[image: image1.png]

[image: image2.png]

	Reference
	DL100002 Issue A MODBUS Protocol

	Status
	

[image: image3.png]

[image: image4.png]

[image: image5.png]

[image: image6.png]

[image: image7.png]

[image: image8.png]

[image: image9.png]

PROJECT

	Gas Lift

TITLE

	SBC Requirements

ISSUE STATUS

	Issue
	Author
	DATE
	Release status
	Change request
	AMENDMENTS

	A
	P.Hockley
	18/5/2010
	In-Review
	N/A
	RE-ISSUED WITH NEW NUMBER

	
	
	
	
	
	

TABLE OF CONTENTS

41
purpose

42
HARDWARE REQUIREMENTS

53
SOFTWARE REQUIREMENTS

53.1
SCS Board Interface

53.1.1
Command and Returned Data Structures

63.1.2
CRC Calculation and Error Handling

63.1.2.1
SBC to SCS

63.1.2.2
SCS to SBC

63.1.3
Communications Protocol

1 purpose

The purpose of this document is to define both the hardware and software requirements of the Single Board Computer (SBC) in the SCS Enclosure. It will also define all interface Protocols where these have not already been defined elsewhere.
This document should be used by internal or third party software developers to write appropriate software to drive the SBC.

2 HARDWARE REQUIREMENTS
The following hardware is required as a minimum.
· RS485, One Channel is required for the Modbus Interface

· RS232, Two Channels required. One for SCS Board Interface, and one for general set up communications.

· USB 2.0, One channel required for Memory Stick data storage

· LAN (10/100 Base – T), one channel for the Diagnostics Port.
· +5V or +12V DC Input supply, power consumption less than 3 Watts.
· Dimensions no larger than 100mm per side.

Note that the processor type and speed are not defined as the SBC only perform low level functions such as communications, and data storage.
The chosen SBC is the Data sound Lab ICOP-6154 Ultra Low Power Embedded PC104 Module with 300MHz Vortex86SX CPU module, running WindowsCE 6.0BSP, or Linux.
3 SOFTWARE REQUIREMENTS

This sections describes all of the software functions required.
3.1 SCS Board Interface
This is a simple RS232 based interface, to connect the SBC to the Surface Control System (SCS).
3.1.1 Command and Returned Data Structures
The following commands are to be implemented, all are simple two byte codes.
Command Byte 1:
Command.

Command Byte 2:
Number
Command Byte 3:
Random number (generated for CRC checking)

Command Byte 3:
CRC

The table below gives the various commands

	COMMAND
	Command Byte 1
	Command Byte 2 (Range)

	OPEN ACTUATOR
	01
	1-6

	CLOSE ACTUATOR
	02
	1-6

	GET STATUS
	03
	0

	SET ACTUATOR PULSE TIME
	04
	0-3

	GET DATA
	05
	0

If the command does not need the second byte it always sends 0. Note Get status is a command for the DHCS, Get Data is a command for the SCS Board only.

When the Get Data command is sent the SCS replies with the current data (data is updated on any open/close actuator or Get Status commands) in the following format.
	Data Received
	FORMAT

	Command
	Command sent to DHCS (not command from SBC)

	DHCS Status
	Status of DHCS command and actuator positions

	CBV Start
	Capacitor Bank Voltage Start 0-255

	CBV Finish
	Capacitor Bank Voltage Finish 0-255

	Pressure 1 MSB
	Annulus Pressure 0-10000 PSI (MSB)

	Pressure 1 LSB
	Annulus Pressure 0-10000 PSI (LSB)

	Pressure 2 MSB
	Production Pipe Pressure 0-10000 PSI (MSB)

	Pressure 2 LSB
	Production Pipe Pressure 0-10000 PSI (MSB)

	RTD Reading MSB (Pressure sensor 2)
	Production Pipe Sensor RTD Value MSB 0-60000

	RTD Reading LSB (Pressure sensor 2)
	Production Pipe Sensor RTD Value LSB 0-60000

	PCB Temperature
	DHCS PCB Temperature 0-125 (°C)

3.1.2 CRC Calculation and Error Handling

3.1.2.1 SBC to SCS

The CRC shall be calculated by adding the two command bytes together, along with the random number into a single 8 bit byte (no roll over).
The SCS on receipt of the command will check the CRC, and return with either the same command as that sent, or with the byte 0xFF to indicate a CRC error.

