[image: image2.png]\

solorfron
mobrey

Module Specification

FC-BASIC

Doc No :
990701
Issue No :
7
Date :
18/05/2001
Page 18 of 1

[image: image4.wmf]=LOC(

xxx)

LOC(

xxx)

=

Shadow

DB

Peek

Poke

DB

After

DB synch, which occurs after BASIC has

completed execution, the POKE queue is written

to the Shadow database, with the update task

being notified of any changes. The shadow

database is then copied over the Database, so that

at the beginning of the next cycle, the PUT queue

is empty and the two databases are identical.

Module Specification

Doc No :
990701
Issue No :
7

Date :
18/05/2001
Page 1 of 27

Author :
Stephen David

Product Family :
795X

Module Specification :

FC-Basic

Change History
Issue
Change
Author
Date

Issue 1
First Issue
Stephen David
17-01-1999

Issue 2
Added more detail
Stephen David
09/12/1999

Issue 3
Change logo and spelling changes
George Macdonald
23/10/2000

Issue 4
Restrict the PC functionality to upload program (LIST), download program (DOWNLOAD), Delete program (DELETE), Verify program (VERIFY), delete RAD and DEG arithmetic functions. Clarify the naming convention for database locations, FOR NEXT variable defined as integer, TIME statement returns an array, syntax for loc statement modified, clarification of AND operator.
Will Davies /George Macdonald
22/11/2000

Issue 5
TIME implemented as a function, TIMER implemented as an array not a statement, DIM statement included, PRINT statement included, LIST and DELETE commands act on entire program not range of lines, VERIFY command will not check that each GOSUB has a corresponding RETURN since this requires analysis of the run-time behaviour of the program. Inclusion of typical examples of where FC Basic will be used.
George Macdonald
04/01/2001

Issue 6
Added syntax, interface to FC software, and details/clarifications of many features.
Frank O’Gorman
19/03/2001

Issue 7
Changes to BASICFC_C interface: changed arguments of Execute function, added GetTime function.
Frank O’Gorman
18/05/2001

Contents

51.
Introduction

1.1
Related documents
5
1.2
Typical uses of the FC-Basic
5
1.3
Outline description of the FC-Basic
5
1.4
CPU usage and Completion Status
5
1.5
Execution sequence.
6
2.
Basic Language Description.
7
2.1
Boolean Values
7
2.2
Statements:
7
2.2.1
LET
7
2.2.2
REM
8
2.2.3
IF, THEN, [ELSE] ENDIF
8
2.2.4
GOTO XXXX
8
2.2.5
GOSUB XXXX, RETURN
8
2.2.6
FOR X = Y TO Z [STEP W] NEXT
9
2.2.7
WHILE , WEND
9
2.2.8
STOP
9
2.2.9
ONTIMER(1..8) GOSUB XXXX
9
2.2.10
DIM
9
2.2.11
PRINT
10
2.3
Timers
10
2.4
Logical / Bitwise Operators:
10
2.4.1
NOT
10
2.4.2
AND
11
2.4.3
OR and XOR
11
2.5
Relational Operators:
11
2.6
Arithmetic Operators:
12
2.7
Arithmetic Functions:
12
2.8
Arrays
13
2.9
Pre-defined arrays
13
2.10
Variable Types:
13
2.11
DBM Access:
13
3.
BASIC editor commands.
14
3.1
List
14
3.2
Delete
14
3.3
Verify
14
4.
Interface to Flow Computer Software
15
4.1
FCBASIC_C: Methods provided by FC-Basic
15
4.2
BASICFC_C: Methods used by FC-Basic
15
4.3
Access to locations in the database
17
5.
Appendix A – Program Grammar
19
6.
Appendix B – Line Grammar
20
7.
Appendix C – Token Grammar
25

1. Introduction

This document describes the requirements for a dialect of BASIC [FC-Basic] to be implemented in flow computers to satisfy the requirement for “Logic & Equation” and “Equation Generator”. BASIC programs will be written on a PC and then downloaded to the Flow Computer using a dumb terminal. The program will be interpreted and executed every flow computer system cycle.

1.1 Related documents

Stingray Users manual [BASIC Section]

1.2 Typical uses of the FC-Basic

Typical expected uses of the FC- Basic are:

· For the generation of logs at pre-determined times, e.g. weekly or monthly on the 1st of the month or every 28 days.

· Automatic triggering of a prove after a pre-determined time or after a pre-determined volume flow, or if the viscosity has changed since the last prove.

