a.a.j / .					0		(49)
				, kWh/ye	or			(48) x (49)	_					
-			-	•		or is not		(70) X (49)	-			0		(50)
				•		h/litre/da						0		(51)
		leating s		on 4.3										
		from Ta										0		(52)
Tempe	erature f	actor fro	m Table	2b								0		(53)

0.		m water (54) in (5	•	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54) (55)
	. ,	loss cal	,	for each	month			((56)m = (55) × (41)ı	m		-		
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
	er contain	s dedicate	l d solar sto	rage, (57)	I m = (56)m	x [(50) – (I H11)] ÷ (5	0), else (5	1 7)m = (56)	m where (H11) is fro	m Append	l ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Prima	v circuit	loss (ar	nual) fro	om Table	• 3							0		(58)
	•	•	,			59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	ter heatii	ng and a	cylinde	r thermo	stat)	_		
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 30	65 × (41))m						
(61)m=	23.6	21.29	23.51	22.68	23.38	22.55	23.25	23.33	22.61	23.44	22.77	23.57		(61)
Total h	neat req	uired for	water h	eating ca	alculated	l for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	193.73	170.09	177.06	156.55	151.83	133.39	125.96	141.19	141.88	162.44	174.5	188.34		(62)
Solar DI	HW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter	-		-	-	-	-	-	-	-		
(64)m=	193.73	170.09	177.06	156.55	151.83	133.39	125.96	141.19	141.88	162.44	174.5	188.34		-
								Outp	out from wa	ater heate	r (annual)₁	12	1916.97	(64)
Heat g	ains fro	m water	heating	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	(46)m	+ (57)m	+ (59)m]	
(65)m=	62.47	54.8	56.93	50.18	48.56	42.49	39.96	45.02	45.31	52.08	56.14	60.68		(65)
inclu	ıde (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. In	ternal ga	ains (see	e Table 5	5 and 5a):									
Metab	olic gair	s (Table	e 5), Wat	ts	-	_	_	-	_	-	_	_		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	177.08	177.08	177.08	177.08	177.08	177.08	177.08	177.08	177.08	177.08	177.08	177.08		(66)
Lightin	g gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m=	77.9	69.19	56.27	42.6	31.84	26.88	29.05	37.76	50.68	64.35	75.1	80.06		(67)
Applia	nces ga	ins (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5				
(68)m=	497.12	502.28	489.28	461.6	426.67	393.84	371.9	366.74	379.74	407.42	442.35	475.18		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	tion L15	or L15a)), also se	e Table	5	-			
(69)m=	55.66	55.66	55.66	55.66	55.66	55.66	55.66	55.66	55.66	55.66	55.66	55.66		(69)
Pumps	and fai	ns gains	(Table	5a)										
(70)m=	10	10	10	10	10	10	10	10	10	10	10	10		(70)
Losse	s e.g. ev	aporatic	n (nega	tive valu	es) (Tab	le 5)	•							
(71)m=	-118.06	-118.06	-118.06	-118.06	-118.06	-118.06	-118.06	-118.06	-118.06	-118.06	-118.06	-118.06		(71)
Water	heating	gains (T	able 5)					•		•				
(72)m=	83.96	81.55	76.52	69.7	65.26	59.02	53.71	60.51	62.93	70	77.98	81.56		(72)