3.1.2.2 SCS to SBC

When returning the data to the SBC the CRC shall be calculated by adding all the data bytes together (as single bytes), in the same manner as above.
If the SBC detects a CRC error then it will disregard the data, and try again (up to five times).
3.1.3 Communications Protocol
Important Note: The SCS board when communicating with the Down Hole Control System (DHCS) cannot be interrupted by the SBC.
The SBC shall interface to the SCS Board through a dedicated RS232 level channel, with hardware handshaking. The interface is configured as a Master/Slave, with the SBC being the Master. Usually the handshaking signals RTS and CTS are used, in this case only the CTS is implemented (by the SCS board).
All communications are instigated by the master, and follow the pattern below.

· SBC looks for an asserted CTS
· If CTS asserted, master sends over the required command

· If the SCS is busy the CTS line is non-asserted, and the master has to wait for the CTS to become asserted.

· Once the command is received by the SCS it will echo the received command, and then action the command (CTS non asserted whilst busy).

Note commands fall in to two categories, data retrieval, and DHCS actions. In the case of Data retrieval, once the command is echoed back, the SCS will immediately follow up with the data required. For DHCS action commands, only the command will be sent back.

3.2 sbc Configuration INTERFACE
This is an RS232 based port that allows set up of the SBC. The configuration is an RS232 interface that accepts simple commands to set up the various Modbus parameters, and the Ethernet (LAN) parameters. It is designed to be run from standard terminal programs (e.g. Hyper Terminal)
There is no CRC error checking on this, commands sent will be echoed by the SBC with a Pass/Fail if the parameter was accepted and programmed. Errors shall be corrected manually by the user.
Modbus Programmable parameters are given below.

· Slave Address:
This can be set within the range 1-255. Default 1

· Coil Address:

This can be set from 0 to 65500. Default 0

· Register Address:
This can be set from 0 to 65500. Default 40000

Ethernet Parameters are given below.

To Be Defined.
3.2.1 Communications Protocol
The protocol is based on simple string instructions, with parameters separated by commas.
The following commands have been defined.

Modbus Slave Address
MBSA,n

Where n is the slave address 1-255.
e.g. MBSA,20

Sets The Modbus slave address to 20 (decimal).

Modbus Coil Address

MBCA,n

Where n is the coil offset address 0-65500.

e.g. MBCA,10000
Sets the Modbus coil address offset to 10,000

Modbus Register Address

MBRA
,n

Where n is the register offset address 0-65500.

e.g. MBRA,40000
Sets the Modbus Register offset address to 40000.

All other commands have yet to be defined, but will follow a similar pattern.
Once the command sequence has been accepted (or fails) the SBC will reply with the given command, and a Pass/Fail. Therefore a complete command sequence will look similar to the example below.

>MBSA,8

(sent to the SBC)

MBSA,8 Pass

(reply from SBC)

>

(waiting for next command)

3.3 SERIAL MODBUS Interface
This is a RS485 based Modbus Protocol interface.
Please refer to the following documents for the full requirements

· Modbus Application Protocol Specification V1.1b.

· Camcon Document Dl100001 Modbus Protocol.

These two documents fully describe the requirements for this interface.

3.4 ETHERNET MODBUS INTERFACE

This is a 10/100 Base-T Modbus TCP based interface. It shall conform to the Modbus TCP/IP Specification.

Refer to the documents

· Modbus Application Protocol Specification V1.1b.

· Camcon Document DL100001 Modbus Protocol.