· Automatic opening or closing of meter streams dependent on station flow rate.

· Grab sampler handling, e.g. flag up an alarm when the sampler can is 90% full.

· Changing engineering units.

1.3 Outline description of the FC-Basic

Logic Sequencing and equation generation will be achieved by implementing a dialect of BASIC within the flow computers. The language will be limited, but tailored towards flow computers. The user will be able to connect a dumb terminal to the flow computer. This will allow him to write the program/script and download it to the flow computer. The user will then be able to verify/compile the downloaded program/script via the dumb terminal keypad. Any compilation/verification error messages will be reported back to the user via the dumb terminal display.

Solartron will not provide any PC software to achieve this. The terminal applications provided with Windows will instead be sufficient. (Terminal in Windows 3.1, or Hyperterm in Windows95, 98 and NT).

The BASIC program will have highest priority within the Flow Computer so if there are any conflicts the BASIC program will take precedence. Because of the potential difficulties arising from this, the BASIC program will only run and program entry will only be allowed with the security attribute set to PROGRAMMER, achieved by the front panel keyswitch, or the passwords.

The program/script is listed if required by typing the LIST command..

The program/script is deleted if required by typing the DELETE command..

Once a program has been entered into the flow computer, and successfully verified/compiled the program will be executed on every system cycle. Verification/compilation will take place when BASIC is enabled, or remotely from a dumb terminal on a VERIFY command.

1.4 CPU usage and Completion Status

The BASIC program will be executed as part of the system cycle, and will be time limited, such that the program will be forcibly terminated once the time elapsed since program start = 2.5 times the system cycle time. [50% watchdog timeout]

Each system cycle, the BASIC will update a flow computer database location with its completion status. Normally this will be “Success”, but may be “TimeOut – XXX” where XXX is the statement number which would have been executed next. Run time errors will also be reported here.

1.5 Execution sequence.

If the BASIC program is flagged as “ready” (see the VERIFY command in section 3.3), it is executed once on each system cycle.

At each system cycle Timers will decremented, and their associated completion function executed before the main program is executed (see sections 2.2.9 and 2.3).

Values of all variables are retained between executions of the program, and will only be initialised (or re-initialised) when the VERIFY command is entered.

2. Basic Language Description.

2.1 Boolean Values

FALSE = 0

A value of ZERO is Logical FALSE

TRUE <> FALSE
True is any value not FALSE, any non zero value.

2.2 Statements:

Syntax:

numbered_line: line_number statement tail

line_number: integer

statement: declarative_statement

| imperative_statement

| if_statement

| while_statement

| wend_statement

| for_statement

| next_statement

| if_then_statement

| endif_statement

| elseif_then_statement

| else_statement

declarative_statement: dimension_statement

| null_statement

| remark_statement

| ontimer_statement

imperative_statement: gosub_statement

| goto_statement

| let_statement

| print_statement

| return_statement

| stop_statement

| function_statement

null_statement:

function_statement: numeric_function_ref

All BASIC statements are preceded by a line number, which identifies their position within the program. Line number can be 1 to 9999 inclusive.
2.2.1 LET

Syntax:

let_statement: opt_let numeric_variable = expression

opt_let: LET |

This is the assignment statement. Use of the keyword LET is optional.

2.2.2 REM

Syntax:

remark_statement: REM any_characters

This is a comment delimiter, and exists to allow the program to be documented. All further characters on the line are ignored.

2.2.3 IF, THEN, [ELSE] ENDIF

Syntax:

if_statement: IF relational_expression THEN if_clause opt_else

opt_else: ELSE if_clause |

if_clause: imperative_statement | line_number

if_then_statement: IF relational_expression THEN

elseif_then_statement: ELSEIF relational_expression THEN

else_statement: ELSE

endif_statement: END IF | ENDIF

if_block: if_then_line block_list elseif_block_list opt_else_block end_if_line

elseif_block_list: elseif_block_list elseif_block |

opt_else_block: else_block |

elseif_block: elseif_then_line block_list

else_block: else_line block_list

IF is followed by a boolean expression. If the expression evaluates to TRUE, then program execution will continue with the statement following the THEN, otherwise it will pass to the ELSE statement, or the ENDIF if ELSE is not present.

2.2.4 GOTO XXXX

Syntax:

goto_statement: goto line_number

goto: GOTO | GO TO

Transfers program control directly to the specified line number.