Total i	nternal	gains =	:	•		. (66)	m + (67)m	- n + (68)m +	+ (69)m + ((70)m + (7	1)m + (72)	m		
(73)m=	783.67	777.7	746.75	698.58	648.46	604.42	579.35	589.7	618.04	666.45	720.12	761.49		(73)
6. So	lar gains	5:	•	•	•	•	•	•	•	•	•	•		

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation		Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
North 0.	9x	0.77	x	6.89	×	10.63	x	0.63	x	0.7	=	22.39	(74)
North 0.	9x	0.77	x	6.89	×	20.32	x	0.63	x	0.7	=	42.79	(74)
North 0.	9x	0.77	x	6.89	×	34.53	x	0.63	x	0.7	=	72.71	(74)
North 0.	9x	0.77	x	6.89	×	55.46	x	0.63	x	0.7	=	116.79	(74)
North 0.	9x	0.77	x	6.89	x	74.72	x	0.63	x	0.7	=	157.33	(74)
North 0.	9x	0.77	x	6.89	x	79.99	x	0.63	x	0.7	=	168.42	(74)
North 0.	9x	0.77	x	6.89	×	74.68	x	0.63	x	0.7	=	157.24	(74)
North 0.	9x	0.77	x	6.89	×	59.25	x	0.63	x	0.7	=	124.75	(74)
North 0.	9x	0.77	x	6.89	×	41.52	x	0.63	x	0.7	=	87.42	(74)
North 0.	9x	0.77	x	6.89	×	24.19	x	0.63	x	0.7	=	50.94	(74)
North 0.	9x	0.77	x	6.89	x	13.12	x	0.63	x	0.7	=	27.62	(74)
North 0.	9x	0.77	x	6.89	×	8.86	x	0.63	x	0.7	=	18.67	(74)
East 0.	9x	0.77	x	0.48	×	19.64	x	0.63	x	0.7	=	2.88	(76)
East 0.	9x	0.77	x	0.48	×	38.42	x	0.63	x	0.7	=	5.64	(76)
East 0.	9x	0.77	x	0.48	×	63.27	x	0.63	x	0.7	=	9.28	(76)
East 0.	9x	0.77	x	0.48	×	92.28	x	0.63	x	0.7	=	13.54	(76)
East 0.	9x	0.77	x	0.48	×	113.09	x	0.63	x	0.7	=	16.59	(76)
East 0.	9x	0.77	x	0.48	×	115.77	x	0.63	x	0.7	=	16.98	(76)
East 0.	9x	0.77	x	0.48	×	110.22	x	0.63	x	0.7	=	16.17	(76)
East 0.	9x	0.77	x	0.48	×	94.68	x	0.63	x	0.7	=	13.89	(76)
East 0.	9x	0.77	x	0.48	×	73.59	x	0.63	x	0.7	=	10.8	(76)
East 0.	9x	0.77	x	0.48	×	45.59	x	0.63	x	0.7	=	6.69	(76)
East 0.	9x	0.77	x	0.48	x	24.49	x	0.63	x	0.7	=	3.59	(76)
	9x	0.77	x	0.48	x	16.15	x	0.63	x	0.7	=	2.37	(76)
	9x	0.77	x	12.17	×	46.75	x	0.63	x	0.7	=	173.89	(78)
	9x	0.77	x	12.17	×	76.57	x	0.63	x	0.7	=	284.78	(78)
	9x	0.77	x	12.17	×	97.53	x	0.63	x	0.7	=	362.76	(78)
	9x	0.77	x	12.17	×	110.23	x	0.63	x	0.7	=	410	(78)
	9x	0.77	x	12.17	×	114.87	x	0.63	x	0.7	=	427.24	(78)
	9x	0.77	x	12.17	×	110.55	x	0.63	x	0.7	=	411.16	(78)
	9x	0.77	x	12.17	×	108.01	x	0.63	x	0.7	=	401.73	(78)
	9x	0.77	x	12.17	×	104.89	x	0.63	x	0.7	=	390.14	(78)
	9x	0.77	x	12.17	×	101.89	x	0.63	x	0.7	=	378.94	(78)
	9x	0.77	x	12.17	×	82.59	x	0.63	x	0.7	=	307.16	(78)
	9x	0.77	x	12.17	×	55.42	x	0.63	x	0.7	=	206.11	(78)
	9x	0.77	x	12.17	×	40.4	x	0.63	x	0.7	=	150.25	(78)
Rooflights 0.			x	0.42	×	18.63	x	0.63	x	0.7	=	3.11	(82)
Rooflights 0.	L		x	1.12	×	37.5	x	0.63	x	0.7	=	16.67	(82)
Rooflights 0.	9x	1	x	0.42	×	36.69	x	0.63	x	0.7	=	6.12	(82)

	_															
Rooflig		1	X	1.1	12	x	71.	32	x		0.63	×	0.7	=	31.7	(82)
Rooflig	L	1	х	0.4	42	x	67.	99	x		0.63	x	0.7	=	11.33	(82)
Rooflig	nts <mark>0.9x</mark>	1	х	1.′	12	x	114	l.1	x		0.63	x	0.7	=	50.72	(82)