· Modbus Messaging On TCP/IP Implementation Guide V1.0b

It shall perform the same function as the Serial Modbus Interface, and from the user point of view should be indistinguishable.
3.5 DATA COLLECTION INTERFACE

All data transfers are to be logged to a USB Memory stick. This will conform to the USB 2.0 specification.

All traffic shall be logged, this will include,
· Modbus commands (both Serial and Ethernet based traffic)

· Data sent to the SCS board

· Data received from the SCS Board

In addition to the actual data the source of the data shall also be noted (Modbus Serial, Modbus Ethernet etc), and all data transfers shall be individually time and date stamped.

It is not expected that the memory stick shall ever become full (as a 32GB stick would last 87 years, if each data block was 1000 bytes long, and there were 1000 transfers a day).

3.6 DHCS DATA TRANSLATION
Most of the data received from the DHCS is in a basic form, and needs to be translated for the Modbus interface. This section deals with the required conversions.
3.6.1 Capacitor Bank Health

Refer to the following document for all information regarding the method and calculations required to determine the Capacitor lifetime left.
· DL100005 Health Monitoring Report, Section 2.0.
Note: The life time left will start at 100%, and over time fall to 0%. However before updating this value there should be at least two consecutive equal measurements confirming that the value has actually fallen. Also once the lifetime has fallen, it may not be increased, even if the received values indicate this (i.e. the lifetime left can never increase, only fall).
3.6.2 Pressure Measurement
The data from the pressure sensors is in raw ADC counts. This must be converted in to PSI by using the following conversion.

First convert the ADC counts into mV

Pressure Reading (mV) = ADC Counts * 78.125 / 65535

Then convert in to PSI
Pressure Reading PSI = (Reading mV * 10,000) / 26.0

3.6.3 RTD Temperature Measurement

The data from the Pressure sensor RTD is in raw ADC Counts. This must be converted in to Degrees C. This calculation is first to convert ADC counts in to resistance, by the formula below.
RTD Resistance (Ohms) = ADC Counts * 2000 / 65535

From the resistance the temperature can be determined by solving for the following equation,
RT = 1000 * (1+ (0.00381 * T) – (0.0000005775 * T^2))
or by using a look up table with a 0.1°C step size (accuracy to 1°C is required) based on the above equation.
3.6.4 Actuator Health

Actuator Health covers three main faults, Open Circuit, Short Circuit, and Stuck Actuators. To detect these faults the following methods can be used. Note in most cases once an actuator is determined to be faulty then it may no longer be used.
3.6.4.1 Open Circuit Coil

In this case the actuator will not move, and the capacitor drop will be no more than 5 counts.

3.6.4.2 Short Circuit Coil

In this case the actuator will not move, and the capacitor drop will be much greater than expected (up to twice the normal value). Note temperature must be taken in to account, as the coil resistance increases with temperature.

3.6.4.3 Stuck Actuator

In this case the actuator will not move, and the capacitor drop will be very close to normal. Stuck actuators are allowed to be activated, so that attempts may be made to free the blockage.

3.7 ACTUATOR TEST SCHEME

A test scheme needs to be implemented so that each actuator is moved at least once per week. This scheme also updates the capacitor bank health once per week. This scheme is described in the following document.
· DL100005 Heath Monitoring Report, Section 4.0.

This scheme will be carried out in the back ground by the SBC. When performing these tasks no other commands may be received by the SBC from the Modbus interface and the appropriate busy exception code generated.
3.8 MANUAL MODE

The SCS has a manual mode. When in manual mode the SCS will not except commands and will not assert the CTS line. The SBC in this case cannot send data to the SCS, but data can be received from the SCS in response to manual commands (carried out on the SCS manual panel). This data will conform to response given when using the Get Status Command (i.e. as if the SBC sent the Get Status Command). It will also be logged.

0092-045 Issue A MODBUS Protocol
Page 16 of 7
16
	Document No
	Issue
	Description
	Page

	DL100002
	A
	SBC Requirements
	Page 1 of 10

_988610645.doc
[image: image1.png]

_1294119179