2.2.5 GOSUB XXXX, RETURN

Syntax:

gosub_statement: gosub line_number

gosub: GOSUB | GO SUB

return_statement: RETURN

Transfers program control to the specified line. When the RETURN statement is reached, program control is returned to the statement following the GOSUB statement.

RETURN causes main program execution to continue at the line following the most recently executed GOSUB statement.

Every line which is the target of a GOSUB must have a RETURN statement following it somewhere in the program. A single RETURN can terminate multiple GOSUBS, and a GOSUB can have multiple RETURN statements.

GOSUBS can be nested, and recursive, limited only by memory constraints at runtime.

2.2.6 FOR X = Y TO Z [STEP W] NEXT

Syntax:

for_statement: FOR identifier = expression TO expression opt_step

opt_step: STEP expression |

next_statement: NEXT identifier

for_loop: for_line for_body

for_body: block_list next_line

Executes a loop a number of times. The variable X, which is an integer value, is initialised with the value Y, which can be any expression. W is optional, and may be positive or negative. If missing the value + 1 is assumed. The loop always executes at least once. When the NEXT statement is reached, W is added to X, and X is compared to Z. If W is +ve, then the loop will execute again if Z > X. If W is –ve, the loop will execute again if Z < X. On leaving the loop, X contains the value last used for the comparison.

2.2.7 WHILE , WEND

Syntax:

while_statement: WHILE relational_expression

wend_statement: WEND

while_loop: while_line while_body

while_body: block_list wend_line

The WHILE keyword is followed by a boolean expression. The statements between WHILE and WEND will be executed so long as the expression evaluates to TRUE. When the expression evaluates to FALSE, program control passes to the statement following WEND.

2.2.8 STOP

Syntax:

stop_statement: STOP

Stops program execution at this statement.

2.2.9 ONTIMER(1..8) GOSUB XXXX

Syntax:

ontimer_statement: ONTIMER (numeric_rep) gosub line_number

In the cycle in which a system timer reaches 0, the associated ONTIMER sub-routine is invoked.

ONTIMER statements are interpreted when the VERIFY command is entered, not during program execution (see section 3.3).

2.2.10 DIM

Syntax:

dimension_statement: DIM dimension_list

dimension_list: array_declaration | dimension_list , array_declaration

array_declaration: identifier bounds as_type

as_type: AS type |

type: FLOAT | INTEGER

bounds: (bounds_list) |

bounds_list: bounds_range | bounds_list , bounds_range

bounds_range: signed_integer TO signed_integer | signed_integer

signed_integer: sign integer | integer

The DIM statement is used for declaring variables and arrays.

e.g. DIM turbine_array(64) as float

Array variables must be declared using the DIM statement. Simple variables need not be declared. If a simple variable is not declared, it is assumed to be of type FLOAT.

If no type is specified in the DIM statement, FLOAT is assumed. If no lower bound is specified for an array dimension, a lower bound of 0 is assumed.

DIM statements are interpreted when the VERIFY command is entered, not during program execution (see section 3.3).

2.2.11 PRINT

Syntax:

print_statement: PRINT print_list

print_list: opt_print_item | print_list print_separator opt_print_item

opt_print_item: print_item |

print_item: expression | quoted_string

print_separator: , | ;

The PRINT statement provides a means to output simply formatted data to the serial interface.

Two special functions, SPC and TAB, are provided for use in PRINT statements:

Function
Description

Spc(n)
Used to insert space characters in the output, where n is the number of space characters to insert.

Tab(n)
Used to position the insertion point to an absolute column number, where n is the column number. Use Tab with no argument to position the insertion point at the beginning of the next print zone.

If ‘;’ is used as a separator, the next print item is output immediately after the preceding print item. If ‘,’ is used as a separator, the next print item is output in the next print zone.

There will be no user defined number formatting. All numbers will be formatted using the ‘C’ sprintf function using the %g format specifier. Field width will be limited to 16 characters.

2.3 Timers

The System maintains 8 timers, which are accessed as the array TIMER(1..8). Each timer can be assigned a period with a resolution of seconds between 0 and (232-1)/1000. These timers run backwards, the actual time since the last cycle is subtracted from each timer. On the cycle in which the timer reaches 0 , the associated ON timer Function is called.

 A timer can be can be cancelled by setting it to a value of 0.

Timers are decremented, and if required the appropriate code is executed before the main program is executed.