Rooflig	nts <mark>0.9x</mark>	1	X	0.4	42	x	121	.67	x		0.63	x	0.7	=	20.28	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	1.1	12	x	163	8.8	x		0.63	x	0.7	=	72.81	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	0.4	42	x	175	.93	x		0.63	x	0.7	=	29.33	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	1.1	12	x	200	.12	x		0.63	x	0.7	=	88.96	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	0.4	42	x	193	.56	x		0.63	x	0.7	=	32.27	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	1.1	12	x	204	.97	x		0.63	x	0.7	=	91.12	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	0.4	42	x	178	.64	x		0.63	x	0.7	=	29.78	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	1.1	12	x	195	.07	x		0.63	x	0.7	=	86.71	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	0.4	42	x	134	.3	x		0.63	x	0.7	=	22.39	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	1.1	12	x	167	.69	x		0.63	x	0.7	=	74.54	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	0.4	42	x	85.	46	x		0.63	x	0.7	=	14.25	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	1.′	12	x	131	.62	x		0.63	x	0.7	=	58.51	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	0.4	42	x	44.	.9	x		0.63	x	0.7	=	7.48	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	1.1	12	x	83.	59	x		0.63	x	0.7	=	37.16	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	0.4	42	x	23.	.1	x		0.63	x	0.7	=	3.85	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	1.1	12	x	46.	35	x		0.63	Īx	0.7	=	20.61	(82)
Rooflig	nts 0.9x	1	x	0.4	12	x	15.4	49	x		0.63	x	0.7	=	2.58	(82)
Rooflig	nts <mark>0.9x</mark>	1	x	1.1	12	x	31.	13	x		0.63	x	0.7	= =	13.84	(82)
	-								•			- '				
Solar o	ains in	watts, ca	alculated	l for eac	h month	1			(83)m	n = Su	m(74)m	(82)m				
(83)m=	218.93	371.02	506.81	633.42	719.44	7	19.95	691.63	625	.71	549.92	409.43	3 261.78	187.71]	(83)
Total g	ains – ir	nternal a	ind solar	- (84)m =	= (73)m	+ (8	83)m , v	vatts	-							
(84)m=	1002.6	1148.72	1253.56	1332	1367.9	13	324.37 1	270.99	1215	5.41	1167.95	1075.8	7 981.9	949.19		(84)
7. Me	an inter	nal temp	erature	(heating	seasor	າ)										
Temp	erature	during h	eating p	eriods i	n the livi	ng	area fro	om Tab	ole 9,	, Th1	(°C)				21	(85)
Utilisa	ation fac	tor for ga	ains for	living are	ea, h1,m	n (s	ee Tabl	e 9a)								
	Jan	Feb	Mar	Apr	May		Jun	Jul	A	ug	Sep	Oct	Nov	Dec]	
(86)m=	0.96	0.95	0.92	0.88	0.81	(0.69	0.56	0.5	59	0.76	0.89	0.95	0.97	1	(86)
Mean	interna	l temper	ature in	living ar	ea T1 (f	ollo	w steps	s 3 to 7	7 in T	able	9c)				_	
(87)m=	18.54	18.81	19.22	19.76	20.27	-	i	20.87	20.	1	20.54	19.89	19.12	18.49	7	(87)
Tomr		during h	eating r	u Ariode iu	n rest of	dw	elling fr	om Ta		 D Th	2 (°C)				-	
(88)m=	19.92	19.93	19.93	19.94	19.94	-	<u> </u>	19.95	19.9	-	19.95	19.94	19.94	19.93	7	(88)
		tor for ga		r	weiling, 0.77	1	<u> </u>		r Ó	10	0.7	0.97	0.94	0.06	7	(89)
(89)m=	0.96		0.91	0.86		-	0.62	0.45	0.4		0.7	0.87	0.94	0.96		(00)
				r	1	Ť	<u> </u>		r –	-	in Table	,			7	(00)
(90)m=	16.65	17.03	1762	18.41	19.11	1 1	9.65	19.86	19.8	84 I	19.49	18.6	17.5	16.58	1	(90)