2.4 Logical / Bitwise Operators:

2.4.1 NOT

Syntax:

relational_term: NOT relational_primary | relational_primary

numeric_relational_term: NOT numeric_relational_primary

| numeric_relational_primary

Performs logical or bitwise inversion of the operands.

2.4.2 AND

Syntax:

conjunction: relational_term | conjunction AND relational_term

numeric_conjunction: numeric_relational_term

| numeric_conjunction AND numeric_relational_term

Performs logical or bitwise AND of the operands. The AND operator will operate as in Visual Basic:
 Result = expression 1 And expression 2

If and only if both expressions evaluate to True, Result is True. If either expression evaluates to False, Result is False.

The And operator also performs a bit-wise comparison of identically positioned bits in two NUMERIC expressions and sets the corresponding bit accordingly, e.g.

A = 10: B = 8: C = 6

Mycheck = A > B And B> C ‘ returns True

Mycheck = A And B ‘ returns 8 (bitwise comparison)

2.4.3 OR and XOR

Syntax:

relational_expression: conjunction

| relational_expression OR conjunction

| relational_expression XOR conjunction

expression: numeric_conjunction

| expression OR numeric_conjunction

| expression XOR numeric_conjunction

Performs logical or bitwise OR or XOR of the operands.

2.5 Relational Operators:

Syntax:

relational_primary: numeric_expression relation numeric_expression

| numeric_expression

numeric_relational_primary: numeric_expression relation numeric_expression

| numeric_expression

relation: = | <> | > | < | <= | >=

These are the usual relational operators.

2.6 Arithmetic Operators:

Syntax:

numeric_expression: signed_term | signed_term sign summand

summand: term | summand sign term

signed_term: sign term | term

term: factor | term multiplier factor

factor: primary | factor ^ primary

primary: numeric_rep

| numeric_variable

| numeric_function_ref

| (expression)

numeric_variable: identifier | numeric_array_element

numeric_rep: float_num | integer_num

sign: + | -

multiplier: * | / | MOD | DIV

These are the usual arithmetic operators:

+
Addition

-
Subtraction

*
Multiplication

/
Division

^
Exponentiation

MOD
Remainder after division. Real numbers are first converted to Integers, using truncation.

DIV
Integer Result after Division. Real numbers are first converted to Integers, using truncation.

2.7 Arithmetic Functions:

Syntax:

numeric_function_ref: numeric_function arg_list

arg_list: (expr_list)

expr_list: expression | expr_list , expression

numeric_function: ABS

| ACOS

| ASIN

| ATAN

| BSGN

| COS

| EXP

| INT

| LN

| POW

| SIN

| SQRT

| TAN

| TIME

| PEEK

| POKE

| GETSTATUS

| SETSTATUS

ABS(x)
Returns the magnitude of a number

ACOS (x)
Calculates the angle whose cosine is known. The angle is in RADIANS

ASIN(x)
Calculates the angle whose sine is known. The angle is in RADIANS

ATAN(x)
Calculates the angle whose tangent is known. The angle is in RADIANS

BSGN(x)
Returns TRUE for +ve & zero, FALSE for –ve

COS(x)
Returns the Cosine of an angle. X must be in RADIANS

EXP(x)
ex – where e = 2.7183

INT(x)
Returns the integer part of a number, by truncating towards zero

LN(x)
Natural log. X must be positive

POW(x,y)
x raised to power y

SIN(x)
Returns the Sine of an angle. X must be in RADIANS

SQRT(x)
Returns the +ve square root of a +ve number

TAN(x)
Returns the Tangent of an angle. X must be in RADIANS

TIME(n)
Gets the component of the date/time selected by the value of n: 0=sec, 1=min, 2=hrs, 3=day, 4=mnth 5=yrs

2.8 Arrays

Syntax:

numeric_array_element: identifier arg_list

This is used for accessing array elements. Arrays must be declared using the DIM statement (see section 2.2.10), except for pre-defined arrays (see section 2.9).

2.9 Pre-defined arrays

LOC(xxxx)
DBM variable (live access. Usage: A = LOC(xxxx) and LOC(xxxx) = A). See Section 4.3
AIN(1..16)
analogue inputs – returns a value in percentage of full scale, taking account of type. This array may not be assigned to.

AOUT(1..8)
analogue outputs – Sets the analogue outputs with a % value. This will be capped by the system layer, if it is outside of limits. This array may only be assigned to.

DIN(1..24)
Status inputs – returns 0 or 1, reflecting the current state. This array may not be assigned to.

DOUT(4..25)
Status outputs – set 0 or 1. This array may only be assigned to.

VIN(1..10)
Valve status. This array may not be assigned to.

VOUT(1..10)
Valve command. This array may only be assigned to.

TIMER(1..8)
System timers. See section 2.3.

2.10 Pre-defined constants

TRUE
-1 (Note that NOT 0 is -1).

FALSE
0

LIVE
0

SET
1

FAIL
2

FB
3

2.11 Variable Types:

Float
64-bit floating point number

Integer
signed 32-bit number

Array
each element a float

2.12 DBM Access:

PEEK(<location>)
get last DBM data (async read)

POKE(<location>, <data>)
async put DBM option (activates UPT object)

GETSTATUS(<location>)
Get status of a DBM location. Returns a numeric value, equal to one of the predefined constants SET,LIVE,FAIL or FB [FallBack]

SETSTATUS(<location>, <status>)
Set status of a DBM location. <status> must be one of the predefined constants SET,LIVE,FAIL or FB [FallBack].

3. BASIC editor commands.

Program entry and modification will be achieved using an editor program built into the flow computer.

Each line is parsed as it is read in using the grammar in Appendix B.

Syntax:

line: numbered_line | interactive_line

Numbered lines are sorted into line-number order and stored for later verification and execution (see the VERIFY command below). If a line has the same number as a previously entered line, it will replace the previously entered line.

Unnumbered (interactive) lines are editor commands and are interpreted immediately.

Syntax:

interactive_line: command tail

command: list_command | delete_command | verify_command

The following lists the available editor commands:

3.1 List

Syntax:

list_command: LIST

This command is used to list the entire program to the serial port. Using the terminal emulators supplied with Windows, the file can be saved to disk. The listing will be in line-number order.

3.2 Delete

Syntax:

delete_command: DELETE

This command is used to delete the entire program.

3.3 Verify

Syntax:

verify_command: VERIFY

This command “verifies “ the program. The numbered program lines are parsed using the grammar in Appendix A, and checked for program integrity, e.g. that all GOTO and GOSUB statements have a valid target line. Storage is allocated for all variables (as specified in DIM statements), and all variables are initialised to 0. ONTIMER declarations are processed to associate sub-routines with timers, and all timers are initialised to 0.

If the program is successfully verified, it is flagged as “ready” for execution and will be executed on each system cycle. Entry of the DELETE command or entry of a numbered line will flag the program as “not ready” for execution, and no further execution will occur until the next successful verification.

4. Interface to Flow Computer Software

The interface between the FC-Basic system and the rest of the flow-computer software is defined by two C++ classes and their associated methods. One of the classes (FCBASIC_C declared in fcbasic.h) is provided as part of the FC-Basic system, and includes methods to be called by the rest of the flow-computer software. The other class (BASICFC_C declared in basicfc.h) is not part of the FC-Basic system, but is provided by the rest of the flow-computer software. It includes methods to be called by the FC-Basic system, allowing it to access flow-computer components such as the database.

4.1 FCBASIC_C: Methods provided by FC-Basic
These methods are part of the FC-Basic system.

FCBASIC_C::FCBASIC_C (BASICFC_C &fc)

The FCBASIC_C constructor is passed a reference to a BASICFC_C object, which the FC-Basic system will use to access the rest of the flow-computer software. E.g. a FC-Basic system can be created by the following code:

BASICFC_C basicfc (. . .);

FCBASIC_C fcbasic (basicfc);

Note that it is possible to create more than one FC-Basic system. In this case, each FCBASIC_C instance would probably have its own BASICFC_C instance, so that, for example, different serial ports could be used for each.

void FCBASIC_C::ProcessLine (const char *line)

This method is called each time a line of input arrives from the serial port to be processed by the FC-Basic system. It should only be called if the security attribute is set to PROGRAMMER (see section 1.3).

STATUS_T FCBASIC_C:Execute (char *status, int status_size)

This method is called once on each flow-computer cycle to request execution of the BASIC program. It returns 0 if the program executed OK, otherwise it returns a non-zero error code. If the program is not ready for execution (i.e. not verified), the appropriate error code is returned. A null-terminated completion-status string (see section 1.4) is returned in status, which should be an array of size status_size or more.

4.2 BASICFC_C: Methods used by FC-Basic
These methods are NOT part of the FC-Basic system, but are called by the FC-Basic system to access its environment.