	10.05	17.05	17.63	10.41	19.11	<u> </u>	0.00	19.00	19.0	04			ring area ÷ (4		0.1	(91)

Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$

												<u> </u>	1	(00)
(92)m=	16.83	17.2	17.78	18.54	19.22	19.74	19.96	19.93	19.59	18.72	17.65	16.76		(92)
		1	·						ere appro	·	4- -			(02)
(93)m=	16.68	17.05	17.63	18.39	19.07	19.59	19.81	19.78	19.44	18.57	17.5	16.61		(93)
			uirement											
			ernal ter or gains	•		ed at ste	ep 11 of	Table 9t	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	:										
(94)m=	0.93	0.91	0.88	0.82	0.73	0.59	0.44	0.47	0.67	0.83	0.91	0.94		(94)
Usefu	ıl gains,	hmGm	, W = (94	4)m x (84	4)m									
(95)m=	936.17	1045.68	1098.36	1091.08	997.1	781.35	553.91	572.86	778.17	892.84	893.39	892.91		(95)
Month	nly aver	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
	r	1	-	· · ·			- ,		– (96)m	-				
			2141.68			939.56	603.2	635.19	1008	1513.7	1983.51	2377.03		(97)
•	r	<u> </u>				Nh/mont	h = 0.02	24 x [(97))m – (95		ŕ		1	
(98)m=	1083.07	871.54	776.23	514.2	300.19	0	0	0	0	461.92	784.89	1104.19		-
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	5896.23	(98)
Space	e heatin	g require	ement in	kWh/m²	/year								36.45	(99)
9a. En	erav rec	uiremer	nts – Indi	vidual h	eating sv	vstems i	ncluding	micro-C	HP)			•		-
	e heatir								,					
•		-	at from se	econdar	y/supple	mentary	system						0.1	(201)
Fracti	ion of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				0.9	(202)
	-		ng from	-				(204) = (20	02) × [1 –	(203)] =			0.9	(204)
			ace heat	-									92.9	(206)
	-		ry/supple			a svstem	ո. %						65	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	J`´´
Space			ement (c				•••	10.9	000	•••			·····/////////////////////////////////	
•	1083.07	871.54	776.23	514.2	300.19	0	0	0	0	461.92	784.89	1104.19		
(211)m	L)m x (20	(4)] } x 1	00 ÷ (20	16)									(211)
(211)11	1049.26	í	752	498.14	290.82	0	0	0	0	447.5	760.39	1069.72		()
								Tota	l (kWh/yea	ar) =Sum(2			5712.17	(211)
Snace	o hoatin	a fual (e	econdar	v) k\//b/	month						· 10,1012		0712.11]``´
•		•	00 ÷ (20		monun									
	166.63	134.08	119.42	79.11	46.18	0	0	0	0	71.06	120.75	169.87		
(- /			-	_		_	_		l (kWh/yea				907.11	(215)
Wator	heating										* 15, 1012		007.11]
	-		ter (calc	ulated al	nove)									
Output				uluicu u			125.96	141.19	141.88	162.44	174.5	400.04		
	193.73	170.09	177.06	156.55	151.83	133.39	120.90	141.19	141.00		111.0	188.34		
Efficier		170.09 ater hea		156.55	151.83	133.39	125.90	141.19	141.00		11 1.0	188.34	88	(216)
Efficier (217)m=	ncy of w			156.55 89.41	151.83 89.21	133.39 88	88	88	88	89.36	89.52	89.59	88)(216) (217)
(217)m=	ncy of w 89.58	ater hea 89.56	ter 89.51	89.41									88	1
(217)m= Fuel fo	ncy of w 89.58 or water	ater hea 89.56 heating,	iter	89.41 onth									88	1
(217)m= Fuel fo	1 cy of w 89.58 or water 1 = (64)	ater hea 89.56 heating,	ter 89.51 kWh/ma	89.41 onth				88 160.45		89.36 181.79			88	1