STATUS_T BASICFC_C::GetLoc (int location, double &value)

Called when the BASIC program reads an element of the LOC array to get the value of a database location. GetLoc checks that the location number is in range and that access to the location is permitted. See section 4.3.

STATUS_T BASICFC_C::PutLoc (int location, double value)

Called when the BASIC program assigns to an element of the LOC array to put the value of a database location. PutLoc checks that the location number and value are in range and that access to the location is permitted. See section 4.3.

STATUS_T BASICFC_C::Peek (int location, double &value)

Called when the BASIC program calls the PEEK function to get the value of a database location. Peek checks that the location number is in range and that access to the location is permitted. See section 4.3.

STATUS_T BASICFC_C::Poke (int location, double value)

Called when the BASIC program calls the POKE function to put the value of a database location. Poke checks that the location number and value are in range and that access to the location is permitted. See section 4.3.

STATUS_T BASICFC_C::GetStatus (int location, int &status)

Called when the BASIC program calls the GETSTATUS function to get the status of a database location. GetStatus checks that the location number is in range and that access to the location is permitted. See section 4.3.

STATUS_T BASICFC_C::SetStatus (int location, int status)

Called when the BASIC program calls the SETSTATUS function to set the status of a database location. SetStatus checks that the location number and status are in range and that access to the location is permitted. See section 4.3.

STATUS_T BASICFC_C::GetAin (int input, double &value)

Called when the BASIC program reads an element of the AIN array to get the value of an analogue input. GetAin checks that the input number is in range.

STATUS_T BASICFC_C::SetAout (int output, double value)

Called when the BASIC program assigns to an element of the AOUT array to set the value of an analogue output. SetAout checks that the output number and value are in range.

STATUS_T BASICFC_C::GetDin (int input, int &value)

Called when the BASIC program reads an element of the DIN array to get the value of a digital input. GetDin checks that the input number is in range.

STATUS_T BASICFC_C::SetDout (int output, int value)

Called when the BASIC program assigns to an element of the DOUT array to set the value of a digital output. SetDout checks that the output number and value are in range.

STATUS_T BASICFC_C::ValveStatus (int valve, int &status)

Called when the BASIC program reads an element of the VIN array to get the value of a valve status. ValveStatus checks that the valve number is in range.

STATUS_T BASICFC_C::ValveCommand (int valve, int command)

Called when the BASIC program assigns to an element of the VOUT array to issue a valve command. ValveCommand checks that the valve number and command number are in range.

void BASICFC_C::PutLine (const char *line)

Called to write a line of text to the serial port. line is null-terminated, but does not contain a newline or carriage-return character.

void BASICFC_C::GetDateTime (int time [])

Called to get the current date and time. time is a six-element array, which GetDateTime fills in as follows:

0 Seconds

1 Minutes

2 Hours

3 Day

4 Month

5 Year

bool BASICFC_C::TimedOut (void)

Called repeatedly by FCBASIC_C::Execute to check whether the time limit for execution of the BASIC program has been exceeded (see section 1.5). TimedOut returns true if the time limit has been exceeded, otherwise false.

double BASICFC_C::GetTime (double &rollover)

Returns the elapsed time in seconds since an arbitrary origin, and sets rollover to the “roll over” period in seconds. It is expected that the time will have a resolution of 1mS, and that the roll-over period will be much greater than the system cycle time.

4.3 Access to locations in the database

The following rules apply to BASIC program database access . These rules are enforced by the BASICFC_C methods GetLoc, PutLoc, Peek and Poke.

1. Security will be applied to all database write operations. BASIC runs at the PROGRAMMER security level, and can therefore access all locations other than those with SUPERUSER write access. Refer to the security table in the applications “.man” file to determine a locations security attribute.

2. Loc (xxxx) = A.

2.1. The location xxxx cannot be updated if the STATUS is SET, and the class of the variable is ACTIVE or TRIPLES.

3. Poke(xxx,data)

3.1. This can write to any location, other than those of class TRIPLES_TOTALS.

4. Loc(xxx)=A is a synchronous database write. Using this method writes data directly into the shadow database. Poke(xxx,data) is an asynchronous database write. These are not written to the database directly, but queued for database update at a later time. [This occurs after BASIC has completed, as the last action in the cycle]. Database updates made using Poke, are notified to the update task, which is responsible for configuring the instrument. For example, if you use LOC(1234)=5 [where 1234 is Port 1 baud rate, and 5 is the option for 19200] then the serial port will not be configured, but using Poke(1234,5) would cause the serial port to be configured, because the update task is notified.