Annual totals		kWh/year	kWh/year	-
Space heating fuel used, main system	1		5712.17	4
Space heating fuel used, secondary			907.11	
Water heating fuel used			2152.63	
Electricity for pumps, fans and electric h	keep-hot			
central heating pump:		120		(230c)
boiler with a fan-assisted flue		45		(230e)
Total electricity for the above, kWh/year	r sum of (230a)	(230g) =	165	(231)
Electricity for lighting			550.28	(232)
Electricity generated by PVs			-1727.24	(233)
Total delivered energy for all uses (211)(221) + (231) + (232)(237b) =		7759.95	(338)
10a. Fuel costs - individual heating sys	stems:			
	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year	
Space heating - main system 1	(211) x	3.48 × 0.01 =	198.78	(240)
Space heating - main system 2	(213) x	0 × 0.01 =	0	(241)
Space heating - secondary	(215) x	4.23 × 0.01 =	38.37	(242)
Water heating cost (other fuel)	(219)	3.48 × 0.01 =	74.91	(247)
Pumps, fans and electric keep-hot	(231)	13.19 × 0.01 =	21.76	(249)
(if off-peak tariff, list each of (230a) to (2 Energy for lighting	230g) separately as applicable and appl (232)	y fuel price according to 13.19 × 0.01 =		(250)
Additional standing charges (Table 12)			120	(251)
	one of (233) to (235) x)	13.19 × 0.01 =	-227.82	(252)
Appendix Q items: repeat lines (253) ar		13.19	-221.02	
Total energy cost	(245)(247) + (250)(254) =		298.59	(255)
11a. SAP rating - individual heating sy	rstems			-
Energy cost deflator (Table 12)			0.42	(256)
Energy cost factor (ECF)	[(255) × (256)] ÷ [(4) + 45.0] =		0.61	(257)
SAP rating (Section 12)			91.54	(258)
12a. CO2 emissions – Individual heati	ng systems including micro-CHP			-
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/yea	
Space heating (main system 1)	(211) x	0.216 =	1233.83	(261)
Space heating (secondary)	(215) x	0.019 =	17.24	(263)
Water heating	(219) x	0.216 =	464.97	(264)
Space and water heating	(261) + (262) + (263) + (264) =		1716.03	(265)

Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	85.64	(267)
Electricity for lighting	(232) x	0.519	=	285.59	(268)
Energy saving/generation technologies Item 1		0.519	=	-896.44	(269)
Total CO2, kg/year		sum of (265)(271) =		1190.82	(272)
CO2 emissions per m ²		(272) ÷ (4) =		7.36	(273)
EI rating (section 14)				92	(274)
13a. Primary Energy					
	Energy kWh/year	Primary factor		P. Energy kWh/year	
Space heating (main system 1)	(211) x	1.22	=	6968.85	(261)
Space heating (secondary)	(215) x	1.04	=	943.4	(263)
Energy for water heating	(219) x	1.22	=	2626.21	(264)
Space and water heating	(261) + (262) + (263) +	(264) =		10538.45	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	=	506.55	(267)
Electricity for lighting	(232) x	0	=	1689.35	(268)
Energy saving/generation technologies Item 1		3.07	=	-5302.63	(269)
'Total Primary Energy		sum of (265)(271) =		7431.72	(272)
Primary energy kWh/m²/year		(272) ÷ (4) =		45.94	(273)