5. A=Loc(xxx) is a synchronous read, and reads data from the shadow database. Peek(xxx) is a synchronous read, and reads data from the database.

[image: image1.png]\

solorfron
mobrey

5. Appendix A – Program Grammar

This grammar is used to parse the whole program when the VERIFY command is entered.

The following special characters are used in the grammar:

:
means “consists of”

|
means “or”
program: block_list

block_list: block_list block |

block: statement_line | loop | if_block

statement_line: declarative_line | imperative_line | if_line

loop: for_loop | while_loop

while_loop: while_line while_body

while_body: block_list wend_line

for_loop: for_line for_body

for_body: block_list next_line

if_block: if_then_line block_list elseif_block_list opt_else_block end_if_line

elseif_block_list: elseif_block_list elseif_block |

opt_else_block: else_block |

elseif_block: elseif_then_line block_list

else_block: else_line block_list

6. Appendix B – Line Grammar

This grammar is used to parse each line as it is read in.

The following special characters are used in the grammar:

:
means “consists of”

|
means “or”

//
precedes a comment

// Lines

line: numbered_line | interactive_line

numbered_line: line_number statement tail

interactive_line: command tail

// Commands

command: list_command | delete_command | verify_command

list_command: LIST

delete_command: DELETE

verify_command: VERIFY

line_number: integer

// Statements

statement: declarative_statement

| imperative_statement

| if_statement

| while_statement

| wend_statement

| for_statement

| next_statement

| if_then_statement

| endif_statement

| elseif_then_statement

| else_statement

declarative_statement: dimension_statement

| null_statement

| remark_statement

| ontimer_statement

imperative_statement: gosub_statement

| goto_statement

| let_statement

| print_statement

| return_statement

| stop_statement

| function_statement

stop_statement: STOP

function_statement: numeric_function_ref

// Program annotation

remark_statement: REM

null_statement:

// Numeric variables

numeric_variable: identifier | numeric_array_element

numeric_array_element: identifier arg_list

arg_list: (expr_list)

expr_list: expression | expr_list , expression

// Numeric expressions

expression: numeric_conjunction

| expression OR numeric_conjunction

| expression XOR numeric_conjunction

numeric_conjunction: numeric_relational_term

| numeric_conjunction AND numeric_relational_term

numeric_relational_term: NOT numeric_relational_primary

| numeric_relational_primary

numeric_relational_primary: numeric_expression relation numeric_expression

| numeric_expression

numeric_expression: signed_term | signed_term sign summand

summand: term | summand sign term

signed_term: sign term | term

term: factor | term multiplier factor

factor: primary | factor ^ primary

primary: numeric_rep

| numeric_variable

| numeric_function_ref

| (expression)

numeric_rep: float_num | integer_num

numeric_function_ref: numeric_function arg_list

sign: + | -

multiplier: * | / | MOD | DIV

// Implementation-Supplied Numeric Functions

numeric_function: ABS

| ACOS

| ASIN

| ATAN

| BSGN

| COS

| EXP

| INT

| LN

| POW

| SIN

| SQRT

| TAN

| TIME

| PEEK

| POKE

| GETSTATUS

| SETSTATUS

// Numeric Assignment Statements

let_statement: opt_let numeric_variable = expression

opt_let: LET |

// Array Declarations

dimension_statement: DIM dimension_list

dimension_list: array_declaration | dimension_list , array_declaration

array_declaration: identifier bounds as_type

as_type: AS type |

type: FLOAT | INTEGER

bounds: (bounds_list) |

bounds_list: bounds_range | bounds_list , bounds_range

signed_integer: sign integer | integer

bounds_range: signed_integer TO signed_integer | signed_integer

// Relational Expressions

relational_expression: conjunction

| relational_expression OR conjunction

| relational_expression XOR conjunction

conjunction: relational_term | conjunction AND relational_term

relational_term: NOT relational_primary | relational_primary

relational_primary: numeric_expression relation numeric_expression

| numeric_expression

relation: = | <> | > | < | >= | <=

// Control Statements

goto_statement: goto line_number

goto: GOTO | GO TO

gosub_statement: gosub line_number

gosub: GOSUB | GO SUB

return_statement: RETURN

ontimer_statement: ONTIMER (numeric_rep) gosub line_number

// Loop Statements

while_statement: WHILE relational_expression

wend_statement: WEND

for_statement: FOR identifier = expression TO expression opt_step

opt_step: STEP expression |

next_statement: NEXT identifier

// Decision Structures

if_statement: IF relational_expression THEN if_clause opt_else

opt_else: ELSE if_clause |

if_clause: imperative_statement | line_number

if_then_statement: IF relational_expression THEN

elseif_then_statement: ELSEIF relational_expression THEN

else_statement: ELSE

endif_statement: END IF | ENDIF

// Output

print_statement: PRINT print_list

print_list: opt_print_item | print_list print_separator opt_print_item

opt_print_item: print_item |

// Note that TAB and SPC are handled syntactically as any

// other function call within 'expression'

print_item: expression | quoted_string

print_separator: , | ;

7. Appendix C – Token Grammar

This grammar is used to group the input characters into tokens, which are then parsed by the grammar in Appendix B (except for ‘white-space’ tokens, which are ignored). Note that keywords (such as IF) and function names (such as SIN) are classified as “identifiers” by this grammar – they are appropriately re-classified by table-lookup before being passed to grammar of Appendix B.

The following special characters are used in the grammar:

:
means “consists of”

|
means “or”

.
means any character

*
means zero or more of the preceding item

+
means one or more of the preceding item

[]
enclose alternative characters
· indicates a range of characters (e.g. [0-9] means [0123456789])
^
means “not”. E.g. [^0-9] means “not a digit”.

()
are used for grouping

{}
enclose names of non-terminal symbols

\n
newline character

\r
carriage-return character

\t
tab character

\
the following character is not to be treated specially

upper_case_letter:
[A-Z]

lower_case_letter:
[a-z]

digit:

[0-9]

letter:

({upper_case_letter}|{lower_case_letter})

white_space:

([\t\r\n]+)

period:

\.

plus_sign:

\+

minus_sign:

-

integer:

({digit}+)

tail:

({tail_comment}?)

tail_comment:

((`|!).*)

underline:

_

identifier_character:
({letter}|{digit}|{underline})

identifier:

({letter}{identifier_character}*)

fraction:

({period}{integer})

sign:

({plus_sign}|{minus_sign})

significand:

({integer}{period}?|{integer}?{fraction})

exrad:

((E|e){sign}?{integer})

float:

({significand}{exrad}?)

non_quote_character:
[^"]

double_quote:

(\"\")

quoted_string_character:({double_quote}|{non_quote_character})

quoted_string:

(\"{quoted_string_character}*\")

left_parenthesis:

\(

right_parenthesis:
\)

comma:

,

circumflex_accent:
\^

asterisk:

*

slant:

\/

equals_sign:

=

greater_than_sign:
>

less_than_sign:

<

semicolon:

;

not_equals:

(<>|><)

not_less:

(>=|=>)

not_greater:

(<=|=<)

rem:

([rR][eE][mM][^a-zA-Z0-9_].*)

token:

({white_space}|

{left_parenthesis}|

{right_parenthesis}|

{comma}|

{plus_sign}|

{minus_sign}|

{circumflex_accent}|

{integer}|

{float}|

{asterisk}|

{slant}|

{equals_sign}|

{greater_than_sign}|

{less_than_sign}|

{not_equals}|

{not_less}|

{not_greater}|

{semicolon}|

{quoted_string}|

{identifier}|

{tail}|

{rem})

� EMBED Word.Picture.8 ���

Approvals
1:

Date:

2:

Date:

3:

Date:

4:

Date:

©
Solartron Mobrey 2001
file : m:\fcbasic\fcbspec_7.doc

© Solartron Mobrey 2001
File : m:\fcbasic\fcbspec_7.doc

[image: image2.png][image: image3.wmf]=LOC(

xxx)

LOC(

xxx)

=

Shadow

DB

Peek

Poke

DB

After

DB synch, which occurs after BASIC has

completed execution, the POKE queue is written

to the Shadow database, with the update task

being notified of any changes. The shadow

database is then copied over the Database, so that

at the beginning of the next cycle, the PUT queue

is empty and the two databases are identical.

_1036940438.doc

Poke

Peek

LOC(xxx)=

=LOC(xxx)

Shadow DB

DB

After DB synch, which occurs after BASIC has completed execution, the POKE queue is written to the Shadow database, with the update task being notified of any changes. The shadow database is then copied over the Database, so that at the beginning of the next cycle, the PUT queue is empty and the two databases are identical.

